Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Mol Cell ; 75(3): 483-497.e9, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31253574

ABSTRACT

In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain the lysine-63 linkage-specific BRCC36 subunit that is functionalized by scaffold subunits ABRAXAS and ABRO1, respectively. The molecular basis underlying BRCA1-A and BRISC function is currently unknown. Here we show that in the BRCA1-A complex structure, ABRAXAS integrates the DNA repair protein RAP80 and provides a high-affinity binding site that sequesters the tumor suppressor BRCA1 away from the break site. In the BRISC structure, ABRO1 binds SHMT2α, a metabolic enzyme enabling cancer growth in hypoxic environments, which we find prevents BRCC36 from binding and cleaving ubiquitin chains. Our work explains modularity in the BRCC36 DUB family, with different adaptor subunits conferring diversified targeting and regulatory functions.


Subject(s)
BRCA1 Protein/genetics , DNA Repair/genetics , DNA-Binding Proteins/genetics , Deubiquitinating Enzymes/genetics , Histone Chaperones/genetics , Neoplasms/genetics , Binding Sites/genetics , Carrier Proteins/genetics , Cell Nucleus/genetics , Cell Nucleus/immunology , Cytoplasm/genetics , Cytoplasm/immunology , DNA Breaks, Double-Stranded , DNA Repair/immunology , Deubiquitinating Enzymes/immunology , HeLa Cells , Humans , Immunity, Cellular/genetics , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Neoplasms/immunology , Nuclear Matrix-Associated Proteins/genetics , Protein Binding/genetics , Ubiquitin/genetics , Ubiquitin-Specific Proteases/genetics , Ubiquitination/genetics
2.
Nature ; 531(7596): 598-603, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27029275

ABSTRACT

The cullin-RING ubiquitin E3 ligase (CRL) family comprises over 200 members in humans. The COP9 signalosome complex (CSN) regulates CRLs by removing their ubiquitin-like activator NEDD8. The CUL4A-RBX1-DDB1-DDB2 complex (CRL4A(DDB2)) monitors the genome for ultraviolet-light-induced DNA damage. CRL4A(DBB2) is inactive in the absence of damaged DNA and requires CSN to regulate the repair process. The structural basis of CSN binding to CRL4A(DDB2) and the principles of CSN activation are poorly understood. Here we present cryo-electron microscopy structures for CSN in complex with neddylated CRL4A ligases to 6.4 Å resolution. The CSN conformers defined by cryo-electron microscopy and a novel apo-CSN crystal structure indicate an induced-fit mechanism that drives CSN activation by neddylated CRLs. We find that CSN and a substrate cannot bind simultaneously to CRL4A, favouring a deneddylated, inactive state for substrate-free CRL4 complexes. These architectural and regulatory principles appear conserved across CRL families, allowing global regulation by CSN.


Subject(s)
Biocatalysis , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Peptide Hydrolases/metabolism , Peptide Hydrolases/ultrastructure , Allosteric Regulation , Apoproteins/chemistry , Apoproteins/metabolism , Apoproteins/ultrastructure , Binding Sites , COP9 Signalosome Complex , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Carrier Proteins/ultrastructure , Cryoelectron Microscopy , Crystallography, X-Ray , Cullin Proteins/chemistry , Cullin Proteins/metabolism , Cullin Proteins/ultrastructure , DNA Damage , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , Humans , Kinetics , Models, Molecular , Multiprotein Complexes/chemistry , Peptide Hydrolases/chemistry , Protein Binding , Ubiquitination , Ubiquitins/metabolism
3.
Blood ; 133(13): 1507-1516, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30692123

ABSTRACT

A large unmet medical need exists for safer antithrombotic drugs because all currently approved anticoagulant agents interfere with hemostasis, leading to an increased risk of bleeding. Genetic and pharmacologic evidence in humans and animals suggests that reducing factor XI (FXI) levels has the potential to effectively prevent and treat thrombosis with a minimal risk of bleeding. We generated a fully human antibody (MAA868) that binds the catalytic domain of both FXI (zymogen) and activated FXI. Our structural studies show that MAA868 traps FXI and activated FXI in an inactive, zymogen-like conformation, explaining its equally high binding affinity for both forms of the enzyme. This binding mode allows the enzyme to be neutralized before entering the coagulation process, revealing a particularly attractive anticoagulant profile of the antibody. MAA868 exhibited favorable anticoagulant activity in mice with a dose-dependent protection from carotid occlusion in a ferric chloride-induced thrombosis model. MAA868 also caused robust and sustained anticoagulant activity in cynomolgus monkeys as assessed by activated partial thromboplastin time without any evidence of bleeding. Based on these preclinical findings, we conducted a first-in-human study in healthy subjects and showed that single subcutaneous doses of MAA868 were safe and well tolerated. MAA868 resulted in dose- and time-dependent robust and sustained prolongation of activated partial thromboplastin time and FXI suppression for up to 4 weeks or longer, supporting further clinical investigation as a potential once-monthly subcutaneous anticoagulant therapy.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Anticoagulants/therapeutic use , Blood Coagulation/drug effects , Factor XI/antagonists & inhibitors , Thrombosis/drug therapy , Adolescent , Adult , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Anticoagulants/pharmacology , Female , Humans , Immunoglobulin G/pharmacology , Immunoglobulin G/therapeutic use , Macaca fascicularis , Male , Mice, Inbred C57BL , Middle Aged , Molecular Docking Simulation , Thrombosis/blood , Young Adult
4.
Nature ; 512(7513): 161-5, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25043011

ABSTRACT

Ubiquitination is a crucial cellular signalling process, and is controlled on multiple levels. Cullin-RING E3 ubiquitin ligases (CRLs) are regulated by the eight-subunit COP9 signalosome (CSN). CSN inactivates CRLs by removing their covalently attached activator, NEDD8. NEDD8 cleavage by CSN is catalysed by CSN5, a Zn(2+)-dependent isopeptidase that is inactive in isolation. Here we present the crystal structure of the entire ∼350-kDa human CSN holoenzyme at 3.8 Å resolution, detailing the molecular architecture of the complex. CSN has two organizational centres: a horseshoe-shaped ring created by its six proteasome lid-CSN-initiation factor 3 (PCI) domain proteins, and a large bundle formed by the carboxy-terminal α-helices of every subunit. CSN5 and its dimerization partner, CSN6, are intricately embedded at the core of the helical bundle. In the substrate-free holoenzyme, CSN5 is autoinhibited, which precludes access to the active site. We find that neddylated CRL binding to CSN is sensed by CSN4, and communicated to CSN5 with the assistance of CSN6, resulting in activation of the deneddylase.


Subject(s)
Models, Molecular , Multiprotein Complexes/chemistry , Peptide Hydrolases/chemistry , Adaptor Proteins, Signal Transducing , COP9 Signalosome Complex , Catalytic Domain , Crystallography, X-Ray , Enzyme Activation , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Peptide Hydrolases/metabolism , Protein Binding , Protein Structure, Tertiary , Transcription Factors/metabolism
5.
Nature ; 512(7512): 49-53, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25043012

ABSTRACT

In the 1950s, the drug thalidomide, administered as a sedative to pregnant women, led to the birth of thousands of children with multiple defects. Despite the teratogenicity of thalidomide and its derivatives lenalidomide and pomalidomide, these immunomodulatory drugs (IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-deletion-associated dysplasia. IMiDs target the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)) and promote the ubiquitination of the IKAROS family transcription factors IKZF1 and IKZF3 by CRL4(CRBN). Here we present crystal structures of the DDB1-CRBN complex bound to thalidomide, lenalidomide and pomalidomide. The structure establishes that CRBN is a substrate receptor within CRL4(CRBN) and enantioselectively binds IMiDs. Using an unbiased screen, we identified the homeobox transcription factor MEIS2 as an endogenous substrate of CRL4(CRBN). Our studies suggest that IMiDs block endogenous substrates (MEIS2) from binding to CRL4(CRBN) while the ligase complex is recruiting IKZF1 or IKZF3 for degradation. This dual activity implies that small molecules can modulate an E3 ubiquitin ligase and thereby upregulate or downregulate the ubiquitination of proteins.


Subject(s)
Peptide Hydrolases/chemistry , Thalidomide/chemistry , Ubiquitin-Protein Ligases/chemistry , Adaptor Proteins, Signal Transducing , Crystallography, X-Ray , DNA-Binding Proteins/agonists , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Homeodomain Proteins/metabolism , Humans , Lenalidomide , Models, Molecular , Multiprotein Complexes/agonists , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Peptide Hydrolases/metabolism , Protein Binding , Structure-Activity Relationship , Substrate Specificity , Thalidomide/analogs & derivatives , Thalidomide/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism
6.
Angew Chem Int Ed Engl ; 56(5): 1294-1297, 2017 01 24.
Article in English | MEDLINE | ID: mdl-27981705

ABSTRACT

CSN5 is the zinc metalloprotease subunit of the COP9 signalosome (CSN), which is an important regulator of cullin-RING E3 ubiquitin ligases (CRLs). CSN5 is responsible for the cleavage of NEDD8 from CRLs, and blocking deconjugation of NEDD8 traps the CRLs in a hyperactive state, thereby leading to auto-ubiquitination and ultimately degradation of the substrate recognition subunits. Herein, we describe the discovery of azaindoles as a new class of CSN5 inhibitors, which interact with the active-site zinc ion of CSN5 through an unprecedented binding mode. The best compounds inhibited CSN5 with nanomolar potency, led to degradation of the substrate recognition subunit Skp2 in cells, and reduced the viability of HCT116 cells.


Subject(s)
COP9 Signalosome Complex/antagonists & inhibitors , Indoles/metabolism , Zinc/metabolism , Binding Sites , COP9 Signalosome Complex/genetics , COP9 Signalosome Complex/metabolism , Catalytic Domain , Cell Proliferation/drug effects , Crystallography, X-Ray , Fluorescence Resonance Energy Transfer , HCT116 Cells , Humans , Indoles/chemistry , Indoles/pharmacology , Molecular Docking Simulation , NEDD8 Protein/chemistry , NEDD8 Protein/metabolism , Protein Subunits/antagonists & inhibitors , Protein Subunits/genetics , Protein Subunits/metabolism , RNA Interference , RNA, Small Interfering/metabolism , S-Phase Kinase-Associated Proteins/chemistry , S-Phase Kinase-Associated Proteins/metabolism , Zinc/chemistry
7.
J Allergy Clin Immunol ; 135(4): 1031-1043.e6, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25240785

ABSTRACT

BACKGROUND: Anaphylaxis is an acute, potentially lethal, multisystem syndrome resulting from the sudden release of mast cell-derived mediators into the circulation. OBJECTIVES AND METHODS: We report here that a plasma protease cascade, the factor XII-driven contact system, critically contributes to the pathogenesis of anaphylaxis in both murine models and human subjects. RESULTS: Deficiency in or pharmacologic inhibition of factor XII, plasma kallikrein, high-molecular-weight kininogen, or the bradykinin B2 receptor, but not the B1 receptor, largely attenuated allergen/IgE-mediated mast cell hyperresponsiveness in mice. Reconstitutions of factor XII null mice with human factor XII restored susceptibility for allergen/IgE-mediated hypotension. Activated mast cells systemically released heparin, which provided a negatively charged surface for factor XII autoactivation. Activated factor XII generates plasma kallikrein, which proteolyzes kininogen, leading to the liberation of bradykinin. We evaluated the contact system in patients with anaphylaxis. In all 10 plasma samples immunoblotting revealed activation of factor XII, plasma kallikrein, and kininogen during the acute phase of anaphylaxis but not at basal conditions or in healthy control subjects. The severity of anaphylaxis was associated with mast cell degranulation, increased plasma heparin levels, the intensity of contact system activation, and bradykinin formation. CONCLUSIONS: In summary, the data collectively show a role of the contact system in patients with anaphylaxis and support the hypothesis that targeting bradykinin generation and signaling provides a novel and alternative treatment strategy for anaphylactic attacks.


Subject(s)
Anaphylaxis/immunology , Anaphylaxis/metabolism , Factor XII/metabolism , Hypersensitivity/immunology , Hypersensitivity/metabolism , Mast Cells/immunology , Adult , Aged , Anaphylaxis/complications , Anaphylaxis/genetics , Animals , Biomarkers , Bradykinin/metabolism , Disease Models, Animal , Factor XII/antagonists & inhibitors , Factor XII/genetics , Female , Humans , Hypersensitivity/complications , Hypersensitivity/genetics , Hypotension/etiology , Kininogens/metabolism , Male , Mice, Knockout , Middle Aged , Receptor, Bradykinin B2/genetics , Receptor, Bradykinin B2/metabolism , Signal Transduction , Time Factors , Young Adult
8.
Bioorg Med Chem Lett ; 24(3): 731-6, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24439847

ABSTRACT

The successful launches of dipeptidyl peptidase IV (DPP IV) inhibitors as oral anti-diabetics warrant and spur the further quest for additional chemical entities in this promising class of therapeutics. Numerous pharmaceutical companies have pursued their proprietary candidates towards the clinic, resulting in a large body of published chemical structures associated with DPP IV. Herein, we report the discovery of a novel chemotype for DPP IV inhibition based on the C-(1-aryl-cyclohexyl)-methylamine scaffold and its optimization to compounds which selectively inhibit DPP IV at low-nM potency and exhibit an excellent oral pharmacokinetic profile in the rat.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Dipeptidyl-Peptidase IV Inhibitors/pharmacokinetics , Drug Discovery , Methylamines/chemical synthesis , Methylamines/pharmacokinetics , Adamantane/analogs & derivatives , Adamantane/chemistry , Adamantane/pharmacology , Administration, Oral , Animals , Caco-2 Cells , Crystallography, X-Ray , Cyclization , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Enzyme Activation/drug effects , Humans , Inhibitory Concentration 50 , Methylamines/chemistry , Methylamines/pharmacology , Molecular Structure , Nitriles/chemistry , Nitriles/pharmacology , Pyrazines/chemistry , Pyrazines/pharmacology , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Rats , Sitagliptin Phosphate , Triazoles/chemistry , Triazoles/pharmacology , Vildagliptin
9.
Proc Natl Acad Sci U S A ; 108(52): 21052-6, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22160684

ABSTRACT

Hepatitis C virus (HCV) infection is a global health burden with over 170 million people infected worldwide. In a significant portion of patients chronic hepatitis C infection leads to serious liver diseases, including fibrosis, cirrhosis, and hepatocellular carcinoma. The HCV NS3 protein is essential for viral polyprotein processing and RNA replication and hence viral replication. It is composed of an N-terminal serine protease domain and a C-terminal helicase/NTPase domain. For full activity, the protease requires the NS4A protein as a cofactor. HCV NS3/4A protease is a prime target for developing direct-acting antiviral agents. First-generation NS3/4A protease inhibitors have recently been introduced into clinical practice, markedly changing HCV treatment options. To date, crystal structures of HCV NS3/4A protease inhibitors have only been reported in complex with the protease domain alone. Here, we present a unique structure of an inhibitor bound to the full-length, bifunctional protease-helicase NS3/4A and show that parts of the P4 capping and P2 moieties of the inhibitor interact with both protease and helicase residues. The structure sheds light on inhibitor binding to the more physiologically relevant form of the enzyme and supports exploring inhibitor-helicase interactions in the design of the next generation of HCV NS3/4A protease inhibitors. In addition, small angle X-ray scattering confirmed the observed protease-helicase domain assembly in solution.


Subject(s)
Carrier Proteins/chemistry , Hepatitis C/drug therapy , Models, Molecular , Protease Inhibitors/chemistry , Protein Conformation , Viral Nonstructural Proteins/chemistry , Carrier Proteins/metabolism , Chromatography, Gel , Crystallization , Crystallography, X-Ray , Escherichia coli , Inhibitory Concentration 50 , Intracellular Signaling Peptides and Proteins , Protease Inhibitors/metabolism , Protease Inhibitors/therapeutic use , Scattering, Small Angle , Viral Nonstructural Proteins/metabolism
10.
ACS Med Chem Lett ; 14(12): 1631-1639, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116426

ABSTRACT

Redirecting E3 ligases to neo-substrates, leading to their proteasomal disassembly, known as targeted protein degradation (TPD), has emerged as a promising alternative to traditional, occupancy-driven pharmacology. Although the field has expanded tremendously over the past years, the choice of E3 ligases remains limited, with an almost exclusive focus on CRBN and VHL. Here, we report the discovery of novel ligands to the PRY-SPRY domain of TRIM58, a RING ligase that is specifically expressed in erythroid precursor cells. A DSF screen, followed by validation using additional biophysical methods, led to the identification of TRIM58 ligand TRIM-473. A basic SAR around the chemotype was established by utilizing a competitive binding assay employing a short FP peptide probe derived from an endogenous TRIM58 substrate. The X-ray co-crystal structure of TRIM58 in complex with TRIM-473 gave insights into the binding mode and potential exit vectors for bifunctional degrader design.

11.
Bioorg Med Chem Lett ; 22(3): 1464-8, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22177783

ABSTRACT

Novel deazaxanthine-based DPP-4 inhibitors have been identified that are potent (IC(50) <10nM) and highly selective versus other dipeptidyl peptidases. Their synthesis and SAR are reported, along with initial efforts to improve the PK profile through decoration of the deazaxanthine core. Optimisation of compound 3a resulted in the identification of compound (S)-4i, which displayed an improved in vitro and ADME profile. Further enhancements to the PK profile were possible by changing from the deazahypoxanthine to the deazaxanthine template, culminating in compound 12g, which displayed good ex vivo DPP-4 inhibition and a superior PK profile in rat, suggestive of once daily dosing in man.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Animals , Caco-2 Cells , Crystallography, X-Ray , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Enzyme Activation/drug effects , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/therapeutic use , Humans , Inhibitory Concentration 50 , Male , Models, Molecular , Molecular Structure , Rats , Structure-Activity Relationship
12.
Biochem J ; 420(1): 105-13, 2009 Apr 28.
Article in English | MEDLINE | ID: mdl-19207106

ABSTRACT

ADAM15 (a disintegrin and metalloproteinase 15) is a membrane-anchored metalloproteinase, which is overexpressed in several human cancers and has been implicated in pathological neovascularization and prostate cancer metastasis. Yet, little is known about the catalytic properties of ADAM15. Here, we purified soluble recombinant ADAM15 to test for its ability to cleave a library of peptide substrates. However, we found no processing of any of the peptide substrates tested here, and therefore turned to cell-based assays to characterize the catalytic properties of ADAM15. Overexpression of full-length membrane-anchored ADAM15 or the catalytically inactive ADAM15E-->A together with various membrane proteins resulted in increased release of the extracellular domain of the fibroblast growth factor receptor 2iiib (FGFR2iiib) by ADAM15, but not ADAM15E-->A. This provided a robust assay for a characterization of the catalytic properties of ADAM15 in intact cells. We found that increased expression of ADAM15 resulted in increased FGFR2iiib shedding, but that ADAM15 was not stimulated by phorbol esters or calcium ionophores, two commonly used activators of ectodomain shedding. Moreover, ADAM15-dependent processing of FGFR2iiib was inhibited by the hydroxamate-based metalloproteinase inhibitors marimastat, TAPI-2 and GM6001, and by 50 nM TIMP-3 (tissue inhibitor of metalloproteinases 3), but not by 100 nM TIMP-1, and only weakly by 100 nM TIMP-2. These results define key catalytic properties of ADAM15 in cells and its response to stimulators and inhibitors of ectodomain shedding. A cell-based assay for the catalytic activity of ADAM15 could aid in identifying compounds, which could be used to block the function of ADAM15 in pathological neovascularization and cancer.


Subject(s)
ADAM Proteins/metabolism , Membrane Proteins/metabolism , ADAM Proteins/genetics , Animals , Catalysis , Cell Line , Membrane Proteins/genetics , Mice , Mutation , Peptide Library , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Substrate Specificity
13.
Biochem J ; 423(3): 429-39, 2009 Oct 12.
Article in English | MEDLINE | ID: mdl-19694615

ABSTRACT

Neurodegenerative diseases pose one of the most pressing unmet medical needs today. It has long been recognized that caspase-6 may play a role in several neurodegenerative diseases for which there are currently no disease-modifying therapies. Thus it is a potential target for neurodegenerative drug development. In the present study we report on the biochemistry and structure of caspase-6. As an effector caspase, caspase-6 is a constitutive dimer independent of the maturation state of the enzyme. The ligand-free structure shows caspase-6 in a partially mature but latent conformation. The cleaved inter-domain linker remains partially inserted in the central groove of the dimer, as observed in other caspases. However, in contrast with the structures of other caspases, not only is the catalytic machinery misaligned, but several structural elements required for substrate recognition are missing. Most importantly, residues forming a short anti-parallel beta-sheet abutting the substrate in other caspase structures are part of an elongation of the central alpha-helix. Despite the dramatic structural changes that are required to adopt a canonical catalytically competent conformation, the pre-steady-state kinetics exhibit no lag phase in substrate turnover. This suggests that the observed conformation does not play a regulatory role in caspase-6 activity. However, targeting the latent conformation in search for specific and bio-available caspase-6 inhibitors might offer an alternative to active-site-directed approaches.


Subject(s)
Axons/enzymology , Caspase 6/chemistry , Neurodegenerative Diseases/enzymology , Protein Multimerization , Humans , Protein Structure, Quaternary , Protein Structure, Secondary , Structure-Activity Relationship
14.
J Med Chem ; 63(15): 8088-8113, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32551603

ABSTRACT

The serine protease factor XI (FXI) is a prominent drug target as it holds promise to deliver efficacious anticoagulation without an enhanced risk of major bleeds. Several efforts have been described targeting the active form of the enzyme, FXIa. Herein, we disclose our efforts to identify potent, selective, and orally bioavailable inhibitors of FXIa. Compound 1, identified from a diverse library of internal serine protease inhibitors, was originally designed as a complement factor D inhibitor and exhibited submicromolar FXIa activity and an encouraging absorption, distribution, metabolism, and excretion (ADME) profile while being devoid of a peptidomimetic architecture. Optimization of interactions in the S1, S1ß, and S1' pockets of FXIa through a combination of structure-based drug design and traditional medicinal chemistry led to the discovery of compound 23 with subnanomolar potency on FXIa, enhanced selectivity over other coagulation proteases, and a preclinical pharmacokinetics (PK) profile consistent with bid dosing in patients.


Subject(s)
Factor XIa/antagonists & inhibitors , Factor XIa/genetics , Factor Xa Inhibitors/administration & dosage , Factor Xa Inhibitors/chemistry , Administration, Oral , Amino Acid Sequence , Animals , Biological Availability , Dogs , Drug Evaluation, Preclinical/methods , Humans , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
15.
J Biomol Screen ; 14(1): 1-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19171917

ABSTRACT

Fluorescence lifetime is an intrinsic parameter describing the fluorescence process. Changes in the fluorophore's physicochemical environment can lead to changes in the fluorescence lifetime. When used as the readout in biological assays, it is thought to deliver superior results to conventional optical readouts. Hence it has the potential to replace readout technologies currently established in drug discovery such as absorption, luminescence or fluorescence intensity. Here we report the development of an activity assay for human kallikrein 7, a serine protease involved in skin diseases. As a probe, we have selected a blue-fluorescent acridone dye, featuring a remarkably long lifetime that can be quenched by either of the 2 natural amino acids, tyrosine and tryptophan. Incorporating this probe and 1 of the quenching amino acids on either side of the scissile bond of the substrate peptide enables us to monitor the enzymatic activity by quantifying the increase in the fluorescence lifetime signal. A systematic investigation of substrate structures has led to a homogenous, microplate-based, compound profiling assay that yields inhibitory constants down into the single-digit nanomolar range. This type of assay has now been added to our standard portfolio of screening techniques, and is routinely used for compound profiling.


Subject(s)
Fluorescence , Kallikreins/antagonists & inhibitors , Luminescent Measurements/methods , Protease Inhibitors/analysis , Protease Inhibitors/pharmacology , Amino Acid Sequence , Humans , Kallikreins/metabolism , Molecular Sequence Data , Substrate Specificity , Time Factors
16.
J Nucl Med ; 60(3): 393-399, 2019 03.
Article in English | MEDLINE | ID: mdl-30002107

ABSTRACT

Patients with metastatic medullary thyroid cancer (MTC) have limited systemic treatment options. The use of radiolabeled gastrin analogs targeting the cholecystokinin-2 receptor (CCK2R) is an attractive approach. However, their therapeutic efficacy is presumably decreased by their enzymatic degradation in vivo. We aimed to investigate whether the chemically stabilized analog 177Lu-DOTA-PP-F11N (177Lu-DOTA-(dGlu)6-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2) performs better than reference analogs with varying in vivo stability, namely 177Lu-DOTA-MG11 (177Lu-DOTA-dGlu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2) and 177Lu-DOTA-PP-F11 (177Lu-DOTA-(dGlu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2), and whether the use of protease inhibitors further improves CCKR2 targeting. First human data on 177Lu-DOTA-PP-F11N are also reported. Methods: In vitro stability of all analogs was assessed against a panel of extra- and intracellular endoproteases, whereas their in vitro evaluation was performed using the human MTC MZ-CRC-1 and the transfected A431-CCK2R(+) cell lines. Biodistribution without and with the protease inhibitors phosphoramidon and thiorphan was assessed 4 h after injection in MZ-CRC-1 and A431-CCK2R(+) dual xenografts. Autoradiography of 177Lu-DOTA-PP-F11N (without and with phosphoramidon) and NanoSPECT/CT were performed. SPECT/CT images of 177Lu-DOTA-PP-F11N in a metastatic MTC patient were also acquired. Results:natLu-DOTA-PP-F11N is less of a substrate for neprilysins than the other analogs, whereas intracellular cysteine proteases, such as cathepsin-L, might be involved in the degradation of gastrin analogs. The uptake of all radiotracers was higher in MZ-CRC-1 tumors than in A431-CCK2R(+), apparently because of the higher number of binding sites on MZ-CRC-1 cells. 177Lu-DOTA-PP-F11N had the same biodistribution as 177Lu-DOTA-PP-F11; however, uptake in the MZ-CRC-1 tumors was almost double (20.7 ± 1.71 vs. 11.2 ± 2.94 %IA [percentage injected activity]/g, P = 0.0002). Coadministration of phosphoramidon or thiorphan increases 177Lu-DOTA-MG11 uptake significantly in the CCK2R(+) tumors and stomach. Less profound was the effect on 177Lu-DOTA-PP-F11, whereas no influence or even reduction was observed for 177Lu-DOTA-PP-F11N (20.7 ± 1.71 vs. 15.6 ± 3.80 [with phosphoramidon] %IA/g, P < 0.05 in MZ-CRC-1 tumors). The first clinical data show high 177Lu-DOTA-PP-F11N accumulation in tumors, stomach, kidneys, and colon. Conclusion: The performance of 177Lu-DOTA-PP-F11N without protease inhibitors is as good as the performance of 177Lu-DOTA-MG11 in the presence of inhibitors. The human application of single compounds without unessential additives is preferable. Preliminary clinical data spotlight the stomach as a potential dose-limiting organ besides the kidneys.


Subject(s)
Gastrins/chemistry , Gastrins/metabolism , Heterocyclic Compounds, 1-Ring/chemistry , Lutetium , Protease Inhibitors/pharmacology , Radioisotopes , Receptor, Cholecystokinin B/metabolism , Amino Acid Sequence , Animals , Biological Transport/drug effects , Cell Line, Tumor , Drug Stability , Female , Gastrins/pharmacokinetics , Humans , Mice , Positron Emission Tomography Computed Tomography , Single Photon Emission Computed Tomography Computed Tomography , Tissue Distribution/drug effects
17.
Structure ; 14(8): 1293-302, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16905103

ABSTRACT

Deubiquitinating proteases reverse protein ubiquitination and rescue their target proteins from destruction by the proteasome. USP2, a cysteine protease and a member of the ubiquitin specific protease family, is overexpressed in prostate cancer and stabilizes fatty acid synthase, which has been associated with the malignancy of some aggressive prostate cancers. Here, we report the structure of the human USP2 catalytic domain in complex with ubiquitin. Ubiquitin uses two major sites for the interaction with the protease. Both sites are required simultaneously, as shown by USP2 inhibition assays with peptides and ubiquitin mutants. In addition, a layer of ordered water molecules mediates key interactions between ubiquitin and USP2. As several of those molecules are found at identical positions in the previously solved USP7/ubiquitin-aldehyde complex structure, we suggest a general mechanism of water-mediated ubiquitin recognition by USPs.


Subject(s)
Endopeptidases/chemistry , Endopeptidases/metabolism , Models, Molecular , Ubiquitin/metabolism , Amino Acid Sequence , Crystallization , DNA Primers , Endopeptidases/genetics , Humans , Kinetics , Metals/metabolism , Molecular Sequence Data , Protein Structure, Tertiary , Ubiquitin/chemistry , Ubiquitin Thiolesterase , Water/metabolism
18.
Article in English | MEDLINE | ID: mdl-28113517

ABSTRACT

Interleukin-8 (IL-8, CXCL8) is a neutrophil chemotactic factor belonging to the family of chemokines. IL-8 was shown to resist pepsin cleavage displaying its high resistance to this protease. However, the molecular mechanisms underlying this resistance are not fully understood. Using our in-house database containing the data on three-dimensional arrangements of secondary structure elements from the whole Protein Data Bank, we found a striking structural similarity between IL-8 and pepsin inhibitor-3. Such similarity could play a key role in understanding IL-8 resistance to the protease pepsin. To support this hypothesis, we applied pepsin assays confirming that intact IL-8 is not degraded by pepsin in comparison to IL-8 in a denaturated state. Applying 1H-15N Heteronuclear Single Quantum Coherence NMR measurements, we determined the putative regions at IL-8 that are potentially responsible for interactions with the pepsin. The results obtained in this work contribute to the understanding of the resistance of IL-8 to pepsin proteolysis in terms of its structural properties.


Subject(s)
Computational Biology/methods , Interleukin-8/chemistry , Interleukin-8/metabolism , Pepsin A/chemistry , Pepsin A/metabolism , Computer Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Secondary
19.
J Mol Biol ; 355(2): 249-61, 2006 Jan 13.
Article in English | MEDLINE | ID: mdl-16305800

ABSTRACT

BACE2 is a membrane-bound aspartic protease of the A1 family with a high level of sequence homology to BACE1. While BACE1 is involved in the generation of amyloid plaques in Alzheimer's disease by cleaving Abeta-peptides from the amyloid precursor protein, the physiological function of BACE2 is not well understood. BACE2 appears to be associated with the early onset of dementia in patients with Down's syndrome, and it has been shown to be highly expressed in breast cancers. Further, it may participate in the function of normal and abnormal processes of human muscle biology. Similar to other aspartic proteases, BACE2 is expressed as an inactive zymogen requiring the cleavage of its pro-sequence during the maturation process. We have produced mature BACE2 by expression of pro-BACE2 in Escherichia coli as inclusion bodies, followed by refolding and autocatalytic activation at pH 3.4. Using a C and N-terminally truncated BACE2 variant, we were able to crystallize and determine the crystal structure of mature BACE2 in complex with a hydroxyethylamine transition-state mimetic inhibitor at 3.1 angstroms resolution. The structure of BACE2 follows the general fold of A1 aspartic proteases. However, similar to BACE1, its C-terminal domain is significantly larger than that of the other family members. Furthermore, the structure of BACE2 reveals differences in the S3, S2, S1' and S2' active site substrate pockets as compared to BACE1, and allows, therefore, for a deeper understanding of the structural features that may facilitate the design of selective BACE1 or BACE2 inhibitors.


Subject(s)
Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/chemistry , Enzyme Inhibitors/chemistry , Ethanolamines/chemistry , Amino Acid Sequence , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases/genetics , Binding Sites , Crystallization , Drug Design , Enzyme Stability , Escherichia coli/enzymology , Escherichia coli/genetics , Humans , Inclusion Bodies/enzymology , Molecular Sequence Data , Mutation , Protein Structure, Secondary , Structure-Activity Relationship
20.
Methods Appl Fluoresc ; 5(3): 034002, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28699919

ABSTRACT

Time-resolved fluorescence detection for robust sensing of biomolecular interactions is developed by implementing time-correlated single photon counting in high-throughput conditions. Droplet microfluidics is used as a promising platform for the very fast handling of low-volume samples. We illustrate the potential of this very sensitive and cost-effective technology in the context of an enzymatic activity assay based on fluorescently-labeled biomolecules. Fluorescence lifetime detection by time-correlated single photon counting is shown to enable reliable discrimination between positive and negative control samples at a throughput as high as several hundred samples per second.


Subject(s)
Biological Assay , Fluorescence , Microfluidic Analytical Techniques , Enzyme Assays , Fluorescent Dyes/chemistry , Peptides/chemistry , Trypsin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL