Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Chem Biol ; 20(6): 732-741, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38321209

ABSTRACT

Glycosylation is a critical post-translational protein modification that affects folding, half-life and functionality. Glycosylation is a non-templated and heterogeneous process because of the promiscuity of the enzymes involved. We describe a platform for sequential glycosylation reactions for tailored sugar structures (SUGAR-TARGET) that allows bespoke, controlled N-linked glycosylation in vitro enabled by immobilized enzymes produced with a one-step immobilization/purification method. We reconstruct a reaction cascade mimicking a glycosylation pathway where promiscuity naturally exists to humanize a range of proteins derived from different cellular systems, yielding near-homogeneous glycoforms. Immobilized ß-1,4-galactosyltransferase is used to enhance the galactosylation profile of three IgGs, yielding 80.2-96.3% terminal galactosylation. Enzyme recycling is demonstrated for a reaction time greater than 80 h. The platform is easy to implement, modular and reusable and can therefore produce homogeneous glycan structures derived from various hosts for functional and clinical evaluation.


Subject(s)
Enzymes, Immobilized , Galactosyltransferases , Glycosylation , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Humans , Galactosyltransferases/metabolism , Galactosyltransferases/chemistry , Polysaccharides/metabolism , Polysaccharides/chemistry , Protein Processing, Post-Translational
2.
Am J Hum Genet ; 108(6): 1040-1052, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33964207

ABSTRACT

SLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423∗), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423∗) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans.


Subject(s)
Antiporters/genetics , Congenital Disorders of Glycosylation/etiology , Endoplasmic Reticulum/pathology , Liver Diseases/complications , Monosaccharide Transport Proteins/genetics , Mutation , Adult , Child , Child, Preschool , Congenital Disorders of Glycosylation/pathology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Genes, Dominant , Glycosylation , Humans , Infant , Infant, Newborn , Male , Pedigree
3.
Nat Methods ; 18(11): 1304-1316, 2021 11.
Article in English | MEDLINE | ID: mdl-34725484

ABSTRACT

Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.


Subject(s)
Glycopeptides/blood , Glycoproteins/blood , Informatics/methods , Proteome/analysis , Proteomics/methods , Research Personnel/statistics & numerical data , Software , Glycosylation , Humans , Proteome/metabolism , Tandem Mass Spectrometry
4.
Biochem Soc Trans ; 51(2): 639-653, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36929183

ABSTRACT

Protein N-linked glycosylation is a structurally diverse post-translational modification that stores biological information in a larger order of magnitude than other post-translational modifications such as phosphorylation, ubiquitination and acetylation. This gives N-glycosylated proteins a diverse range of properties and allows glyco-codes (glycan-related information) to be deciphered by glycan-binding proteins (GBPs). The intervillous space of the placenta is richly populated with membrane-bound and secreted glycoproteins. Evidence exists to suggest that altering the structural nature of their N-glycans can impact several trophoblast functions, which include those related to interactions with decidual cells. This review summarizes trophoblast-related activities influenced by N-glycan-GBP recognition, exploring how different subtypes of trophoblasts actively adapt to characteristics of the decidualized endometrium through cell-specific expression of N-glycosylated proteins, and how these cells receive decidua-derived signals via N-glycan-GBP interactions. We highlight work on how changes in N-glycosylation relates to the success of trophoblast infiltration, interactions of immunomodulators, and uterine angiogenesis. We also discuss studies that suggest aberrant N-glycosylation of trophoblasts may contribute to the pathogenesis of pregnancy complications (e.g. pre-eclampsia, early spontaneous miscarriages and hydatidiform mole). We propose that a more in-depth understanding of how N-glycosylation shapes trophoblast phenotype during early pregnancy has the potential to improve our approach to predicting, diagnosing and alleviating poor maternal/fetal outcomes associated with placental dysfunction.


Subject(s)
Placentation , Trophoblasts , Pregnancy , Female , Humans , Placentation/physiology , Trophoblasts/metabolism , Placenta/metabolism , Glycosylation , Carrier Proteins/metabolism , Proteins/metabolism , Immunomodulation
5.
Metab Eng ; 76: 87-96, 2023 03.
Article in English | MEDLINE | ID: mdl-36610518

ABSTRACT

Chinese hamster ovary (CHO) cells are extensively used for the production of glycoprotein therapeutics proteins, for which N-linked glycans are a critical quality attribute due to their influence on activity and immunogenicity. Manipulation of protein glycosylation is commonly achieved through cell or process engineering, which are often guided by mathematical models. However, each study considers a unique glycosylation reaction network that is tailored around the cell line and product at hand. Herein, we use 200 glycan datasets for both recombinantly produced and native proteins from different CHO cell lines to reconstruct a comprehensive reaction network, CHOGlycoNET, based on the individual minimal reaction networks describing each dataset. CHOGlycoNET is used to investigate the distribution of mannosidase and glycosyltransferase enzymes in the Golgi apparatus and identify key network reactions using machine learning and dimensionality reduction techniques. CHOGlycoNET can be used for accelerating glycomodel development and predicting the effect of glycoengineering strategies. Finally, CHOGlycoNET is wrapped in a SBML file to be used as a standalone model or in combination with CHO cell genome scale models.


Subject(s)
Glycoproteins , Glycosyltransferases , Cricetinae , Animals , Glycosylation , Cricetulus , CHO Cells , Glycoproteins/genetics , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Polysaccharides/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
6.
Proc Natl Acad Sci U S A ; 117(41): 25293-25301, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989128

ABSTRACT

Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe N-(S)-azidopropionylgalactosamine (GalNAzMe) that is specific for cancer-relevant Ser/Thr(O)-linked N-acetylgalactosamine (GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase N-acetylgalactosamine-4-epimerase (GALE) like conventional GalNAc-based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotide-sugar donor uridine diphosphate (UDP)-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan-specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR-knockout (CRISPR-KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, "bump-and-hole" (BH)-GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation.


Subject(s)
Acetylgalactosamine/metabolism , Glycoproteins/metabolism , Acetylgalactosamine/chemistry , Gene Expression Regulation, Enzymologic , Glycosylation , Humans , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Substrate Specificity , Uridine Diphosphate N-Acetylgalactosamine/chemistry
7.
Br J Haematol ; 198(1): 155-164, 2022 07.
Article in English | MEDLINE | ID: mdl-35411940

ABSTRACT

Red blood cells (RBCs) lose plasma membrane in the spleen as they age, but the cells and molecules involved are yet to be identified. Sickle cell disease and infection by Plasmodium falciparum cause oxidative stress that induces aggregates of cross-linked proteins with N-linked high-mannose glycans (HMGs). These glycans can be recognised by mannose-binding lectins, including the mannose receptor (CD206), expressed on macrophages and specialised phagocytic endothelial cells in the spleen to mediate the extravascular haemolysis characteristic of these diseases. We postulated this system might also mediate removal of molecules and membrane in healthy individuals. Surface expression of HMGs on RBCs from patients who had previously undergone splenectomy was therefore assessed: high levels were indeed observable as large membrane aggregates. Glycomic analysis by mass spectrometry identified a mixture of Man5-9 GlcNAc2 structures. HMG levels correlated well with manual pit counts (r = 0.75-0.85). To assess further whether HMGs might act as a splenic reticuloendothelial function test, we measured levels on RBCs from patients with potential functional hyposplenism, some of whom exhibited high levels that may indicate risk of complications.


Subject(s)
Erythrocyte Membrane , Mannose , Endothelial Cells , Humans , Polysaccharides , Splenectomy
8.
Biotechnol Bioeng ; 119(6): 1343-1358, 2022 06.
Article in English | MEDLINE | ID: mdl-35182428

ABSTRACT

Glycosylation can be a critical quality attribute in biologic manufacturing. In particular, it has implications on the half-life, immunogenicity, and pharmacokinetics of therapeutic monoclonal antibodies (mAbs), and must be closely monitored throughout drug development and manufacturing. To address this, advances have been made primarily in upstream processing, including mammalian cell line engineering, to yield more predictably glycosylated mAbs and the addition of media supplements during fermentation to manipulate the metabolic pathways involved in glycosylation. A more robust approach would be a conjoined upstream-downstream processing strategy. This could include implementing novel downstream technologies, such as the use of Fc γ-based affinity ligands for the separation of mAb glycovariants. This review highlights the importance of controlling therapeutic antibody glycosylation patterns, the challenges faced in terms of glycosylation during mAb biosimilar development, current efforts both upstream and downstream to control glycosylation and their limitations, and the need for research in the downstream space to establish holistic and consistent manufacturing processes for the production of antibody therapies.


Subject(s)
Antineoplastic Agents, Immunological , Biosimilar Pharmaceuticals , Animals , Antibodies, Monoclonal/metabolism , Glycosylation , Mammals/metabolism
9.
PLoS Genet ; 15(11): e1008497, 2019 11.
Article in English | MEDLINE | ID: mdl-31747390

ABSTRACT

The lipopolysaccharide O-antigen structure expressed by the European Helicobacter pylori model strain G27 encompasses a trisaccharide, an intervening glucan-heptan and distal Lewis antigens that promote immune escape. However, several gaps still remain in the corresponding biosynthetic pathway. Here, systematic mutagenesis of glycosyltransferase genes in G27 combined with lipopolysaccharide structural analysis, uncovered HP0102 as the trisaccharide fucosyltransferase, HP1283 as the heptan transferase, and HP1578 as the GlcNAc transferase that initiates the synthesis of Lewis antigens onto the heptan motif. Comparative genomic analysis of G27 lipopolysaccharide biosynthetic genes in strains of different ethnic origin revealed that East-Asian strains lack the HP1283/HP1578 genes but contain an additional copy of HP1105 and JHP0562. Further correlation of different lipopolysaccharide structures with corresponding gene contents led us to propose that the second copy of HP1105 and the JHP0562 may function as the GlcNAc and Gal transferase, respectively, to initiate synthesis of the Lewis antigen onto the Glc-Trio-Core in East-Asian strains lacking the HP1283/HP1578 genes. In view of the high gastric cancer rate in East Asia, the absence of the HP1283/HP1578 genes in East-Asian H. pylori strains warrants future studies addressing the role of the lipopolysaccharide heptan in pathogenesis.


Subject(s)
Helicobacter Infections/genetics , Lipopolysaccharides/genetics , O Antigens/genetics , Stomach Neoplasms/genetics , Asian People , Fucosyltransferases/genetics , Fucosyltransferases/immunology , Glucans/genetics , Glycosyltransferases/genetics , Glycosyltransferases/immunology , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Helicobacter pylori/genetics , Helicobacter pylori/immunology , Helicobacter pylori/pathogenicity , Humans , Lewis Blood Group Antigens/genetics , Lewis Blood Group Antigens/immunology , Lipopolysaccharides/chemistry , Lipopolysaccharides/immunology , Mutagenesis , O Antigens/immunology , Stomach Neoplasms/epidemiology , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology
10.
Glycobiology ; 31(3): 181-187, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32886791

ABSTRACT

The novel coronavirus SARS-CoV-2, the infective agent causing COVID-19, is having a global impact both in terms of human disease as well as socially and economically. Its heavily glycosylated spike glycoprotein is fundamental for the infection process, via its receptor-binding domains interaction with the glycoprotein angiotensin-converting enzyme 2 on human cell surfaces. We therefore utilized an integrated glycomic and glycoproteomic analytical strategy to characterize both N- and O- glycan site-specific glycosylation within the receptor-binding domain. We demonstrate the presence of complex-type N-glycans with unusual fucosylated LacdiNAc at both sites N331 and N343 and a single site of O-glycosylation on T323.


Subject(s)
COVID-19/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites/genetics , COVID-19/metabolism , Carbohydrate Conformation , Carbohydrate Sequence , Glycomics , Glycosylation , HEK293 Cells , Host Microbial Interactions , Humans , Pandemics , Protein Binding , Protein Interaction Domains and Motifs , Proteomics , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spike Glycoprotein, Coronavirus/genetics
11.
Glycobiology ; 31(11): 1444-1463, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34350945

ABSTRACT

Bladder cancer is the ninth most frequently diagnosed cancer worldwide, and there is a need to develop new biomarkers for staging and prognosis of this disease. Here we report that cell lines derived from low-grade and high-grade bladder cancers exhibit major differences in expression of glycans in surface glycoproteins. We analyzed protein glycosylation in three low-grade bladder cancer cell lines RT4 (grade-1-2), 5637 (grade-2), and SW780 (grade-1), and three high-grade bladder cancer cell lines J82COT (grade-3), T24 (grade-3) and TCCSUP (grade-4), with primary bladder epithelial cells, A/T/N, serving as a normal bladder cell control. Using a variety of approaches including flow cytometry, immunofluorescence, glycomics and gene expression analysis, we observed that the low-grade bladder cancer cell lines RT4, 5637 and SW780 express high levels of the fucosylated Lewis-X antigen (Lex, CD15) (Galß1-4(Fucα1-3)GlcNAcß1-R), while normal bladder epithelial A/T/N cells lack Lex expression. T24 and TCCSUP cells also lack Lex, whereas J82COT cells express low levels of Lex. Glycomics analyses revealed other major differences in fucosylation and sialylation of N-glycans between these cell types. O-glycans are highly differentiated, as RT4 cells synthesize core 2-based O-glycans that are lacking in the T24 cells. These differences in glycan expression correlated with differences in RNA expression levels of their cognate glycosyltransferases, including α1-3/4-fucosyltransferase genes. These major differences in glycan structures and gene expression profiles between low- and high-grade bladder cancer cells suggest that glycans and glycosyltransferases are candidate biomarkers for grading bladder cancers.


Subject(s)
Biomarkers, Tumor/metabolism , Fucosyltransferases/metabolism , Urinary Bladder Neoplasms/metabolism , Biomarkers, Tumor/genetics , Cells, Cultured , Fucosyltransferases/genetics , Glycosylation , Humans , Urinary Bladder Neoplasms/pathology
12.
Biochem Soc Trans ; 49(2): 915-931, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33704400

ABSTRACT

Biotherapeutic glycoproteins have revolutionised the field of pharmaceuticals, with new discoveries and continuous improvements underpinning the rapid growth of this industry. N-glycosylation is a critical quality attribute of biotherapeutic glycoproteins that influences the efficacy, half-life and immunogenicity of these drugs. This review will focus on the advances and future directions of remodelling N-glycosylation in Chinese hamster ovary (CHO) cells, which are the workhorse of recombinant biotherapeutic production, with particular emphasis on antibody products, using strategies such as cell line and protein backbone engineering.


Subject(s)
Glycoproteins/metabolism , Metabolic Engineering/methods , Polysaccharides/metabolism , Protein Engineering/methods , Recombinant Proteins/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Glycomics/methods , Glycoproteins/genetics , Glycosylation , Polysaccharides/chemistry , Proteomics/methods
13.
Proc Natl Acad Sci U S A ; 115(43): E10089-E10098, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30305426

ABSTRACT

Classically, the unfolded protein response (UPR) safeguards secretory pathway proteostasis. The most ancient arm of the UPR, the IRE1-activated spliced X-box binding protein 1 (XBP1s)-mediated response, has roles in secretory pathway maturation beyond resolving proteostatic stress. Understanding the consequences of XBP1s activation for cellular processes is critical for elucidating mechanistic connections between XBP1s and development, immunity, and disease. Here, we show that a key functional output of XBP1s activation is a cell type-dependent shift in the distribution of N-glycan structures on endogenous membrane and secreted proteomes. For example, XBP1s activity decreased levels of sialylation and bisecting GlcNAc in the HEK293 membrane proteome and secretome, while substantially increasing the population of oligomannose N-glycans only in the secretome. In HeLa cell membranes, stress-independent XBP1s activation increased the population of high-mannose and tetraantennary N-glycans, and also enhanced core fucosylation. mRNA profiling experiments suggest that XBP1s-mediated remodeling of the N-glycome is, at least in part, a consequence of coordinated transcriptional resculpting of N-glycan maturation pathways by XBP1s. The discovery of XBP1s-induced N-glycan structural remodeling on a glycome-wide scale suggests that XBP1s can act as a master regulator of N-glycan maturation. Moreover, because the sugars on cell-surface proteins or on proteins secreted from an XBP1s-activated cell can be molecularly distinct from those of an unactivated cell, these findings reveal a potential new mechanism for translating intracellular stress signaling into altered interactions with the extracellular environment.


Subject(s)
Polysaccharides/metabolism , X-Box Binding Protein 1/metabolism , Cell Line , Cell Line, Tumor , HEK293 Cells , HeLa Cells , Humans , Mannose/metabolism , Proteome/metabolism , Signal Transduction/physiology , Transcription, Genetic/physiology , Unfolded Protein Response/physiology
14.
Glycobiology ; 30(11): 895-909, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32280962

ABSTRACT

Pregnancy-specific beta 1 glycoprotein (PSG1) is secreted from trophoblast cells of the human placenta in increasing concentrations as pregnancy progresses, becoming one of the most abundant proteins in maternal serum in the third trimester. PSG1 has seven potential N-linked glycosylation sites across its four domains. We carried out glycomic and glycoproteomic studies to characterize the glycan composition of PSG1 purified from serum of pregnant women and identified the presence of complex N-glycans containing poly LacNAc epitopes with α2,3 sialyation at four sites. Using different techniques, we explored whether PSG1 can bind to galectin-1 (Gal-1) as these two proteins were previously shown to participate in processes required for a successful pregnancy. We confirmed that PSG1 binds to Gal-1 in a carbohydrate-dependent manner with an affinity of the interaction of 0.13 µM. In addition, we determined that out of the three N-glycosylation-carrying domains, only the N and A2 domains of recombinant PSG1 interact with Gal-1. Lastly, we observed that the interaction between PSG1 and Gal-1 protects this lectin from oxidative inactivation and that PSG1 competes the ability of Gal-1 to bind to some but not all of its glycoprotein ligands.


Subject(s)
Galectin 1/metabolism , Polysaccharides/metabolism , Pregnancy-Specific beta 1-Glycoproteins/metabolism , Female , Galectin 1/chemistry , Humans , Ligands , Polysaccharides/chemistry , Pregnancy , Pregnancy-Specific beta 1-Glycoproteins/chemistry , Pregnancy-Specific beta 1-Glycoproteins/isolation & purification
15.
Lab Invest ; 100(7): 1014-1025, 2020 07.
Article in English | MEDLINE | ID: mdl-32205858

ABSTRACT

Glycodelin is a major glycoprotein expressed in reproductive tissues, like secretory and decidualized endometrium. It has several reproduction related functions that are dependent on specific glycosylation, but it has also been found to drive differentiation of endometrial carcinoma cells toward a less malignant phenotype. Here we aimed to elucidate whether the glycosylation and function of glycodelin is altered in endometrial carcinoma as compared with a normal endometrium. We carried out glycan structure analysis of glycodelin expressed in HEC-1B human endometrial carcinoma cells (HEC-1B Gd) by mass spectrometry glycomics strategies. Glycans of HEC-1B Gd were found to comprise a typical mixture of high-mannose, hybrid, and complex-type N-glycans, often containing undecorated LacNAc (Galß1-4GlcNAc) antennae. However, several differences, as compared with previously reported glycan structures of normal human decidualized endometrium-derived glycodelin isoform, glycodelin-A (GdA), were also found. These included a lower level of sialylation and more abundant poly-LacNAc antennae, some of which are fucosylated. This allowed us to select lectins that showed different binding to these classes of glycodelin. Despite the differences in glycosylation between HEC-1B Gd and GdA, both showed similar inhibitory activity on trophoblast cell invasion and peripheral blood mononuclear cell proliferation. For the detection of cancer associated glycodelin, we established a novel in situ proximity-ligation based histochemical staining method using a specific glycodelin antibody and UEAI lectin. We found that the UEAI reactive glycodelin was abundant in endometrial carcinoma, but virtually absent in normal endometrial tissue even when glycodelin was strongly expressed. In conclusion, we established a histochemical staining method for the detection of endometrial carcinoma-associated glycodelin and showed that this specific glycodelin is exclusively expressed in cancer, not in normal endometrium. Similar methods can be used for studies of other glycoproteins.


Subject(s)
Endometrial Neoplasms , Glycodelin , Uterine Neoplasms , Carbohydrate Sequence , Cell Line, Tumor , Endometrial Neoplasms/chemistry , Endometrial Neoplasms/metabolism , Female , Glycodelin/analysis , Glycodelin/chemistry , Glycodelin/metabolism , Glycomics , Glycosylation , Humans , Lectins/metabolism , Mass Spectrometry , Placenta/chemistry , Pregnancy , Uterine Neoplasms/chemistry , Uterine Neoplasms/metabolism
17.
J Biol Chem ; 293(50): 19476-19491, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30315106

ABSTRACT

Carboxyl-ester lipase (CEL) is a pancreatic fat-digesting enzyme associated with human disease. Rare mutations in the CEL gene cause a syndrome of pancreatic exocrine and endocrine dysfunction denoted MODY8, whereas a recombined CEL allele increases the risk for chronic pancreatitis. Moreover, CEL has been linked to pancreatic ductal adenocarcinoma (PDAC) through a postulated oncofetal CEL variant termed feto-acinar pancreatic protein (FAPP). The monoclonal antibody mAb16D10 was previously reported to detect a glycotope in the highly O-glycosylated, mucin-like C terminus of CEL/FAPP. We here assessed the expression of human CEL in malignant pancreatic lesions and cell lines. CEL was not detectably expressed in neoplastic cells, implying that FAPP is unlikely to be a glycoisoform of CEL in pancreatic cancer. Testing of the mAb16D10 antibody in glycan microarrays then demonstrated that it recognized structures containing terminal GalNAc-α1,3(Fuc-α1,2)Gal (blood group A antigen) and also repeated protein sequences containing GalNAc residues linked to Ser/Thr (Tn antigen), findings that were supported by immunostainings of human pancreatic tissue. To examine whether the CEL glycoprotein might be modified by blood group antigens, we used high-sensitivity MALDI-TOF MS to characterize the released O-glycan pool of CEL immunoprecipitated from human pancreatic juice. We found that the O-glycome of CEL consisted mainly of core 1/core 2 structures with a composition depending on the subject's FUT2 and ABO gene polymorphisms. Thus, among digestive enzymes secreted by the pancreas, CEL is a glycoprotein with some unique characteristics, supporting the view that it could serve additional biological functions to its cholesteryl esterase activity in the duodenum.


Subject(s)
ABO Blood-Group System/metabolism , Carboxylesterase/chemistry , Carboxylesterase/metabolism , Pancreas/enzymology , Polysaccharides/metabolism , Cell Line, Tumor , Gene Expression Regulation, Enzymologic , Humans , Protein Domains
18.
Glycobiology ; 29(8): 562-571, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31094418

ABSTRACT

ES-62 is the major secreted product of the parasitic filarial nematode Acanthocheilonema viteae and has potent anti-inflammatory activities as a consequence of posttranslational decoration by phosphorylcholine (PC). Previously, we showed that ES-62's PC was attached to N-linked glycans, and using fast atom bombardment mass spectrometry, we characterized the structure of the glycans. However, it was unknown at this time which of ES-62's four potential N-glycosylation sites carries the PC-modified glycans. In the present study, we now employ more advanced analytical tools-nano-flow liquid chromatography with high-definition electrospray mass spectrometry-to show that PC-modified glycans are found at all four potential N-glycosylation sites. Also, our earlier studies showed that up to two PC groups were detected per glycan, and we are now able to characterize N-glycans with up to five PC groups. The number per glycan varies in three of the four glycosylation sites, and in addition, for the first time, we have detected PC on the N-glycan chitobiose core in addition to terminal GlcNAc. Nevertheless, the majority of PC is detected on terminal GlcNAc, enabling it to interact with the cells and molecules of the immune system. Such expression may explain the potent immunomodulatory effects of a molecule that is considered to have significant therapeutic potential in the treatment of certain human allergic and autoimmune conditions.


Subject(s)
Acanthocheilonema/metabolism , Helminth Proteins/chemistry , Protein Processing, Post-Translational , Proteome/chemistry , Glycosylation , Helminth Proteins/metabolism , Proteome/metabolism , Secretory Pathway
19.
Nat Methods ; 13(1): 81-6, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26619014

ABSTRACT

Protein O-glycosylation has key roles in many biological processes, but the repertoire of O-glycans synthesized by cells is difficult to determine. Here we describe an approach termed Cellular O-Glycome Reporter/Amplification (CORA), a sensitive method used to amplify and profile mucin-type O-glycans synthesized by living cells. Cells convert added peracetylated benzyl-α-N-acetylgalactosamine to a large variety of modified O-glycan derivatives that are secreted from cells, allowing for easy purification for analysis by HPLC and mass spectrometry (MS). Relative to conventional O-glycan analyses, CORA resulted in an ∼100-1,000-fold increase in sensitivity and identified a more complex repertoire of O-glycans in more than a dozen cell types from Homo sapiens and Mus musculus. Furthermore, when coupled with computational modeling, CORA can be used for predictions about the diversity of the human O-glycome and offers new opportunities to identify novel glycan biomarkers for human diseases.


Subject(s)
Polysaccharides/metabolism , Animals , Chromatography, High Pressure Liquid , Mass Spectrometry , Mice
20.
PLoS Pathog ; 13(3): e1006280, 2017 03.
Article in English | MEDLINE | ID: mdl-28306723

ABSTRACT

Helicobacter pylori lipopolysaccharide promotes chronic gastric colonisation through O-antigen host mimicry and resistance to mucosal antimicrobial peptides mediated primarily by modifications of the lipid A. The structural organisation of the core and O-antigen domains of H. pylori lipopolysaccharide remains unclear, as the O-antigen attachment site has still to be identified experimentally. Here, structural investigations of lipopolysaccharides purified from two wild-type strains and the O-antigen ligase mutant revealed that the H. pylori core-oligosaccharide domain is a short conserved hexasaccharide (Glc-Gal-DD-Hep-LD-Hep-LD-Hep-KDO) decorated with the O-antigen domain encompassing a conserved trisaccharide (-DD-Hep-Fuc-GlcNAc-) and variable glucan, heptan and Lewis antigens. Furthermore, the putative heptosyltransferase HP1284 was found to be required for the transfer of the third heptose residue to the core-oligosaccharide. Interestingly, mutation of HP1284 did not affect the ligation of the O-antigen and resulted in the attachment of the O-antigen onto an incomplete core-oligosaccharide missing the third heptose and the adjoining Glc-Gal residues. Mutants deficient in either HP1284 or O-antigen ligase displayed a moderate increase in susceptibility to polymyxin B but were unable to colonise the mouse gastric mucosa. Finally, mapping mutagenesis and colonisation data of previous studies onto the redefined organisation of H. pylori lipopolysaccharide revealed that only the conserved motifs were essential for colonisation. In conclusion, H. pylori lipopolysaccharide is missing the canonical inner and outer core organisation. Instead it displays a short core and a longer O-antigen encompassing residues previously assigned as the outer core domain. The redefinition of H. pylori lipopolysaccharide domains warrants future studies to dissect the role of each domain in host-pathogen interactions. Also enzymes involved in the assembly of the conserved core structure, such as HP1284, could be attractive targets for the design of new therapeutic agents for managing persistent H. pylori infection causing peptic ulcers and gastric cancer.


Subject(s)
Helicobacter pylori/chemistry , Helicobacter pylori/pathogenicity , Lipopolysaccharides/chemistry , O Antigens/chemistry , Animals , Blotting, Western , Chromatography, Gas , Disease Models, Animal , Helicobacter Infections/microbiology , Host-Pathogen Interactions/physiology , Mice , Mice, Inbred C57BL , Nuclear Magnetic Resonance, Biomolecular , Oligosaccharides/chemistry , Protein Domains , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL