Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Cell ; 176(6): 1310-1324.e10, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30827684

ABSTRACT

DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to ∼1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during the genesis of the SV and provide compelling support for a microhomology-mediated break-induced replication (MMBIR) mechanism for SV formation. Our data show an additional mutational burden of MMBIR consisting of hypermutation confined to the locus and manifesting as SNVs and indels predominantly within genes.


Subject(s)
Chromosomes, Human, Pair 17 , Mutation , Abnormalities, Multiple/genetics , Chromosome Breakpoints , Chromosome Disorders/genetics , Chromosome Duplication/genetics , DNA Copy Number Variations , DNA Repair/genetics , DNA Replication , Gene Rearrangement , Genome, Human , Genomic Structural Variation , Humans , INDEL Mutation , Models, Genetic , Polymorphism, Single Nucleotide , Recombination, Genetic , Sequence Analysis, DNA/methods , Smith-Magenis Syndrome/genetics
2.
Cell ; 176(1-2): 127-143.e24, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30633903

ABSTRACT

DNA damage provokes mutations and cancer and results from external carcinogens or endogenous cellular processes. However, the intrinsic instigators of endogenous DNA damage are poorly understood. Here, we identify proteins that promote endogenous DNA damage when overproduced: the DNA "damage-up" proteins (DDPs). We discover a large network of DDPs in Escherichia coli and deconvolute them into six function clusters, demonstrating DDP mechanisms in three: reactive oxygen increase by transmembrane transporters, chromosome loss by replisome binding, and replication stalling by transcription factors. Their 284 human homologs are over-represented among known cancer drivers, and their RNAs in tumors predict heavy mutagenesis and a poor prognosis. Half of the tested human homologs promote DNA damage and mutation when overproduced in human cells, with DNA damage-elevating mechanisms like those in E. coli. Our work identifies networks of DDPs that provoke endogenous DNA damage and may reveal DNA damage-associated functions of many human known and newly implicated cancer-promoting proteins.


Subject(s)
DNA Damage/genetics , DNA Damage/physiology , DNA Repair/physiology , Bacterial Proteins/metabolism , Chromosomal Instability/physiology , DNA Replication/physiology , DNA-Binding Proteins/metabolism , Escherichia coli/metabolism , Genomic Instability , Humans , Membrane Transport Proteins/physiology , Mutagenesis , Mutation , Transcription Factors/metabolism
3.
Mol Cell ; 83(8): 1298-1310.e4, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36965481

ABSTRACT

Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolution of resistance during antibiotic therapies. Despite its pivotal importance, few identities and fewer functions of stress responses in mutagenesis are clear. Here, we identify the Escherichia coli stringent starvation response in fluoroquinolone-antibiotic ciprofloxacin-induced mutagenesis. Binding of response-activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: surprisingly, ppGpp-site-1-RNAP triggers the DNA-damage response, and ppGpp-site-2-RNAP induces σS-response activity. We propose that RNAP regulates DNA-damage processing in transcribed regions. The data demonstrate a critical node in ciprofloxacin-induced mutagenesis, imply RNAP-regulation of DNA-break repair, and identify promising targets for resistance-resisting drugs.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/metabolism , Guanosine Tetraphosphate/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , DNA-Directed RNA Polymerases/metabolism , Ciprofloxacin/pharmacology , DNA/metabolism , RNA/metabolism , Gene Expression Regulation, Bacterial
4.
Mol Cell ; 74(4): 785-800.e7, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30948267

ABSTRACT

Antibiotics can induce mutations that cause antibiotic resistance. Yet, despite their importance, mechanisms of antibiotic-promoted mutagenesis remain elusive. We report that the fluoroquinolone antibiotic ciprofloxacin (cipro) induces mutations by triggering transient differentiation of a mutant-generating cell subpopulation, using reactive oxygen species (ROS). Cipro-induced DNA breaks activate the Escherichia coli SOS DNA-damage response and error-prone DNA polymerases in all cells. However, mutagenesis is limited to a cell subpopulation in which electron transfer together with SOS induce ROS, which activate the sigma-S (σS) general-stress response, which allows mutagenic DNA-break repair. When sorted, this small σS-response-"on" subpopulation produces most antibiotic cross-resistant mutants. A U.S. Food and Drug Administration (FDA)-approved drug prevents σS induction, specifically inhibiting antibiotic-promoted mutagenesis. Further, SOS-inhibited cell division, which causes multi-chromosome cells, promotes mutagenesis. The data support a model in which within-cell chromosome cooperation together with development of a "gambler" cell subpopulation promote resistance evolution without risking most cells.


Subject(s)
Anti-Bacterial Agents/adverse effects , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Mutagenesis/genetics , Cell Division/drug effects , Ciprofloxacin/adverse effects , DNA Damage/drug effects , DNA-Directed DNA Polymerase/genetics , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Gene Expression Regulation, Bacterial/drug effects , Mutagenesis/drug effects , Mutation , Reactive Oxygen Species/metabolism , SOS Response, Genetics/drug effects , Sigma Factor/genetics
5.
Cell ; 146(6): 889-903, 2011 Sep 16.
Article in English | MEDLINE | ID: mdl-21925314

ABSTRACT

Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism's life cycle.


Subject(s)
Chromosome Aberrations , DNA Repair , Developmental Disabilities/genetics , Neoplasms/genetics , Base Sequence , Child , Child, Preschool , Chromosome Breakage , Comparative Genomic Hybridization , DNA Replication , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Molecular Sequence Data
6.
PLoS Genet ; 13(7): e1006733, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28727736

ABSTRACT

Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS oxidation of DNA potentially regulated by ROS regulators.


Subject(s)
Escherichia coli Proteins/biosynthesis , Mutagenesis/genetics , Stress, Physiological/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , DNA Breaks, Double-Stranded/drug effects , DNA Damage/drug effects , DNA Repair/genetics , DNA-Directed DNA Polymerase/biosynthesis , DNA-Directed DNA Polymerase/genetics , Deoxyguanine Nucleotides/genetics , Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Host-Pathogen Interactions/genetics , Mutation/genetics , Reactive Oxygen Species/metabolism , SOS Response, Genetics/genetics , Sigma Factor/biosynthesis , Sigma Factor/genetics
7.
Am J Hum Genet ; 96(4): 555-64, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25799105

ABSTRACT

We investigated complex genomic rearrangements (CGRs) consisting of triplication copy-number variants (CNVs) that were accompanied by extended regions of copy-number-neutral absence of heterozygosity (AOH) in subjects with multiple congenital abnormalities. Molecular analyses provided observational evidence that in humans, post-zygotically generated CGRs can lead to regional uniparental disomy (UPD) due to template switches between homologs versus sister chromatids by using microhomology to prime DNA replication-a prediction of the replicative repair model, MMBIR. Our findings suggest that replication-based mechanisms might underlie the formation of diverse types of genomic alterations (CGRs and AOH) implicated in constitutional disorders.


Subject(s)
DNA Copy Number Variations/genetics , DNA Repair/genetics , DNA Replication/genetics , Gene Rearrangement/genetics , Loss of Heterozygosity/genetics , Models, Genetic , Uniparental Disomy/genetics , Base Sequence , Humans , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Netherlands , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
8.
Curr Genet ; 64(4): 769-776, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29294174

ABSTRACT

Mechanisms of mutation upregulated by stress responses have been described in several organisms from bacteria to human. These mechanisms might accelerate genetic change specifically when cells are maladapted to their environment. Stress-induced mutation mechanisms differ in their genetic requirements from mutation in growing cells, occurring by different mechanisms in different assay systems, but having in common a requirement for the induction of stress-responses. Here, we review progress in two areas relevant to stress-response-dependent mutagenic DNA break repair mechanisms in Escherichia coli. First, we review evidence that relates mutation to transcription. This connection might allow mutagenesis in transcribed regions, including those relevant to any stress being experienced, opening the possibility that mutations could be targeted to regions where mutation might be advantageous under conditions of a specific stress. We review the mechanisms by which replication initiated by transcription can lead to mutation. Second, we review recent findings that, although stress-induced mutation does not require exogenous DNA-damaging agents, it does require the presence of damaged bases in DNA. For starved E. coli, endogenous oxygen radicals cause these altered bases. We postulate that damaged bases stall the replisome, which, we suggest, is required for DNA-polymerase exchange, allowing the action of low-fidelity DNA polymerases that promote mutation.


Subject(s)
DNA Repair/genetics , Escherichia coli/genetics , RNA/genetics , Stress, Physiological/genetics , DNA Damage/genetics , DNA Replication/genetics , Escherichia coli/metabolism , Humans , Mutation , Oxygen/metabolism
9.
Nucleic Acids Res ; 44(5): e41, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26578563

ABSTRACT

With the wide availability of whole-genome sequencing (WGS), genetic mapping has become the rate-limiting step, inhibiting unbiased forward genetics in even the most tractable model organisms. We introduce a rapid deconvolution resource and method for untagged causative mutations after mutagenesis, screens, and WGS in Escherichia coli. We created Deconvoluter-ordered libraries with selectable insertions every 50 kb in the E. coli genome. The Deconvoluter method uses these for replacement of untagged mutations in the genome using a phage-P1-based gene-replacement strategy. We validate the Deconvoluter resource by deconvolution of 17 of 17 phenotype-altering mutations from a screen of N-ethyl-N-nitrosourea-induced mutants. The Deconvoluter resource permits rapid unbiased screens and gene/function identification and will enable exploration of functions of essential genes and undiscovered genes/sites/alleles not represented in existing deletion collections. This resource for unbiased forward-genetic screens with mapping-by-sequencing ('forward genomics') demonstrates a strategy that could similarly enable rapid screens in many other microbes.


Subject(s)
Escherichia coli/genetics , Gene Library , Genome, Bacterial , Genomics/methods , Mutagenesis, Insertional/methods , Mutation , Algorithms , Bacteriophage P1/genetics , Escherichia coli/drug effects , Ethylnitrosourea/pharmacology , Genotype , Phenotype , Polymorphism, Single Nucleotide
10.
Nat Rev Genet ; 10(8): 551-64, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19597530

ABSTRACT

Deletions and duplications of chromosomal segments (copy number variants, CNVs) are a major source of variation between individual humans and are an underlying factor in human evolution and in many diseases, including mental illness, developmental disorders and cancer. CNVs form at a faster rate than other types of mutation, and seem to do so by similar mechanisms in bacteria, yeast and humans. Here we review current models of the mechanisms that cause copy number variation. Non-homologous end-joining mechanisms are well known, but recent models focus on perturbation of DNA replication and replication of non-contiguous DNA segments. For example, cellular stress might induce repair of broken replication forks to switch from high-fidelity homologous recombination to non-homologous repair, thus promoting copy number change.


Subject(s)
Gene Dosage , Recombination, Genetic , Genome-Wide Association Study , Humans , Models, Genetic
11.
Am J Hum Genet ; 89(4): 580-8, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21981782

ABSTRACT

Genomic disorders constitute a class of diseases that are associated with DNA rearrangements resulting from region-specific genome instability, that is, genome architecture incites genome instability. Nonallelic homologous recombination (NAHR) or crossing-over in meiosis between sequences that are not in allelic positions (i.e., paralogous sequences) can result in recurrent deletions or duplications causing genomic disorders. Previous studies of NAHR have focused on description of the phenomenon, but it remains unclear how NAHR occurs during meiosis and what factors determine its frequency. Here we assembled two patient cohorts with reciprocal genomic disorders; deletion associated Smith-Magenis syndrome and duplication associated Potocki-Lupski syndrome. By assessing the full spectrum of rearrangement types from the two cohorts, we find that complex rearrangements (those with more than one breakpoint) are more prevalent in copy-number gains (17.7%) than in copy-number losses (2.3%); an observation that supports a role for replicative mechanisms in complex rearrangement formation. Interestingly, for NAHR-mediated recurrent rearrangements, we show that crossover frequency is positively associated with the flanking low-copy repeat (LCR) length and inversely influenced by the inter-LCR distance. To explain this, we propose that the probability of ectopic chromosome synapsis increases with increased LCR length, and that ectopic synapsis is a necessary precursor to ectopic crossing-over.


Subject(s)
Chromosome Pairing , Crossing Over, Genetic , Homologous Recombination , Abnormalities, Multiple , Alleles , Base Sequence , Chromosome Disorders , Chromosome Duplication , Chromosomes, Human, Pair 17/ultrastructure , Cohort Studies , Comparative Genomic Hybridization , Gene Deletion , Gene Dosage , Humans , Models, Genetic , Molecular Sequence Data , Oligonucleotides/genetics , Recombination, Genetic , Smith-Magenis Syndrome/genetics , Trans-Activators , Transcription Factors/genetics
12.
Bioessays ; 34(10): 885-92, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22911060

ABSTRACT

Evolutionary theory assumed that mutations occur constantly, gradually, and randomly over time. This formulation from the "modern synthesis" of the 1930s was embraced decades before molecular understanding of genes or mutations. Since then, our labs and others have elucidated mutation mechanisms activated by stress responses. Stress-induced mutation mechanisms produce mutations, potentially accelerating evolution, specifically when cells are maladapted to their environment, that is, when they are stressed. The mechanisms of stress-induced mutation that are being revealed experimentally in laboratory settings provide compelling models for mutagenesis that propels pathogen-host adaptation, antibiotic resistance, cancer progression and resistance, and perhaps much of evolution generally. We discuss double-strand-break-dependent stress-induced mutation in Escherichia coli. Recent results illustrate how a stress response activates mutagenesis and demonstrate this mechanism's generality and importance to spontaneous mutation. New data also suggest a possible harmony between previous, apparently opposed, models for the molecular mechanism. They additionally strengthen the case for anti-evolvability therapeutics for infectious disease and cancer.


Subject(s)
Anti-Infective Agents/pharmacology , Escherichia coli/genetics , Evolution, Molecular , Mutagenesis , Stress, Physiological , Animals , DNA Breaks, Double-Stranded , DNA Repair , DNA, Bacterial/genetics , Drug Design , Drug Resistance, Microbial/genetics , Escherichia coli/physiology , Escherichia coli Proteins/physiology , Humans , Selection, Genetic
13.
PLoS Genet ; 7(8): e1002223, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21901104

ABSTRACT

Copy-number variations (CNVs) constitute very common differences between individual humans and possibly all genomes and may therefore be important fuel for evolution, yet how they form remains elusive. In starving Escherichia coli, gene amplification is induced by stress, controlled by the general stress response. Amplification has been detected only encompassing genes that confer a growth advantage when amplified. We studied the structure of stress-induced gene amplification in starving cells in the Lac assay in Escherichia coli by array comparative genomic hybridization (aCGH), with polymerase chain reaction (pcr) and DNA sequencing to establish the structures generated. About 10% of 300 amplified isolates carried other chromosomal structural change in addition to amplification. Most of these were inversions and duplications associated with the amplification event. This complexity supports a mechanism similar to that seen in human non-recurrent copy number variants. We interpret these complex events in terms of repeated template switching during DNA replication. Importantly, we found a significant occurrence (6 out of 300) of chromosomal structural changes that were apparently not involved in the amplification event. These secondary changes were absent from 240 samples derived from starved cells not carrying amplification, suggesting that amplification happens in a differentiated subpopulation of stressed cells licensed for global chromosomal structural change and genomic instability. These data imply that chromosomal structural changes occur in bursts or showers of instability that may have the potential to drive rapid evolution.


Subject(s)
Chromosomal Instability , Chromosomes, Bacterial/chemistry , DNA Copy Number Variations/genetics , Escherichia coli/genetics , Escherichia coli/physiology , Gene Amplification/genetics , Chromosome Inversion/genetics , Comparative Genomic Hybridization , Evolution, Molecular , Gene Duplication , Lac Operon/genetics , Stress, Physiological
14.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496432

ABSTRACT

Formation of templated insertions at DNA double-strand breaks (DSBs) is very common in cancer cells. The mechanisms and enzymes regulating these events are largely unknown. Here, we investigated templated insertions in yeast at DSBs using amplicon sequencing across a repaired locus. We document very short (most ∼5-34 bp), templated inverted duplications at DSBs. They are generated through a foldback mechanism that utilizes microhomologies adjacent to the DSB. Enzymatic requirements suggest a hybrid mechanism wherein one end requires Polδ-mediated synthesis while the other end is captured by nonhomologous end joining (NHEJ). This process is exacerbated in mutants with low levels or mutated RPA ( rtt105 Δ; rfa1 -t33) or extensive resection mutant ( sgs1 Δ exo1 Δ). Templated insertions from various distant genomic locations also increase in these mutants as well as in rad27 Δ and originate from fragile regions of the genome. Among complex insertions, common events are insertions of two sequences, originating from the same locus and with inverted orientation. We propose that these inversions are also formed by microhomology-mediated template switching. Taken together, we propose that a shortage of RPA typical in cancer cells is one possible factor stimulating the formation of templated insertions.

15.
Res Sq ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38260641

ABSTRACT

In metazoans release of mitochondrial DNA or retrotransposon cDNA to cytoplasm can cause sterile inflammation and disease 1. Cytoplasmic nucleases degrade these DNA species to limit inflammation 2,3. It remains unknown whether degradation these DNA also prevents nuclear genome instability. To address this question, we decided to identify the nuclease regulating transfer of these cytoplasmic DNA species to the nucleus. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. Nuclear mtDNA (NUMTs) and retrotransposon cDNA insertions increase dramatically in nondividing stationary phase cells. Yeast EndoG (Nuc1) nuclease limits insertions of cDNA and transfer of very long mtDNA (>10 kb) that forms unstable circles or rarely insert in the genome, but it promotes formation of short NUMTs (~45-200 bp). Nuc1 also regulates transfer of cytoplasmic DNA to nucleus in aging or during meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs can originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating cytoplasmic DNA play a role in preserving genome stability.

16.
PLoS Genet ; 6(3): e1000865, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20221259

ABSTRACT

Thymineless death (TLD) is a classic and enigmatic phenomenon, documented in bacterial, yeast, and human cells, whereby cells lose viability rapidly when deprived of thymine. Despite its being the essential mode of action of important chemotherapeutic agents, and despite having been studied extensively for decades, the basic mechanisms of TLD have remained elusive. In Escherichia coli, several proteins involved in homologous recombination (HR) are required for TLD, however, surprisingly, RecA, the central HR protein and activator of the SOS DNA-damage response was reported not to be. We demonstrate that RecA and the SOS response are required for a substantial fraction of TLD. We show that some of the Rec proteins implicated previously promote TLD via facilitating activation of the SOS response and that, of the roughly 40 proteins upregulated by SOS, SulA, an SOS-inducible inhibitor of cell division, accounts for most or all of how SOS causes TLD. The data imply that much of TLD results from an irreversible cell-cycle checkpoint due to blocked cell division. FISH analyses of the DNA in cells undergoing TLD reveal blocked replication and apparent DNA loss with the region near the replication origin underrepresented initially and the region near the terminus lost later. Models implicating formation of single-strand DNA at blocked replication forks, a SulA-blocked cell cycle, and RecQ/RecJ-catalyzed DNA degradation and HR are discussed. The data predict the importance of DNA damage-response and HR networks to TLD and chemotherapy resistance in humans.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/cytology , Escherichia coli/enzymology , Microbial Viability , Rec A Recombinases/metabolism , SOS Response, Genetics , Thymine/metabolism , Chromosome Segregation , Chromosomes, Bacterial/metabolism , DNA Replication , DNA Topoisomerases, Type I/metabolism , DNA, Bacterial/metabolism , DNA, Cruciform/metabolism , Models, Biological , Recombination, Genetic/genetics
17.
Sci Adv ; 9(25): eadg0188, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37352342

ABSTRACT

Evolution of antibiotic resistance is a world health crisis, fueled by new mutations. Drugs to slow mutagenesis could, as cotherapies, prolong the shelf-life of antibiotics, yet evolution-slowing drugs and drug targets have been underexplored and ineffective. Here, we used a network-based strategy to identify drugs that block hubs of fluoroquinolone antibiotic-induced mutagenesis. We identify a U.S. Food and Drug Administration- and European Medicines Agency-approved drug, dequalinium chloride (DEQ), that inhibits activation of the Escherichia coli general stress response, which promotes ciprofloxacin-induced (stress-induced) mutagenic DNA break repair. We uncover the step in the pathway inhibited: activation of the upstream "stringent" starvation stress response, and find that DEQ slows evolution without favoring proliferation of DEQ-resistant mutants. Furthermore, we demonstrate stress-induced mutagenesis during mouse infections and its inhibition by DEQ. Our work provides a proof-of-concept strategy for drugs to slow evolution in bacteria and generally.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Animals , Mice , Pharmaceutical Preparations/metabolism , Mutagenesis , Mutation , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Drug Resistance, Microbial/genetics
18.
bioRxiv ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38168242

ABSTRACT

In metazoans release of mitochondrial DNA or retrotransposon cDNA to cytoplasm can cause sterile inflammation and disease. Cytoplasmic nucleases degrade these DNA species to limit inflammation. It remains unknown whether degradation these DNA also prevents nuclear genome instability. To address this question, we decided to identify the nuclease regulating transfer of these cytoplasmic DNA species to the nucleus. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. Nu clear mt DNA (NUMTs) and retrotransposon cDNA insertions increase dramatically in nondividing stationary phase cells. Yeast EndoG (Nuc1) nuclease limits insertions of cDNA and transfer of very long mtDNA (>10 kb) that forms unstable circles or rarely insert in the genome, but it promotes formation of short NUMTs (∼45-200 bp). Nuc1 also regulates transfer of cytoplasmic DNA to nucleus in aging or during meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs can originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating cytoplasmic DNA play a role in preserving genome stability.

19.
PLoS Genet ; 5(1): e1000327, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19180184

ABSTRACT

Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV). A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2-5 base pairs (bp). Third, endpoints occur near pre-existing low copy repeats (LCRs). Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR) for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR). Under these circumstances, single-strand 3' tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication.


Subject(s)
DNA Breaks, Single-Stranded , DNA Replication , Gene Dosage , Models, Genetic , Sequence Homology , Animals , Escherichia coli/genetics , Gene Rearrangement , Humans , Neoplasms/genetics , Recombination, Genetic , Yeasts/genetics
20.
mBio ; 13(3): e0107422, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35658528

ABSTRACT

Mechanisms of evolution and evolution of antibiotic resistance are both fundamental and world health problems. Stress-induced mutagenesis defines mechanisms of mutagenesis upregulated by stress responses, which drive adaptation when cells are maladapted to their environments-when stressed. Work in mutagenesis induced by antibiotics had produced tantalizing clues but not coherent mechanisms. We review recent advances in antibiotic-induced mutagenesis that integrate how reactive oxygen species (ROS), the SOS and general stress responses, and multichromosome cells orchestrate a stress response-induced switch from high-fidelity to mutagenic repair of DNA breaks. Moreover, while sibling cells stay stable, a mutable "gambler" cell subpopulation is induced by differentially generated ROS, which signal the general stress response. We discuss other evolvable subpopulations and consider diverse evolution-promoting molecules as potential targets for drugs to slow evolution of antibiotic resistance, cross-resistance, and immune evasion. An FDA-approved drug exemplifies "stealth" evolution-slowing drugs that avoid selecting resistance to themselves or antibiotics.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Escherichia coli/genetics , Mutagenesis , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL