Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Crit Care ; 27(1): 273, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37420282

ABSTRACT

BACKGROUND: Airway opening pressure (AOP) detection and measurement are essential for assessing respiratory mechanics and adapting ventilation. We propose a novel approach for AOP assessment during volume assist control ventilation at a usual constant-flow rate of 60 L/min. OBJECTIVES: To validate the conductive pressure (Pcond) method, which compare the Pcond-defined on the airway pressure waveform as the difference between the airway pressure level at which an abrupt change in slope occurs at the beginning of insufflation and PEEP-to resistive pressure for AOP detection and measurement, and to compare its respiratory and hemodynamic tolerance to the standard low-flow insufflation method. METHODS: The proof-of-concept of the Pcond method was assessed on mechanical (lung simulator) and physiological (cadavers) bench models. Its diagnostic performance was evaluated in 213 patients, using the standard low-flow insufflation method as a reference. In 45 patients, the respiratory and hemodynamic tolerance of the Pcond method was compared with the standard low-flow method. MEASUREMENTS AND MAIN RESULTS: Bench assessments validated the Pcond method proof-of-concept. Sensitivity and specificity of the Pcond method for AOP detection were 93% and 91%, respectively. AOP obtained by Pcond and standard low-flow methods strongly correlated (r = 0.84, p < 0.001). Changes in SpO2 were significantly lower during Pcond than during standard method (p < 0.001). CONCLUSION: Determination of Pcond during constant-flow assist control ventilation may permit to easily and safely detect and measure AOP.


Subject(s)
Insufflation , Humans , Insufflation/methods , Lung , Respiratory Physiological Phenomena , Respiratory Mechanics , Respiration, Artificial/methods
2.
Crit Care ; 27(1): 176, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37158963

ABSTRACT

INTRODUCTION: Electrical impedance tomography (EIT) can be used to assess ventilation/perfusion (V/Q) mismatch within the lungs. Several methods have been proposed, some of them neglecting the absolute value of alveolar ventilation (VA) and cardiac output (QC). Whether this omission results in acceptable bias is unknown. METHODS: Pixel-level V/Q maps of 25 ARDS patients were computed once considering (absolute V/Q map) and once neglecting (relative V/Q map) the value of QC and VA. Previously published indices of V/Q mismatch were computed using absolute V/Q maps and relative V/Q maps. Indices computed with relative V/Q maps were compared to their counterparts computed using absolute V/Q maps. RESULTS: Among 21 patients with ratio of alveolar ventilation to cardiac output (VA/QC) > 1, relative shunt fraction was significantly higher than absolute shunt fraction [37% (24-66) vs 19% (11-46), respectively, p < 0.001], while relative dead space fraction was significantly lower than absolute dead space fraction [40% (22-49) vs 58% (46-84), respectively, p < 0.001]. Relative wasted ventilation was significantly lower than the absolute wasted ventilation [16% (11-27) vs 29% (19-35), respectively, p < 0.001], while relative wasted perfusion was significantly higher than absolute wasted perfusion [18% (11-23) vs 11% (7-19), respectively, p < 0.001]. The opposite findings were retrieved in the four patients with VA/QC < 1. CONCLUSION: Neglecting cardiac output and alveolar ventilation when assessing V/Q mismatch indices using EIT in ARDS patients results in significant bias, whose direction depends on the VA/QC ratio value.


Subject(s)
Respiration , Respiratory Distress Syndrome , Humans , Electric Impedance , Perfusion , Tomography, X-Ray Computed , Cardiac Output , Lung
3.
Crit Care ; 27(1): 262, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37403149

ABSTRACT

BACKGROUND: Several noninvasive ventilatory supports rely in their design on high oxygen consumption which may precipitate oxygen shortage, as experienced during the COVID-19 pandemic. In this bench-to-bedside study, we assessed the performance of a new continuous positive airway pressure (CPAP) device integrating a large reservoir ("Bag-CPAP") designed to minimize oxygen consumption, and compared it with other CPAP devices. METHODS: First, a bench study compared the performances of Bag-CPAP and four CPAP devices with an intensive care unit ventilator. Two FiO2 targets (40-60% and 80-100%) at a predefined positive end expiratory pressure (PEEP) level between 5 and 10 cm H2O were tested and fraction of inspired oxygen (FiO2) and oxygen consumption were measured. Device-imposed work of breathing (WOB) was also evaluated. Second, an observational clinical study evaluated the new CPAP in 20 adult patients with acute respiratory failure in two hospitals in France. Actual FiO2, PEEP, peripheral oxygen saturation, respiratory rate, and dyspnea score were assessed. RESULTS: All six systems tested in the bench study reached the minimal FiO2 target of 40% and four reached at least 80% FiO2 while maintaining PEEP in the predefined range. Device-delivered FiO2/consumed oxygen ratio was the highest with the new reservoir-based CPAP irrespective of FiO2 target. WOB induced by the device was higher with Bag-CPAP. In the clinical study, Bag-CPAP was well tolerated and could reach high (> 90%) and moderate (> 50%) FiO2 with an oxygen flow rate of 15 [15-16] and 8 [7-9] L/min, respectively. Dyspnea score improved significantly after introduction of Bag-CPAP, and SpO2 increased. CONCLUSIONS: In vitro, Bag-CPAP exhibited the highest oxygen saving properties albeit had increased WOB. It was well accepted clinically and reduced dyspnea. Bag-CPAP may be useful to treat patients with acute respiratory failure in the field, especially when facing constraints in oxygen delivery.


Subject(s)
COVID-19 , Respiratory Insufficiency , Adult , Humans , Continuous Positive Airway Pressure , COVID-19/therapy , Dyspnea , Oxygen , Oxygen Consumption , Pandemics , Respiratory Insufficiency/therapy
4.
Crit Care ; 26(1): 185, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725498

ABSTRACT

BACKGROUND: Whether targeting the driving pressure (∆P) when adjusting the tidal volume in mechanically ventilated patients with the acute respiratory distress syndrome (ARDS) may decrease the risk of ventilator-induced lung injury remains a matter of research. In this study, we assessed the effect of a ∆P-guided ventilation on the mechanical power. METHODS: We prospectively included adult patients with moderate-to-severe ARDS. Positive end expiratory pressure was set by the attending physician and kept constant during the study. Tidal volume was first adjusted to target 6 ml/kg of predicted body weight (PBW-guided ventilation) and subsequently modified within a range from 4 to 10 ml/kg PBW to target a ∆P between 12 and 14 cm H2O. The respiratory rate was then re-adjusted within a range from 12 to 40 breaths/min until EtCO2 returned to its baseline value (∆P-guided ventilation). Mechanical power was computed at each step. RESULTS: Fifty-one patients were included between December 2019 and May 2021. ∆P-guided ventilation was feasible in all but one patient. The ∆P during PBW-guided ventilation was already within the target range of ∆P-guided ventilation in five (10%) patients, above in nine (18%) and below in 36 (72%). The change from PBW- to ∆P-guided ventilation was thus accompanied by an overall increase in tidal volume from 6.1 mL/kg PBW [5.9-6.2] to 7.7 ml/kg PBW [6.2-8.7], while respiratory rate was decreased from 29 breaths/min [26-32] to 21 breaths/min [16-28] (p < 0.001 for all comparisons). ∆P-guided ventilation was accompanied by a significant decrease in mechanical power from 31.5 J/min [28-35.7] to 28.8 J/min [24.6-32.6] (p < 0.001), representing a relative decrease of 7% [0-16]. With ∆P-guided ventilation, the PaO2/FiO2 ratio increased and the ventilatory ratio decreased. CONCLUSION: As compared to a conventional PBW-guided ventilation, a ∆P-guided ventilation strategy targeting a ∆P between 12 and 14 cm H2O required to change the tidal volume in 90% of the patients. Such ∆P-guided ventilation significantly reduced the mechanical power. Whether this physiological observation could be associated with clinical benefit should be assessed in clinical trials.


Subject(s)
Respiratory Distress Syndrome , Adult , Body Weight , Humans , Lung , Positive-Pressure Respiration , Respiration, Artificial , Respiratory Distress Syndrome/therapy , Tidal Volume/physiology
5.
Anesthesiology ; 132(6): 1494-1502, 2020 06.
Article in English | MEDLINE | ID: mdl-32205549

ABSTRACT

BACKGROUND: Management of acute respiratory failure by noninvasive ventilation is often associated with asynchronies, like autotriggering or delayed cycling, incurred by leaks from the interface. These events are likely to impair patient's tolerance and to compromise noninvasive ventilation. The development of methods for easy detection and monitoring of asynchronies is therefore necessary. The authors describe two new methods to detect patient-ventilator asynchronies, based on ultrasound analysis of diaphragm excursion or thickening combined with airway pressure. The authors tested these methods in a diagnostic accuracy study. METHODS: Fifteen healthy subjects were placed under noninvasive ventilation and subjected to artificially induced leaks in order to generate the main asynchronies (autotriggering or delayed cycling) at event-appropriate times of the respiratory cycle. Asynchronies were identified and characterized by conjoint assessment of ultrasound records and airway pressure waveforms; both were visualized on the ultrasound screen. The performance and accuracy of diaphragm excursion and thickening to detect each asynchrony were compared with a "control method" of flow/pressure tracings alone, and a "working standard method" combining flow, airway pressure, and diaphragm electromyography signals analyses. RESULTS: Ultrasound recordings were performed for the 15 volunteers, unlike electromyography recordings which could be collected in only 9 of 15 patients (60%). Autotriggering was correctly identified by continuous recording of electromyography, excursion, thickening, and flow/pressure tracings with sensitivity of 93% (95% CI, 89-97%), 94% (95% CI, 91-98%), 91% (95% CI, 87-96%), and 79% (95% CI, 75-84%), respectively. Delayed cycling was detected by electromyography, excursion, thickening, and flow/pressure tracings with sensitivity of 84% (95% CI, 77-90%), 86% (95% CI, 80-93%), 89% (95% CI, 83-94%), and 67% (95% CI, 61-73%), respectively. CONCLUSIONS: Ultrasound is a simple, bedside adjustable, clinical tool to detect the majority of patient-ventilator asynchronies associated with noninvasive ventilation leaks, provided that it is possible to visualize the airway pressure curve on the ultrasound machine screen. Ultrasound detection of autotriggering and delayed cycling is more accurate than isolated observation of pressure and flow tracings, and more feasible than electromyogram.


Subject(s)
Diaphragm/diagnostic imaging , Diaphragm/physiopathology , Noninvasive Ventilation/methods , Ultrasonography/methods , Adult , Female , Humans , Male , Reference Values , Reproducibility of Results , Sensitivity and Specificity
6.
Crit Care ; 24(1): 678, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33287864

ABSTRACT

RATIONALE: Patients with coronavirus disease-19-related acute respiratory distress syndrome (C-ARDS) could have a specific physiological phenotype as compared with those affected by ARDS from other causes (NC-ARDS). OBJECTIVES: To describe the effect of positive end-expiratory pressure (PEEP) on respiratory mechanics in C-ARDS patients in supine and prone position, and as compared to NC-ARDS. The primary endpoint was the best PEEP defined as the smallest sum of hyperdistension and collapse. METHODS: Seventeen patients with moderate-to-severe C-ARDS were monitored by electrical impedance tomography (EIT) and evaluated during PEEP titration in supine (n = 17) and prone (n = 14) position and compared with 13 NC-ARDS patients investigated by EIT in our department before the COVID-19 pandemic. RESULTS: As compared with NC-ARDS, C-ARDS exhibited a higher median best PEEP (defined using EIT as the smallest sum of hyperdistension and collapse, 12 [9, 12] vs. 9 [6, 9] cmH2O, p < 0.01), more collapse at low PEEP, and less hyperdistension at high PEEP. The median value of the best PEEP was similar in C-ARDS in supine and prone position: 12 [9, 12] vs. 12 [10, 15] cmH2O, p = 0.59. The response to PEEP was also similar in C-ARDS patients with higher vs. lower respiratory system compliance. CONCLUSION: An intermediate PEEP level seems appropriate in half of our C-ARDS patients. There is no solid evidence that compliance at low PEEP could predict the response to PEEP.


Subject(s)
COVID-19/physiopathology , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/diagnostic imaging , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/standards , Adult , COVID-19/diagnostic imaging , Electric Impedance/therapeutic use , Female , Humans , Male , Middle Aged , Positive-Pressure Respiration/instrumentation , Respiratory Distress Syndrome/physiopathology , Respiratory Mechanics/physiology , Tomography, X-Ray Computed/instrumentation
7.
Crit Care ; 24(1): 699, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33339526

ABSTRACT

BACKGROUND: Data on incidence of ventilator-associated pneumonia (VAP) and invasive pulmonary aspergillosis in patients with severe SARS-CoV-2 infection are limited. METHODS: We conducted a monocenter retrospective study comparing the incidence of VAP and invasive aspergillosis between patients with COVID-19-related acute respiratory distress syndrome (C-ARDS) and those with non-SARS-CoV-2 viral ARDS (NC-ARDS). RESULTS: We assessed 90 C-ARDS and 82 NC-ARDS patients, who were mechanically ventilated for more than 48 h. At ICU admission, there were significantly fewer bacterial coinfections documented in C-ARDS than in NC-ARDS: 14 (16%) vs 38 (48%), p < 0.01. Conversely, significantly more patients developed at least one VAP episode in C-ARDS as compared with NC-ARDS: 58 (64%) vs. 36 (44%), p = 0.007. The probability of VAP was significantly higher in C-ARDS after adjusting on death and ventilator weaning [sub-hazard ratio = 1.72 (1.14-2.52), p < 0.01]. The incidence of multi-drug-resistant bacteria (MDR)-related VAP was significantly higher in C-ARDS than in NC-ARDS: 21 (23%) vs. 9 (11%), p = 0.03. Carbapenem was more used in C-ARDS than in NC-ARDS: 48 (53%), vs 21 (26%), p < 0.01. According to AspICU algorithm, there were fewer cases of putative aspergillosis in C-ARDS than in NC-ARDS [2 (2%) vs. 12 (15%), p = 0.003], but there was no difference in Aspergillus colonization. CONCLUSIONS: In our experience, we evidenced a higher incidence of VAP and MDR-VAP in C-ARDS than in NC-ARDS and a lower risk for invasive aspergillosis in the former group.


Subject(s)
COVID-19/microbiology , Intensive Care Units , Pneumonia, Ventilator-Associated/microbiology , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/microbiology , Adult , Case-Control Studies , Female , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Male , Middle Aged , Retrospective Studies , Risk Factors
15.
Ann Intensive Care ; 13(1): 116, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38006434

ABSTRACT

BACKGROUND: Multiple devices are available for noninvasive oxygenation support, including non-rebreather oxygen mask (O2-mask), high-flow oxygen through nasal cannula (HFNC), continuous positive airway pressure (CPAP), mask noninvasive ventilation (Mask-NIV) and helmet NIV (Helmet-NIV). As tidal volume is a key determinant of efficacy and safety during ventilatory support, we assessed whether it was influenced by the type of noninvasive oxygenation device. METHODS: A bench study using a manikin with a realistic face connected to a lung simulator was performed. Six conditions were assessed: no device, O2-mask, HFNC, CPAP, Mask-NIV and Helmet-NIV. Three respiratory mechanics were simulated (normal, obstructive, restrictive), at three simulated efforts (low, moderate, respiratory distress). Flow was recorded at the lung simulator inlet and mouth pressure into the manikin mouth. The same devices were evaluated on healthy volunteers with tidal volume assessed by electrical impedance tomography (EIT). RESULTS: Tidal volume was significantly influenced by oxygenation devices in bench model. As compared to O2-mask, HFNC and CPAP delivered significantly lower tidal volumes (440 ± 352 mL, 414 ± 333 mL and 377 ± 297 mL, respectively), while Mask-NIV or Helmet-NIV were associated with significantly higher tidal volumes (690 ± 321 mL and 652 ± 366 mL, respectively). Tidal volume was strongly correlated with the specific effect of each device on mouth pressure during inspiration: HFNC and CPAP were characterized by a negative PTPmouth (- 0.3 [- 0.8 to - 0.2] and - 0.7 [- 2.2 to - 0.5] cmH2O.sec/cycle, respectively), while Helmet-NIV and Mask-NIV were associated with a positive PTPmouth (4.5 [4.1-4.6] and 6.1 [5.9-7.1] cmH2O.sec/cycle, respectively). Tidal volume was also significantly influenced by oxygenation devices in healthy volunteers, with similar tidal volumes between O2-mask and CPAP (644 [571-764] and 648 [586-770] mL) but higher with HFNC, Mask-NIV and Helmet-NIV (819 [609-918], 1110 [661-1305] and 1086 [833-1243] mL). CONCLUSIONS: Tidal volume is significantly influenced by noninvasive oxygenation support devices, with a strong correlation with the pressure variation generated into the mouth during inspiration. NIV was associated with the highest tidal volumes and CPAP with the lowest ones. Clinical studies are needed to clarify the clinical implications of these effects.

16.
J Clin Med ; 10(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205783

ABSTRACT

Patients with severe lung injury usually have a high respiratory drive, resulting in intense inspiratory effort that may even worsen lung damage by several mechanisms gathered under the name "patient-self inflicted lung injury" (P-SILI). Even though no clinical study has yet demonstrated that a ventilatory strategy to limit the risk of P-SILI can improve the outcome, the concept of P-SILI relies on sound physiological reasoning, an accumulation of clinical observations and some consistent experimental data. In this review, we detail the main pathophysiological mechanisms by which the patient's respiratory effort could become deleterious: excessive transpulmonary pressure resulting in over-distension; inhomogeneous distribution of transpulmonary pressure variations across the lung leading to cyclic opening/closing of nondependent regions and pendelluft phenomenon; increase in the transvascular pressure favoring the aggravation of pulmonary edema. We also describe potentially harmful patient-ventilator interactions. Finally, we discuss in a practical way how to detect in the clinical setting situations at risk for P-SILI and to what extent this recognition can help personalize the treatment strategy.

17.
Ann Intensive Care ; 11(1): 147, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34669080

ABSTRACT

BACKGROUND: Ineffective triggering is frequent during pressure support ventilation (PSV) and may persist despite ventilator adjustment, leading to refractory asynchrony. We aimed to assess the effect of proportional assist ventilation with load-adjustable gain factors (PAV+) on the occurrence of refractory ineffective triggering. DESIGN: Observational assessment followed by prospective cross-over physiological study. SETTING: Academic medical ICU. PATIENTS: Ineffective triggering was detected during PSV by a twice-daily inspection of the ventilator's screen. The impact of pressure support level (PSL) adjustments on the occurrence of asynchrony was recorded. Patients experiencing refractory ineffective triggering, defined as persisting asynchrony at the lowest tolerated PSL, were included in the physiological study. INTERVENTIONS: Physiological study: Flow, airway, and esophageal pressures were continuously recorded during 10 min under PSV with the lowest tolerated PSL, and then under PAV+ with the gain adjusted to target a muscle pressure between 5 and 10 cmH2O. MEASUREMENTS: Primary endpoint was the comparison of asynchrony index between PSV and PAV+ after PSL and gain adjustments. RESULTS: Among 36 patients identified having ineffective triggering under PSV, 21 (58%) exhibited refractory ineffective triggering. The lowest tolerated PSL was higher in patients with refractory asynchrony as compared to patients with non-refractory ineffective triggering. Twelve out of the 21 patients with refractory ineffective triggering were included in the physiological study. The median lowest tolerated PSL was 17 cmH2O [12-18] with a PEEP of 7 cmH2O [5-8] and FiO2 of 40% [39-42]. The median gain during PAV+ was 73% [65-80]. The asynchrony index was significantly lower during PAV+ than PSV (2.7% [1.0-5.4] vs. 22.7% [10.3-40.1], p < 0.001) and consistently decreased in every patient with PAV+. Esophageal pressure-time product (PTPes) did not significantly differ between the two modes (107 cmH2O/s/min [79-131] under PSV vs. 149 cmH2O/s/min [129-170] under PAV+, p = 0.092), but the proportion of PTPes lost in ineffective triggering was significantly lower with PAV+ (2 cmH2O/s/min [1-6] vs. 8 cmH2O/s/min [3-30], p = 0.012). CONCLUSIONS: Among patients with ineffective triggering under PSV, PSL adjustment failed to eliminate asynchrony in 58% of them (21 of 36 patients). In these patients with refractory ineffective triggering, switching from PSV to PAV+ significantly reduced or even suppressed the incidence of asynchrony.

18.
Ann Intensive Care ; 11(1): 38, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33655452

ABSTRACT

BACKGROUND: We describe a frugal approach (focusing on needs, performance, and costs) to manage a massive influx of COVID-19 patients with acute hypoxemic respiratory failure (AHRF) using the Boussignac valve protected by a filter ("Filter Frugal CPAP", FF-CPAP) in and out the ICU. METHODS: (1) A bench study measured the impact of two filters with different mechanical properties on CPAP performances, and pressures were also measured in patients. (2) Non-ICU healthcare staff working in COVID-19 intermediate care units were trained with a video tutorial posted on a massive open online course. (3) A clinical study assessed the feasibility and safety of using FF-CPAP to maintain oxygenation and manage patients out of the ICU during a massive outbreak. RESULTS: Bench assessments showed that adding a filter did not affect the effective pressure delivered to the patient. The resistive load induced by the filter variably increased the simulated patient's work of breathing (6-34%) needed to sustain the tidal volume, depending on the filter's resistance, respiratory mechanics and basal inspiratory effort. In patients, FF-CPAP achieved pressures similar to those obtained on the bench. The massive training tool provided precious information on the use of Boussignac FF-CPAP on COVID-19 patients. Then 85 COVID-19 patients with ICU admission criteria over a 1-month period were studied upon FF-CPAP initiation for AHRF. FF-CPAP significantly decreased respiratory rate and increased SpO2. Thirty-six (43%) patients presented with respiratory indications for intubation prior to FF-CPAP initiation, and 13 (36%) of them improved without intubation. Overall, 31 patients (36%) improved with FF-CPAP alone and 17 patients (20%) did not require ICU admission. Patients with a respiratory rate > 32 breaths/min upon FF-CPAP initiation had a higher cumulative probability of intubation (p < 0.001 by log-rank test). CONCLUSION: Adding a filter to the Boussignac valve does not affect the delivered pressure but may variably increase the resistive load depending on the filter used. Clinical assessment suggests that FF-CPAP is a frugal solution to provide a ventilatory support and improve oxygenation to numerous patients suffering from AHRF in the context of a massive outbreak.

SELECTION OF CITATIONS
SEARCH DETAIL