Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(24): 5328-5346.e26, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37883971

ABSTRACT

Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.


Subject(s)
Lysosomes , Signal Transduction , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Nutrients , Cell Physiological Phenomena
2.
Nat Rev Mol Cell Biol ; 23(12): 797-816, 2022 12.
Article in English | MEDLINE | ID: mdl-35589852

ABSTRACT

Phosphoinositides are signalling lipids derived from phosphatidylinositol, a ubiquitous phospholipid in the cytoplasmic leaflet of eukaryotic membranes. Initially discovered for their roles in cell signalling, phosphoinositides are now widely recognized as key integrators of membrane dynamics that broadly impact on all aspects of cell physiology and on disease. The past decade has witnessed a vast expansion of our knowledge of phosphoinositide biology. On the endocytic and exocytic routes, phosphoinositides direct the inward and outward flow of membrane as vesicular traffic is coupled to the conversion of phosphoinositides. Moreover, recent findings on the roles of phosphoinositides in autophagy and the endolysosomal system challenge our view of lysosome biology. The non-vesicular exchange of lipids, ions and metabolites at membrane contact sites in between organelles has also been found to depend on phosphoinositides. Here we review our current understanding of how phosphoinositides shape and direct membrane dynamics to impact on cell physiology, and provide an overview of emerging concepts in phosphoinositide regulation.


Subject(s)
Endosomes , Phosphatidylinositols , Phosphatidylinositols/metabolism , Cell Membrane/metabolism , Endosomes/metabolism , Signal Transduction , Lysosomes/metabolism
3.
Cell ; 175(1): 239-253.e17, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30197081

ABSTRACT

Many disease-causing missense mutations affect intrinsically disordered regions (IDRs) of proteins, but the molecular mechanism of their pathogenicity is enigmatic. Here, we employ a peptide-based proteomic screen to investigate the impact of mutations in IDRs on protein-protein interactions. We find that mutations in disordered cytosolic regions of three transmembrane proteins (GLUT1, ITPR1, and CACNA1H) lead to an increased clathrin binding. All three mutations create dileucine motifs known to mediate clathrin-dependent trafficking. Follow-up experiments on GLUT1 (SLC2A1), the glucose transporter causative of GLUT1 deficiency syndrome, revealed that the mutated protein mislocalizes to intracellular compartments. Mutant GLUT1 interacts with adaptor proteins (APs) in vitro, and knocking down AP-2 reverts the cellular mislocalization and restores glucose transport. A systematic analysis of other known disease-causing variants revealed a significant and specific overrepresentation of gained dileucine motifs in structurally disordered cytosolic domains of transmembrane proteins. Thus, several mutations in disordered regions appear to cause "dileucineopathies."


Subject(s)
Glucose Transporter Type 1/physiology , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/physiology , Amino Acid Motifs/genetics , Amino Acid Sequence , Animals , Binding Sites , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/physiology , Carbohydrate Metabolism, Inborn Errors , Clathrin/metabolism , Cytoplasm/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/physiology , Intrinsically Disordered Proteins/metabolism , Leucine/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Monosaccharide Transport Proteins/deficiency , Mutation/genetics , Peptides , Protein Binding , Proteomics/methods
4.
Cell ; 156(5): 882-92, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24581490

ABSTRACT

Biological membranes undergo constant remodeling by membrane fission and fusion to change their shape and to exchange material between subcellular compartments. During clathrin-mediated endocytosis, the dynamic assembly and disassembly of protein scaffolds comprising members of the bin-amphiphysin-rvs (BAR) domain protein superfamily constrain the membrane into distinct shapes as the pathway progresses toward fission by the GTPase dynamin. In this Review, we discuss how BAR domain protein assembly and disassembly are controlled in space and time and which structural and biochemical features allow the tight regulation of their shape and function to enable dynamin-mediated membrane fission.


Subject(s)
Cell Membrane/metabolism , Dynamins/metabolism , Animals , Clathrin-Coated Vesicles/metabolism , Endocytosis , Humans , Protein Structure, Tertiary
5.
EMBO J ; 41(9): e109352, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35318705

ABSTRACT

Neural circuit function requires mechanisms for controlling neurotransmitter release and the activity of neuronal networks, including modulation by synaptic contacts, synaptic plasticity, and homeostatic scaling. However, how neurons intrinsically monitor and feedback control presynaptic neurotransmitter release and synaptic vesicle (SV) recycling to restrict neuronal network activity remains poorly understood at the molecular level. Here, we investigated the reciprocal interplay between neuronal endosomes, organelles of central importance for the function of synapses, and synaptic activity. We show that elevated neuronal activity represses the synthesis of endosomal lipid phosphatidylinositol 3-phosphate [PI(3)P] by the lipid kinase VPS34. Neuronal activity in turn is regulated by endosomal PI(3)P, the depletion of which reduces neurotransmission as a consequence of perturbed SV endocytosis. We find that this mechanism involves Calpain 2-mediated hyperactivation of Cdk5 downstream of receptor- and activity-dependent calcium influx. Our results unravel an unexpected function for PI(3)P-containing neuronal endosomes in the control of presynaptic vesicle cycling and neurotransmission, which may explain the involvement of the PI(3)P-producing VPS34 kinase in neurological disease and neurodegeneration.


Subject(s)
Synaptic Transmission , Synaptic Vesicles , Endocytosis/physiology , Endosomes , Neurotransmitter Agents , Phosphatidylinositol Phosphates , Synapses/physiology , Synaptic Transmission/physiology
6.
Cell ; 145(2): 175-7, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21496639

ABSTRACT

Formation of sensory maps within the olfactory bulb depends on insulin-like growth factor (IGF) signaling. Cao et al. (2011) now show that neuronal IGF secretion is regulated by neural activity through the calcium sensor synaptotagmin-10 and is required in the olfactory bulb for the sensation of smell.

7.
Cell ; 146(3): 471-84, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21816279

ABSTRACT

Clathrin-mediated endocytosis (CME) regulates many cell physiological processes such as the internalization of growth factors and receptors, entry of pathogens, and synaptic transmission. Within the endocytic network, clathrin functions as a central organizing platform for coated pit assembly and dissociation via its terminal domain (TD). We report the design and synthesis of two compounds named pitstops that selectively block endocytic ligand association with the clathrin TD as confirmed by X-ray crystallography. Pitstop-induced inhibition of clathrin TD function acutely interferes with receptor-mediated endocytosis, entry of HIV, and synaptic vesicle recycling. Endocytosis inhibition is caused by a dramatic increase in the lifetimes of clathrin coat components, including FCHo, clathrin, and dynamin, suggesting that the clathrin TD regulates coated pit dynamics. Pitstops provide new tools to address clathrin function in cell physiology with potential applications as inhibitors of virus and pathogen entry and as modulators of cell signaling.


Subject(s)
Clathrin/chemistry , Clathrin/metabolism , Coated Pits, Cell-Membrane/metabolism , Cytological Techniques/methods , Small Molecule Libraries , Adaptor Protein Complex 2/metabolism , Animals , Cells, Cultured , Coated Pits, Cell-Membrane/drug effects , Crystallography, X-Ray , Dynamins/metabolism , Endocytosis , Humans , Mice , Protein Structure, Tertiary , Signal Transduction , Synapses/metabolism , Synapses/ultrastructure
8.
Mol Cell ; 71(2): 343-351.e4, 2018 07 19.
Article in English | MEDLINE | ID: mdl-30029007

ABSTRACT

Class II phosphoinositide 3-kinases (PI3K-C2) are large multidomain enzymes that control cellular functions ranging from membrane dynamics to cell signaling via synthesis of 3'-phosphorylated phosphoinositides. Activity of the alpha isoform (PI3K-C2α) is associated with endocytosis, angiogenesis, and glucose metabolism. How PI3K-C2α activity is controlled at sites of endocytosis remains largely enigmatic. Here we show that the lipid-binding PX-C2 module unique to class II PI3Ks autoinhibits kinase activity in solution but is essential for full enzymatic activity at PtdIns(4,5)P2-rich membranes. Using HDX-MS, we show that the PX-C2 module folds back onto the kinase domain, inhibiting its basal activity. Destabilization of this intramolecular contact increases PI3K-C2α activity in vitro and in cells, leading to accumulation of its lipid product, increased recruitment of the endocytic effector SNX9, and facilitated endocytosis. Our studies uncover a regulatory mechanism in which coincident binding of phosphoinositide substrate and cofactor selectively activate PI3K-C2α at sites of endocytosis.


Subject(s)
Class II Phosphatidylinositol 3-Kinases/metabolism , Class II Phosphatidylinositol 3-Kinases/physiology , Phosphatidylinositol 3-Kinases/physiology , Animals , C2 Domains/physiology , COS Cells , Chlorocebus aethiops , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/physiology , Clathrin/physiology , Endocytosis/physiology , HEK293 Cells , Homeostasis , Humans , Lipids/physiology , Mass Spectrometry , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Binding , Protein Domains , Signal Transduction
9.
Proc Natl Acad Sci U S A ; 120(35): e2304323120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37603735

ABSTRACT

The generation of appropriate behavioral responses involves dedicated neuronal circuits. The cortico-striatal-thalamo-cortical loop is especially important for the expression of motor routines and habits. Defects in this circuitry are closely linked to obsessive stereotypic behaviors, hallmarks of neuropsychiatric diseases including autism spectrum disorders (ASDs) and obsessive-compulsive disorders (OCDs). However, our knowledge of the essential synaptic machinery required to maintain balanced neurotransmission and plasticity within the cortico-striatal circuitry remains fragmentary. Mutations in the large synaptic scaffold protein intersectin1 (ITSN1) have been identified in patients presenting with ASD symptoms including stereotypic behaviors, although a causal relationship between stereotypic behavior and intersectin function has not been established. We report here that deletion of the two closely related proteins ITSN1 and ITSN2 leads to severe ASD/OCD-like behavioral alterations and defective cortico-striatal neurotransmission in knockout (KO) mice. Cortico-striatal function was compromised at multiple levels in ITSN1/2-depleted animals. Morphological analyses showed that the striatum of intersectin KO mice is decreased in size. Striatal neurons exhibit reduced complexity and an underdeveloped dendritic spine architecture. These morphological abnormalities correlate with defects in cortico-striatal neurotransmission and plasticity as well as reduced N-methyl-D-aspartate (NMDA) receptor currents as a consequence of postsynaptic NMDA receptor depletion. Our findings unravel a physiological role of intersectin in cortico-striatal neurotransmission to counteract ASD/OCD. Moreover, we delineate a molecular pathomechanism for the neuropsychiatric symptoms of patients carrying intersectin mutations that correlates with the observation that NMDA receptor dysfunction is a recurrent feature in the development of ASD/OCD-like symptoms.


Subject(s)
Compulsive Behavior , Receptors, N-Methyl-D-Aspartate , Animals , Mice , Receptors, N-Methyl-D-Aspartate/genetics , Compulsive Behavior/genetics , Synaptic Transmission , Mice, Knockout
10.
J Neurosci ; 44(24)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38724283

ABSTRACT

Understanding the function of the human brain requires determining basic properties of synaptic transmission in human neurons. One of the most fundamental parameters controlling neurotransmitter release is the presynaptic action potential, but its amplitude and duration remain controversial. Presynaptic action potentials have so far been measured with high temporal resolution only in a limited number of vertebrate but not in human neurons. To uncover properties of human presynaptic action potentials, we exploited recently developed tools to generate human glutamatergic neurons by transient expression of Neurogenin 2 (Ngn2) in pluripotent stem cells. During maturation for 3 to 9 weeks of culturing in different established media, the proportion of cells with multiple axon initial segments decreased, while the amount of axonal tau protein and neuronal excitability increased. Super-resolution microscopy revealed the alignment of the pre- and postsynaptic proteins, Bassoon and Homer. Synaptic transmission was surprisingly reliable at frequencies of 20, 50, and 100 Hz. The synchronicity of synaptic transmission during high-frequency transmission increased during 9 weeks of neuronal maturation. To analyze the mechanisms of synchronous high-frequency glutamate release, we developed direct presynaptic patch-clamp recordings from human neurons. The presynaptic action potentials had large overshoots to ∼25 mV and short durations of ∼0.5 ms. Our findings show that Ngn2-induced neurons represent an elegant model system allowing for functional, structural, and molecular analyses of glutamatergic synaptic transmission with high spatiotemporal resolution in human neurons. Furthermore, our data predict that glutamatergic transmission is mediated by large and rapid presynaptic action potentials in the human brain.


Subject(s)
Action Potentials , Induced Pluripotent Stem Cells , Neurons , Presynaptic Terminals , Synapses , Humans , Induced Pluripotent Stem Cells/physiology , Action Potentials/physiology , Synapses/physiology , Neurons/physiology , Presynaptic Terminals/physiology , Nerve Tissue Proteins/metabolism , Synaptic Transmission/physiology , Cells, Cultured , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/physiology
11.
J Biol Chem ; 300(3): 105757, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364889

ABSTRACT

Phosphoinositides are amphipathic lipid molecules derived from phosphatidylinositol that represent low abundance components of biological membranes. Rather than serving as mere structural elements of lipid bilayers, they represent molecular switches for a broad range of biological processes, including cell signaling, membrane dynamics and remodeling, and many other functions. Here, we focus on the molecular mechanisms that turn phosphoinositides into molecular switches and how the dysregulation of these processes can lead to disease.


Subject(s)
Disease , Phosphatidylinositols , Signal Transduction , Cell Membrane/metabolism , Phosphatidylinositols/metabolism , Humans
12.
Nat Chem Biol ; 19(1): 18-27, 2023 01.
Article in English | MEDLINE | ID: mdl-36109648

ABSTRACT

Phosphatidylinositol 3-kinase type 2α (PI3KC2α) and related class II PI3K isoforms are of increasing biomedical interest because of their crucial roles in endocytic membrane dynamics, cell division and signaling, angiogenesis, and platelet morphology and function. Herein we report the development and characterization of PhosphatidylInositol Three-kinase Class twO INhibitors (PITCOINs), potent and highly selective small-molecule inhibitors of PI3KC2α catalytic activity. PITCOIN compounds exhibit strong selectivity toward PI3KC2α due to their unique mode of interaction with the ATP-binding site of the enzyme. We demonstrate that acute inhibition of PI3KC2α-mediated synthesis of phosphatidylinositol 3-phosphates by PITCOINs impairs endocytic membrane dynamics and membrane remodeling during platelet-dependent thrombus formation. PITCOINs are potent and selective cell-permeable inhibitors of PI3KC2α function with potential biomedical applications ranging from thrombosis to diabetes and cancer.


Subject(s)
Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols , Phosphatidylinositol Phosphates/metabolism
13.
EMBO Rep ; 24(11): e57758, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37680133

ABSTRACT

Compartmentalization by membranes is a common feature of eukaryotic cells and serves to spatiotemporally confine biochemical reactions to control physiology. Membrane-bound organelles such as the endoplasmic reticulum (ER), the Golgi complex, endosomes and lysosomes, and the plasma membrane, continuously exchange material via vesicular carriers. In addition to vesicular trafficking entailing budding, fission, and fusion processes, organelles can form membrane contact sites (MCSs) that enable the nonvesicular exchange of lipids, ions, and metabolites, or the secretion of neurotransmitters via subsequent membrane fusion. Recent data suggest that biomolecule and information transfer via vesicular carriers and via MCSs share common organizational principles and are often mediated by proteins with intrinsically disordered regions (IDRs). Intrinsically disordered proteins (IDPs) can assemble via low-affinity, multivalent interactions to facilitate membrane tethering, deformation, fission, or fusion. Here, we review our current understanding of how IDPs drive the formation of multivalent protein assemblies and protein condensates to orchestrate vesicular and nonvesicular transport with a special focus on presynaptic neurotransmission. We further discuss how dysfunction of IDPs causes disease and outline perspectives for future research.


Subject(s)
Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Cell Membrane/metabolism , Lysosomes/metabolism
14.
Proc Natl Acad Sci U S A ; 119(40): e2202236119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161941

ABSTRACT

X-linked centronuclear myopathy (XLCNM) is a severe human disease without existing therapies caused by mutations in the phosphoinositide 3-phosphatase MTM1. Loss of MTM1 function is associated with muscle fiber defects characterized by impaired localization of ß-integrins and other components of focal adhesions. Here we show that defective focal adhesions and reduced active ß-integrin surface levels in a cellular model of XLCNM are rescued by loss of phosphatidylinositiol 3-kinase C2ß (PI3KC2ß) function. Inactivation of the Mtm1 gene impaired myoblast differentiation into myotubes and resulted in reduced surface levels of active ß1-integrins as well as corresponding defects in focal adhesions. These phenotypes were rescued by concomitant genetic loss of Pik3c2b or pharmacological inhibition of PI3KC2ß activity. We further demonstrate that a hitherto unknown role of PI3KC2ß in the endocytic trafficking of active ß1-integrins rather than rescue of phosphatidylinositol 3-phosphate levels underlies the ability of Pik3c2b to act as a genetic modifier of cellular XLCNM phenotypes. Our findings reveal a crucial antagonistic function of MTM1 and PI3KC2ß in the control of active ß-integrin surface levels, thereby providing a molecular mechanism for the adhesion and myofiber defects observed in XLCNM. They further suggest specific pharmacological inhibition of PI3KC2ß catalysis as a viable treatment option for XLCNM patients.


Subject(s)
Myopathies, Structural, Congenital , Phosphatidylinositol 3-Kinase , Humans , Integrins/genetics , Muscle, Skeletal , Myopathies, Structural, Congenital/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics
15.
Brain ; 146(5): 1812-1820, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36866449

ABSTRACT

N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most common subtype of autoimmune encephalitis characterized by a complex neuropsychiatric syndrome usually including memory impairment. Patients develop an intrathecal immune response against NMDARs with antibodies that presumably bind to the amino-terminal domain of the GluN1 subunit. The therapeutic response to immunotherapy is often delayed. Therefore, new therapeutic approaches for fast neutralization of NMDAR antibodies are needed. Here, we developed fusion constructs consisting of the Fc part of immunoglobulin G and the amino-terminal domains of either GluN1 or combinations of GluN1 with GluN2A or GluN2B. Surprisingly, both GluN1 and GluN2 subunits were required to generate high-affinity epitopes. The construct with both subunits efficiently prevented NMDAR binding of patient-derived monoclonal antibodies and of patient CSF containing high-titre NMDAR antibodies. Furthermore, it inhibited the internalization of NMDARs in rodent dissociated neurons and human induced pluripotent stem cell-derived neurons. Finally, the construct stabilized NMDAR currents recorded in rodent neurons and rescued memory defects in passive-transfer mouse models using intrahippocampal injections. Our results demonstrate that both GluN1 and GluN2B subunits contribute to the main immunogenic region of the NMDAR and provide a promising strategy for fast and specific treatment of NMDAR encephalitis, which could complement immunotherapy.


Subject(s)
Encephalitis , Hashimoto Disease , Induced Pluripotent Stem Cells , Mice , Animals , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Induced Pluripotent Stem Cells/metabolism , Autoantibodies/metabolism
16.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33653949

ABSTRACT

Charcot-Marie-Tooth type 4B1 (CMT4B1) is a severe autosomal recessive demyelinating neuropathy with childhood onset, caused by loss-of-function mutations in the myotubularin-related 2 (MTMR2) gene. MTMR2 is a ubiquitously expressed catalytically active 3-phosphatase, which in vitro dephosphorylates the 3-phosphoinositides PtdIns3P and PtdIns(3,5)P2, with a preference for PtdIns(3,5)P2 A hallmark of CMT4B1 neuropathy are redundant loops of myelin in the nerve termed myelin outfoldings, which can be considered the consequence of altered growth of myelinated fibers during postnatal development. How MTMR2 loss and the resulting imbalance of 3'-phosphoinositides cause CMT4B1 is unknown. Here we show that MTMR2 by regulating PtdIns(3,5)P2 levels coordinates mTORC1-dependent myelin synthesis and RhoA/myosin II-dependent cytoskeletal dynamics to promote myelin membrane expansion and longitudinal myelin growth. Consistent with this, pharmacological inhibition of PtdIns(3,5)P2 synthesis or mTORC1/RhoA signaling ameliorates CMT4B1 phenotypes. Our data reveal a crucial role for MTMR2-regulated lipid turnover to titrate mTORC1 and RhoA signaling thereby controlling myelin growth.


Subject(s)
Charcot-Marie-Tooth Disease/metabolism , Myelin Sheath/metabolism , Phosphatidylinositol Phosphates/biosynthesis , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Signal Transduction , Animals , Charcot-Marie-Tooth Disease/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Knockout , Myelin Sheath/genetics , Myosin Type II/genetics , Myosin Type II/metabolism , Phosphatidylinositol Phosphates/genetics , Protein Tyrosine Phosphatases, Non-Receptor/genetics , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
17.
J Biol Chem ; 298(3): 101740, 2022 03.
Article in English | MEDLINE | ID: mdl-35182526

ABSTRACT

Lysosomes serve as dynamic regulators of cell and organismal physiology by integrating the degradation of macromolecules with receptor and nutrient signaling. Previous studies have established that activation of the transcription factor EB (TFEB) and transcription factor E3 (TFE3) induces the expression of lysosomal genes and proteins in signaling-inactive starved cells, that is, under conditions when activity of the master regulator of nutrient-sensing signaling mechanistic target of rapamycin complex 1 is repressed. How lysosome biogenesis is triggered in signaling-active cells is incompletely understood. Here, we identify a role for calcium release from the lumen of the endoplasmic reticulum in the control of lysosome biogenesis that is independent of mechanistic target of rapamycin complex 1. We show using functional imaging that calcium efflux from endoplasmic reticulum stores induced by inositol triphosphate accumulation upon depletion of inositol polyphosphate-5-phosphatase A, an inositol 5-phosphatase downregulated in cancer and defective in spinocerebellar ataxia, or receptor-mediated phospholipase C activation leads to the induction of lysosome biogenesis. This mechanism involves calcineurin and the nuclear translocation and elevated transcriptional activity of TFEB/TFE3. Our findings reveal a crucial function for inositol polyphosphate-5-phosphatase A-mediated triphosphate hydrolysis in the control of lysosome biogenesis via TFEB/TFE3, thereby contributing to our understanding how cells are able to maintain their lysosome content under conditions of active receptor and nutrient signaling.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Calcium , Endoplasmic Reticulum , Lysosomes , Polyphosphates , Autophagy/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Calcineurin/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Inositol/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Polyphosphates/metabolism
18.
Brain ; 145(7): 2313-2331, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35786744

ABSTRACT

Epilepsy is one of the most frequent neurological diseases, with focal epilepsy accounting for the largest number of cases. The genetic alterations involved in focal epilepsy are far from being fully elucidated. Here, we show that defective lipid signalling caused by heterozygous ultra-rare variants in PIK3C2B, encoding for the class II phosphatidylinositol 3-kinase PI3K-C2ß, underlie focal epilepsy in humans. We demonstrate that patients' variants act as loss-of-function alleles, leading to impaired synthesis of the rare signalling lipid phosphatidylinositol 3,4-bisphosphate, resulting in mTORC1 hyperactivation. In vivo, mutant Pik3c2b alleles caused dose-dependent neuronal hyperexcitability and increased seizure susceptibility, indicating haploinsufficiency as a key driver of disease. Moreover, acute mTORC1 inhibition in mutant mice prevented experimentally induced seizures, providing a potential therapeutic option for a selective group of patients with focal epilepsy. Our findings reveal an unexpected role for class II PI3K-mediated lipid signalling in regulating mTORC1-dependent neuronal excitability in mice and humans.


Subject(s)
Class II Phosphatidylinositol 3-Kinases , Epilepsies, Partial , Animals , Class II Phosphatidylinositol 3-Kinases/genetics , Epilepsies, Partial/genetics , Humans , Lipids , Mechanistic Target of Rapamycin Complex 1 , Mice , Mutation/genetics , Phosphatidylinositol 3-Kinases/genetics , Seizures
19.
Proc Natl Acad Sci U S A ; 117(13): 7471-7481, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32170013

ABSTRACT

Eps15-homology domain containing protein 2 (EHD2) is a dynamin-related ATPase located at the neck of caveolae, but its physiological function has remained unclear. Here, we found that global genetic ablation of EHD2 in mice leads to increased lipid droplet size in fat tissue. This organismic phenotype was paralleled at the cellular level by increased fatty acid uptake via a caveolae- and CD36-dependent pathway that also involves dynamin. Concomitantly, elevated numbers of detached caveolae were found in brown and white adipose tissue lacking EHD2, and increased caveolar mobility in mouse embryonic fibroblasts. EHD2 expression itself was down-regulated in the visceral fat of two obese mouse models and obese patients. Our data suggest that EHD2 controls a cell-autonomous, caveolae-dependent fatty acid uptake pathway and imply that low EHD2 expression levels are linked to obesity.


Subject(s)
Carrier Proteins/metabolism , Caveolae/metabolism , Fatty Acids/metabolism , Animals , Biological Transport , Cell Membrane/metabolism , HeLa Cells , Humans , Lipid Droplets/metabolism , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
20.
Int J Mol Sci ; 24(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37240354

ABSTRACT

Dendritic cells (DC) are critical cellular mediators of host immunity, notably by expressing a broad panel of pattern recognition receptors. One of those receptors, the C-type lectin receptor DC-SIGN, was previously reported as a regulator of endo/lysosomal targeting through functional connections with the autophagy pathway. Here, we confirmed that DC-SIGN internalization intersects with LC3+ autophagy structures in primary human monocyte-derived dendritic cells (MoDC). DC-SIGN engagement promoted autophagy flux which coincided with the recruitment of ATG-related factors. As such, the autophagy initiation factor ATG9 was found to be associated with DC-SIGN very early upon receptor engagement and required for an optimal DC-SIGN-mediated autophagy flux. The autophagy flux activation upon DC-SIGN engagement was recapitulated using engineered DC-SIGN-expressing epithelial cells in which ATG9 association with the receptor was also confirmed. Finally, Stimulated emission depletion (STED) microscopy performed in primary human MoDC revealed DC-SIGN-dependent submembrane nanoclusters formed with ATG9, which was required to degrade incoming viruses and further limit DC-mediated transmission of HIV-1 infection to CD4+ T lymphocytes. Our study unveils a physical association between the Pattern Recognition Receptor DC-SIGN and essential components of the autophagy pathway contributing to early endocytic events and the host's antiviral immune response.


Subject(s)
HIV-1 , Humans , HIV-1/physiology , Antiviral Agents/metabolism , Dendritic Cells , Lectins, C-Type/metabolism , Autophagy
SELECTION OF CITATIONS
SEARCH DETAIL