Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Bioconjug Chem ; 35(7): 1053-1063, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38889324

ABSTRACT

Full-spectrum flow cytometry has increased antibody-based multiplexing, yet further increases remain potentially impactful. We recently proposed how fluorescence multiplexing using spectral imaging and combinatorics (MuSIC) could do so using tandem dyes and an oligo-based antibody labeling method. In this work, we found that such labeled antibodies had significantly lower signal intensities than conventionally labeled antibodies in human cell experiments. To improve signal intensity, we tested moving the fluorophores from the original external (ext.) 5' or 3' end-labeled orientation to internal (int.) fluorophore modifications. Cell-free spectrophotometer measurements showed a ∼6-fold signal intensity increase of the new int. configuration compared to the previous ext. configuration. Time-resolved fluorescence and fluorescence correlation spectroscopy showed that the ∼3-fold brightness difference is due to static quenching most likely by the oligo or solution in the ext. configuration. Spectral flow cytometry experiments using peripheral blood mononuclear cells show int. MuSIC probe-labeled antibodies (i) retained increased signal intensity while having no significant difference in the estimated % of CD8+ lymphocytes and (ii) labeled with Atto488, Atto647, and Atto488/647 combinations can be demultiplexed in triple-stained samples. The antibody labeling approach is general and can be broadly applied to many biological and diagnostic applications where spectral detection is available.


Subject(s)
Antibodies , Flow Cytometry , Fluorescent Dyes , Humans , Fluorescent Dyes/chemistry , Flow Cytometry/methods , Antibodies/immunology , Antibodies/chemistry , Leukocytes, Mononuclear/immunology , Spectrometry, Fluorescence
2.
bioRxiv ; 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37461453

ABSTRACT

While full-spectrum flow cytometry has increased antibody-based multiplexing, yet further increases remain potentially impactful. We recently proposed how fluorescence Multiplexing using Spectral Imaging and Combinatorics (MuSIC) could do so using tandem dyes and an oligo-based antibody labeling method. In this work, we found that such labeled antibodies had significantly lower signal intensity than conventionally-labeled antibodies in human cell experiments. To improve signal intensity, we tested moving the fluorophores from the original external (ext.) 5' or 3' end-labeled orientation to internal (int.) fluorophore modifications. Cell-free spectrophotometer measurements showed a ~6-fold signal intensity increase of the new int. configuration compared to the previous ext. configuration. Time-resolved fluorescence spectroscopy and fluorescence correlation spectroscopy showed that ~3-fold brightness difference is due to static quenching. Spectral flow cytometry experiments using peripheral blood mononuclear cells stained with anti-CD8 antibodies showed that int. MuSIC probe-labeled antibodies have signal intensity equal to or greater than conventionally-labeled antibodies with similar estimated proportion of CD8+ lymphocytes. The antibody labeling approach is general and can be broadly applied to many biological and diagnostic applications.

3.
ACS Synth Biol ; 12(8): 2290-2300, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37463472

ABSTRACT

Systematic, genome-scale genetic screens have been instrumental for elucidating genotype-phenotype relationships, but approaches for probing genetic interactions have been limited to at most ∼100 pre-selected gene combinations in mammalian cells. Here, we introduce a theory for high-throughput genetic interaction screens. The theory extends our recently developed Multiplexing using Spectral Imaging and Combinatorics (MuSIC) approach to propose ∼105 spectrally unique, genetically encoded MuSIC barcodes from 18 currently available fluorescent proteins. Simulation studies based on constraints imposed by spectral flow cytometry equipment suggest that genetic interaction screens at the human genome-scale may be possible if MuSIC barcodes can be paired to guide RNAs. While experimental testing of this theory awaits, it offers transformative potential for genetic perturbation technology and knowledge of genetic function. More broadly, the availability of a genome-scale spectral barcode library for non-destructive identification of single cells could find more widespread applications such as traditional genetic screening and high-dimensional lineage tracing.


Subject(s)
High-Throughput Screening Assays , Mammals , Animals , Humans , Cloning, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL