Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Biotechniques ; 69(4): 289-301, 2020 10.
Article in English | MEDLINE | ID: mdl-32772558

ABSTRACT

To prevent and treat chronic diseases, including cancer, a global application of systems biology is needed. We report here a whole blood transcriptome test that needs only 50 µl of capillary (fingerprick) blood. This test is suitable for global applications because the samples are preserved at ambient temperature for up to 4 weeks and the RNA preservative inactivates all pathogens, enabling safe transportation. Both the laboratory and bioinformatic steps are automated and performed in a clinical lab, which minimizes batch effects and creates unbiased datasets. Given its clinical testing performance and accessibility to traditionally underrepresented and diverse populations, this test offers a unique ability to reveal molecular mechanisms of disease and enable longitudinal, population-scale studies.


Subject(s)
Capillaries/metabolism , Systems Biology , Transcriptome/genetics , Whole Body Imaging/methods , Blood Specimen Collection , Humans
2.
3.
Int J Genomics ; 2019: 1718741, 2019.
Article in English | MEDLINE | ID: mdl-31662956

ABSTRACT

A functional readout of the gut microbiome is necessary to enable precise control of the gut microbiome's functions, which support human health and prevent or minimize a wide range of chronic diseases. Stool metatranscriptomic analysis offers a comprehensive functional view of the gut microbiome, but despite its usefulness, it has rarely been used in clinical studies due to its complexity, cost, and bioinformatic challenges. This method has also received criticism due to potential intrasample variability, rapid changes, and RNA degradation. Here, we describe a robust and automated stool metatranscriptomic method, called Viomega, which was specifically developed for population-scale studies. Viomega includes sample collection, ambient temperature sample preservation, total RNA extraction, physical removal of ribosomal RNAs (rRNAs), preparation of directional Illumina libraries, Illumina sequencing, taxonomic classification based on a database of >110,000 microbial genomes, and quantitative microbial gene expression analysis using a database of ~100 million microbial genes. We applied this method to 10,000 human stool samples and performed several small-scale studies to demonstrate sample stability and consistency. In summary, Viomega is an inexpensive, high-throughput, automated, and accurate sample-to-result stool metatranscriptomic technology platform for large-scale studies and a wide range of applications.

4.
Anal Chem ; 80(22): 8561-7, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18939855

ABSTRACT

Optimal conditions for depositing protein microarrays using a continuous-flow microfluidic device, the continuous-flow microspotter (CFM), have been determined using a design of experiments approach. The amount of protein deposited on the surface depends on the rates of convective and diffusive transport to the surface and binding at the surface. These rates depend on parameters such as the flow rate, time, and capture mechanism at the surface. The process parameters were optimized, and uniform protein spots were obtained at a protein concentration of 10 microg/mL and even at 0.4 microg/mL. A 150-fold dilution in protein concentration in the sample solution decreased surface concentration by a factor of only 16. If the capture mechanism of the protein on the substrate is nonspecific, optimal deposition is obtained at higher flow rates for short periods of time. If the capture mechanism is specific, such as biotin-avidin, deposition is optimal at medium flow rates with little advantage beyond 30 min. The CFM can be used to deposit protein arrays with good spot morphology, spot-to-spot uniformity and enhanced surface concentration. The CFM was used to deposit an array of various antibodies, and their interactions with an antigen were studied using surface plasmon resonance (SPR). Affinity values were obtained at low antibody concentrations (5 microg/mL) with low coefficients of variation. Thus, the CFM can be used to effectively capture proteins and antibodies from dilute samples while depositing multiple spots, thereby increasing the quality of spots in protein microarrays and especially improving screening throughput of SPR.


Subject(s)
Protein Array Analysis/methods , Animals , Antibodies/immunology , Antibody Affinity , Avidin/metabolism , Biotinylation , Cattle , Drug Discovery , Staphylococcal Protein A/metabolism , Time Factors
5.
Cureus ; 10(7): e2909, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-30186714

ABSTRACT

The molecular characterization of solid tumor malignancies with respect to tumorgenesis, risk stratification, and prognostication of chemotherapeutic side effects is multi-faceted. Characterizing these mechanisms requires a detailed understanding of cytogenetics and pharmacology. In addition to the standard palliative care interventions that address issues such as fatigue, neuropathy, performance status, depression, nutrition, cachexia, anxiety, and medical ethics, we must also delve into individual chemotherapy side effects. Comprehending these symptoms is more complex with the advent of broader targeted therapies. With the advent and initiation of Foundation Medicine (FMI) testing, we have been able to tailor regimens to the individual genetics of the patient. Next-generation sequencing (NGS) is a bioinformatic analysis used in order to create a targeted effort to understand the complex genetics of a vast array of malignancies. Through the process known as high-throughput sequencing we, as clinicians, can obtain more real-time genetic data and incorporate the information into our reasoning process. The process involves a broad manner in which deoxyribonucleic acid (DNA) sequence data is obtained including genome sequencing and resequencing, protein-DNA or proteinomics, chromatin immunoprecipitation (ChIP)-sequencing, ribonucleic acid (RNA) sequencing, and epigenomic analysis. High-throughput sequencing techniques including single molecule real-time sequencing, ion semiconductor sequencing, pyrose sequencing, sequencing by synthesis, sequencing by ligation, nanopore sequencing, and chain termination (otherwise known as Sanger sequencing) have expanded the realm of NGS and clinicians options.

6.
Nat Commun ; 7: 11235, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27044725

ABSTRACT

Polymerases that synthesize artificial genetic polymers hold great promise for advancing future applications in synthetic biology. However, engineering natural polymerases to replicate unnatural genetic polymers is a challenging problem. Here we present droplet-based optical polymerase sorting (DrOPS) as a general strategy for expanding polymerase function that employs an optical sensor to monitor polymerase activity inside the microenvironment of a uniform synthetic compartment generated by microfluidics. We validated this approach by performing a complete cycle of encapsulation, sorting and recovery on a doped library and observed an enrichment of ∼1,200-fold for a model engineered polymerase. We then applied our method to evolve a manganese-independent α-L-threofuranosyl nucleic acid (TNA) polymerase that functions with >99% template-copying fidelity. Based on our findings, we suggest that DrOPS is a versatile tool that could be used to evolve any polymerase function, where optical detection can be achieved by Watson-Crick base pairing.


Subject(s)
Biological Assay , Biomimetic Materials/chemistry , DNA-Directed DNA Polymerase/chemistry , Microfluidics/methods , Nucleic Acids/chemistry , Base Pairing , Cells, Immobilized/chemistry , Escherichia coli/chemistry , Microfluidics/instrumentation , Monosaccharides/chemistry , Optical Devices , Protein Engineering/methods
7.
Lab Chip ; 14(3): 562-8, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24297040

ABSTRACT

High throughput automation is greatly enhanced using techniques that employ conveyor belt strategies with un-interrupted streams of flow. We have developed a 'conveyor belt' analog for high throughput real-time quantitative Polymerase Chain Reaction (qPCR) using droplet emulsion technology. We developed a low power, portable device that employs LED and fiber optic fluorescence excitation in conjunction with a continuous flow thermal cycler to achieve multi-channel fluorescence detection for real-time fluorescence measurements. Continuously streaming fluid plugs or droplets pass through tubing wrapped around a two-temperature zone thermal block with each wrap of tubing fluorescently coupled to a 64-channel multi-anode PMT. This work demonstrates real-time qPCR of 0.1-10 µL droplets or fluid plugs over a range of 7 orders of magnitude concentration from 1 × 10(1) to 1 × 10(7). The real-time qPCR analysis allows dynamic range quantification as high as 1 × 10(7) copies per 10 µL reaction, with PCR efficiencies within the range of 90-110% based on serial dilution assays and a limit of detection of 10 copies per rxn. The combined functionality of continuous flow, low power thermal cycling, high throughput sample processing, and real-time qPCR improves the rates at which biological or environmental samples can be continuously sampled and analyzed.


Subject(s)
Real-Time Polymerase Chain Reaction/instrumentation , Automation , DNA/analysis , Fiber Optic Technology , Fluorescent Dyes/chemistry , Plasmids/genetics , Temperature
8.
Lab Chip ; 13(7): 1308-15, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23380996

ABSTRACT

We present a study of passive hydrodynamic droplet sorting in microfluidic channels based on intrinsic viscoelastic fluid properties. Sorting is achieved by tuning the droplets' intrinsic viscous and viscoelastic properties relative to the continuous oil phase to achieve a positive or negative lateral migration toward high or low shear gradients in the channel. In the presence of weakly viscoelastic fluid behavior, droplets with a viscosity ratio, κ, between 0.5-10 were found to migrate toward a high shear gradient near the channel walls. For all other κ-values, or Newtonian fluids, droplets would migrate toward a low shear gradient at the channel centerline. It was also found that for strongly viscoelastic fluids with low interfacial tension, droplets would migrate toward the edge even with κ-values lower than 0.5. The resulting bi-directional lateral droplet migration between different droplets allows size-independent sorting. Still, their sorting efficiencies are dependent on droplet size, intrinsic fluid elasticity, viscosity, droplet deformability, and overall fluid shear rates. Based on these findings, we demonstrate >200 Hz passive droplet sorting frequencies and achieve >100 fold enrichment factors without the need to actively sense and/or control active mechanisms. Using a low viscosity oil phase of 6.25 cPs, we demonstrate sorting discrimination of 1 cPs and 5 cPs aqueous droplets with κ-values of 0.2 and 0.8 respectively.


Subject(s)
Elasticity , Hydrodynamics , Microfluidic Analytical Techniques/methods , Motion , Oils/chemistry , Viscosity
9.
Lab Chip ; 11(15): 2509-17, 2011 Aug 07.
Article in English | MEDLINE | ID: mdl-21670837

ABSTRACT

We present a tunable three-dimensional (3D) self-assembled droplet packing method to achieve high-density micro-reactor arrays for greater imaging efficiency and higher-throughput chemical and biological assays. We demonstrate the capability of this platform's high-density imaging method by performing single molecule quantification using digital polymerase chain reaction, or digital PCR, in multiple self-assembled colloid-like crystal lattice configurations. By controlling chamber height to droplet diameter ratios we predictively control three-dimensional packing configurations with varying degrees of droplet overlap to increase droplet density and imaging sensor area coverage efficiency. Fluorescence imaging of the densely packed 3D reactor arrays, up to three layers high, demonstrates high throughput quantitative analysis of single-molecule reactions. Now a greater number of microreactors can be observed and studied in a single picture frame without the need for confocal imaging, slide scanners, or complicated image processing techniques. Compared to 2D designs, tunable 3D reactor arrays yield up to a threefold increase in density and use 100% of the sensor's imaging area to enable simultaneous imaging a larger number of reactions without sacrificing digital quantification performance. This novel approach provides an important advancement for ultra-high-density reactor arrays.


Subject(s)
Microarray Analysis/instrumentation , Microarray Analysis/methods , Polymerase Chain Reaction/instrumentation , Polymerase Chain Reaction/methods
10.
Lab Chip ; 11(22): 3838-45, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-21959960

ABSTRACT

Digital droplet reactors are useful as chemical and biological containers to discretize reagents into picolitre or nanolitre volumes for analysis of single cells, organisms, or molecules. However, most DNA based assays require processing of samples on the order of tens of microlitres and contain as few as one to as many as millions of fragments to be detected. Presented in this work is a droplet microfluidic platform and fluorescence imaging setup designed to better meet the needs of the high-throughput and high-dynamic-range by integrating multiple high-throughput droplet processing schemes on the chip. The design is capable of generating over 1-million, monodisperse, 50 picolitre droplets in 2-7 minutes that then self-assemble into high density 3-dimensional sphere packing configurations in a large viewing chamber for visualization and analysis. This device then undergoes on-chip polymerase chain reaction (PCR) amplification and fluorescence detection to digitally quantify the sample's nucleic acid contents. Wide-field fluorescence images are captured using a low cost 21-megapixel digital camera and macro-lens with an 8-12 cm(2) field-of-view at 1× to 0.85× magnification, respectively. We demonstrate both end-point and real-time imaging ability to perform on-chip quantitative digital PCR analysis of the entire droplet array. Compared to previous work, this highly integrated design yields a 100-fold increase in the number of on-chip digitized reactors with simultaneous fluorescence imaging for digital PCR based assays.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Polymerase Chain Reaction/instrumentation , Spectrometry, Fluorescence/instrumentation , DNA/genetics , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL