Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell ; 160(4): 771-784, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25679766

ABSTRACT

Aneuploid genomes, characterized by unbalanced chromosome stoichiometry (karyotype), are associated with cancer malignancy and drug resistance of pathogenic fungi. The phenotypic diversity resulting from karyotypic diversity endows the cell population with superior adaptability. We show here, using a combination of experimental data and a general stochastic model, that the degree of phenotypic variation, thus evolvability, escalates with the degree of overall growth suppression. Such scaling likely explains the challenge of treating aneuploidy diseases with a single stress-inducing agent. Instead, we propose the design of an "evolutionary trap" (ET) targeting both karyotypic diversity and fitness. This strategy entails a selective condition "channeling" a karyotypically divergent population into one with a predominant and predictably drugable karyotypic feature. We provide a proof-of-principle case in budding yeast and demonstrate the potential efficacy of this strategy toward aneuploidy-based azole resistance in Candida albicans. By analyzing existing pharmacogenomics data, we propose the potential design of an ET against glioblastoma.


Subject(s)
Aneuploidy , Candida albicans/drug effects , Candida albicans/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Antifungal Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Cell Line, Tumor , Drug Resistance, Fungal , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , Fluconazole/pharmacology , Humans , Hygromycin B/pharmacology , Irinotecan , Saccharomyces cerevisiae/metabolism
2.
Mol Cell ; 35(5): 626-41, 2009 Sep 11.
Article in English | MEDLINE | ID: mdl-19682934

ABSTRACT

To identify regulators involved in determining the differential pattern of H3K79 methylation by Dot1, we screened the entire yeast gene deletion collection by GPS for genes required for normal levels of H3K79 di- but not trimethylation. We identified the cell cycle-regulated SBF protein complex required for H3K79 dimethylation. We also found that H3K79 di- and trimethylation are mutually exclusive, with M/G1 cell cycle-regulated genes significantly enriched for H3K79 dimethylation. Since H3K79 trimethylation requires prior monoubiquitination of H2B, we performed genome-wide profiling of H2BK123 monoubiquitination and showed that H2BK123 monoubiquitination is not detected on cell cycle-regulated genes and sites containing H3K79me2, but is found on H3K79me3-containing regions. A screen for genes responsible for the establishment/removal of H3K79 dimethylation resulted in identification of NRM1 and WHI3, both of which impact the transcription by the SBF and MBF protein complexes, further linking the regulation of methylation status of H3K79 to the cell cycle.


Subject(s)
Cell Cycle , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Nuclear Proteins/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Cell Cycle/genetics , DNA, Intergenic , DNA-Binding Proteins/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Fungal , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Lysine , Methylation , Nuclear Proteins/genetics , Oligonucleotide Array Sequence Analysis , Open Reading Frames , Promoter Regions, Genetic , RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Time Factors , Transcription Factors/genetics , Transcription, Genetic , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitination
3.
Proc Natl Acad Sci U S A ; 111(14): E1383-92, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24706903

ABSTRACT

Deafness caused by the terminal loss of inner ear hair cells is one of the most common sensory diseases. However, nonmammalian animals (e.g., birds, amphibians, and fish) regenerate damaged hair cells. To understand better the reasons underpinning such disparities in regeneration among vertebrates, we set out to define at high resolution the changes in gene expression associated with the regeneration of hair cells in the zebrafish lateral line. We performed RNA-Seq analyses on regenerating support cells purified by FACS. The resulting expression data were subjected to pathway enrichment analyses, and the differentially expressed genes were validated in vivo via whole-mount in situ hybridizations. We discovered that cell cycle regulators are expressed hours before the activation of Wnt/ß-catenin signaling following hair cell death. We propose that Wnt/ß-catenin signaling is not involved in regulating the onset of proliferation but governs proliferation at later stages of regeneration. In addition, and in marked contrast to mammals, our data clearly indicate that the Notch pathway is significantly down-regulated shortly after injury, thus uncovering a key difference between the zebrafish and mammalian responses to hair cell injury. Taken together, our findings lay the foundation for identifying differences in signaling pathway regulation that could be exploited as potential therapeutic targets to promote either sensory epithelium or hair cell regeneration in mammals.


Subject(s)
Gene Expression Profiling , Hair Cells, Auditory/cytology , Regeneration , Zebrafish/genetics , Animals , Animals, Genetically Modified , Flow Cytometry , Genes, cdc , Hair Cells, Auditory/physiology , Neomycin/pharmacology , Oligonucleotide Array Sequence Analysis , Receptors, Notch/metabolism , Signal Transduction , Wnt Proteins/metabolism , beta Catenin/metabolism
4.
Nature ; 457(7225): 97-101, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19052548

ABSTRACT

Haematopoietic stem cell (HSC) niches, although proposed decades ago, have only recently been identified as separate osteoblastic and vascular microenvironments. Their interrelationships and interactions with HSCs in vivo remain largely unknown. Here we report the use of a newly developed ex vivo real-time imaging technology and immunoassaying to trace the homing of purified green-fluorescent-protein-expressing (GFP(+)) HSCs. We found that transplanted HSCs tended to home to the endosteum (an inner bone surface) in irradiated mice, but were randomly distributed and unstable in non-irradiated mice. Moreover, GFP(+) HSCs were more frequently detected in the trabecular bone area compared with compact bone area, and this was validated by live imaging bioluminescence driven by the stem-cell-leukaemia (Scl) promoter-enhancer. HSCs home to bone marrow through the vascular system. We found that the endosteum is well vascularized and that vasculature is frequently localized near N-cadherin(+) pre-osteoblastic cells, a known niche component. By monitoring individual HSC behaviour using real-time imaging, we found that a portion of the homed HSCs underwent active division in the irradiated mice, coinciding with their expansion as measured by flow assay. Thus, in contrast to central marrow, the endosteum formed a special zone, which normally maintains HSCs but promotes their expansion in response to bone marrow damage.


Subject(s)
Cell Movement , Hematopoietic Stem Cells/cytology , Immunoassay/methods , Stem Cell Niche/cytology , Animals , Blood Vessels/cytology , Bone Marrow/pathology , Cadherins/analysis , Cell Division , Cell Separation , Femur/cytology , Immunohistochemistry , Mice , Models, Animal , Osteoblasts/cytology , Platelet Endothelial Cell Adhesion Molecule-1/analysis , Tibia/cytology
5.
PLoS Genet ; 7(12): e1002426, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22216012

ABSTRACT

Epigenetic regulation plays critical roles in the regulation of cell proliferation, fate determination, and survival. It has been shown to control self-renewal and lineage differentiation of embryonic stem cells. However, epigenetic regulation of adult stem cell function remains poorly defined. Drosophila ovarian germline stem cells (GSCs) are a productive adult stem cell system for revealing regulatory mechanisms controlling self-renewal and differentiation. In this study, we show that Eggless (Egg), a H3K9 methyltransferase in Drosophila, is required in GSCs for controlling self-renewal and in escort cells for regulating germ cell differentiation. egg mutant ovaries primarily exhibit germ cell differentiation defects in young females and gradually lose GSCs with time, indicating that Egg regulates both germ cell maintenance and differentiation. Marked mutant egg GSCs lack expression of trimethylated H3K9 (H3k9me3) and are rapidly lost from the niche, but their mutant progeny can still differentiate into 16-cell cysts, indicating that Egg is required intrinsically to control GSC self-renewal but not differentiation. Interestingly, BMP-mediated transcriptional repression of differentiation factor bam in marked egg mutant GSCs remains normal, indicating that Egg is dispensable for BMP signaling in GSCs. Normally, Bam and Bgcn interact with each other to promote GSC differentiation. Interestingly, marked double mutant egg bgcn GSCs are still lost, but their progeny are able to differentiate into 16-cell cysts though bgcn mutant GSCs normally do not differentiate, indicating that Egg intrinsically controls GSC self-renewal through repressing a Bam/Bgcn-independent pathway. Surprisingly, RNAi-mediated egg knockdown in escort cells leads to their gradual loss and a germ cell differentiation defect. The germ cell differentiation defect is at least in part attributed to an increase in BMP signaling in the germ cell differentiation niche. Therefore, this study has revealed the essential roles of histone H3K9 trimethylation in controlling stem cell maintenance and differentiation through distinct mechanisms.


Subject(s)
Cell Differentiation/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Germ Cells/cytology , Ovary/cytology , Stem Cells/cytology , Animals , DNA Helicases/genetics , DNA Helicases/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Epigenesis, Genetic , Female , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Germ Cells/metabolism , Histone-Lysine N-Methyltransferase , Histones/metabolism , Ovary/metabolism , RNA Interference , Signal Transduction , Stem Cells/metabolism
6.
Curr Biol ; 31(4): 827-839.e3, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33357404

ABSTRACT

The niche controls stem cell self-renewal and progenitor differentiation for maintaining adult tissue homeostasis in various organisms. However, it remains unclear whether the niche is compartmentalized to control stem cell self-renewal and stepwise progeny differentiation. In the Drosophila ovary, inner germarial sheath (IGS) cells form a niche for controlling germline stem cell (GSC) progeny differentiation. In this study, we have identified four IGS subpopulations, which form linearly arranged niche compartments for controlling GSC maintenance and multi-step progeny differentiation. Single-cell analysis of the adult ovary has identified four IGS subpopulations (IGS1-IGS4), the identities and cellular locations of which have been further confirmed by fluorescent in situ hybridization. IGS1 and IGS2 physically interact with GSCs and mitotic cysts to control GSC maintenance and cyst formation, respectively, whereas IGS3 and IGS4 physically interact with 16-cell cysts to regulate meiosis, oocyte development, and cyst morphological change. Finally, one follicle cell progenitor population has also been transcriptionally defined for facilitating future studies on follicle stem cell regulation. Therefore, this study has structurally revealed that the niche is organized into multiple compartments for orchestrating stepwise adult stem cell development and has also provided useful resources and tools for further functional characterization of the niche in the future.


Subject(s)
Cell Differentiation , Cysts , Drosophila Proteins , Germ Cells , Animals , Drosophila/genetics , Drosophila Proteins/genetics , Female , In Situ Hybridization, Fluorescence , Stem Cell Niche , Stem Cells
7.
Nature ; 425(6960): 836-41, 2003 Oct 23.
Article in English | MEDLINE | ID: mdl-14574412

ABSTRACT

Haematopoietic stem cells (HSCs) are a subset of bone marrow cells that are capable of self-renewal and of forming all types of blood cells (multi-potential). However, the HSC 'niche'--the in vivo regulatory microenvironment where HSCs reside--and the mechanisms involved in controlling the number of adult HSCs remain largely unknown. The bone morphogenetic protein (BMP) signal has an essential role in inducing haematopoietic tissue during embryogenesis. We investigated the roles of the BMP signalling pathway in regulating adult HSC development in vivo by analysing mutant mice with conditional inactivation of BMP receptor type IA (BMPRIA). Here we show that an increase in the number of spindle-shaped N-cadherin+CD45- osteoblastic (SNO) cells correlates with an increase in the number of HSCs. The long-term HSCs are found attached to SNO cells. Two adherens junction molecules, N-cadherin and beta-catenin, are asymmetrically localized between the SNO cells and the long-term HSCs. We conclude that SNO cells lining the bone surface function as a key component of the niche to support HSCs, and that BMP signalling through BMPRIA controls the number of HSCs by regulating niche size.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Growth Factor/genetics , Receptors, Growth Factor/metabolism , Signal Transduction , Animals , Bone Morphogenetic Protein Receptors, Type I , Bone and Bones/cytology , Cadherins/metabolism , Cell Adhesion , Cell Count , Leukocyte Common Antigens/metabolism , Mice , Mutation/genetics , Osteoblasts/cytology , Osteoblasts/metabolism
8.
Life Sci Alliance ; 2(5)2019 10.
Article in English | MEDLINE | ID: mdl-31619466

ABSTRACT

Piwi-interacting RNAs (piRNAs) are important for repressing transposable elements (TEs) and modulating gene expression in germ cells, thereby maintaining genome stability and germ cell function. Although they are also important for maintaining germline stem cells (GSCs) in the Drosophila ovary by repressing TEs and preventing DNA damage, piRNA expression has not been investigated in GSCs or their early progeny. Here, we show that the canonical piRNA clusters are more active in GSCs and their early progeny than late germ cells and also identify more than 3,000 new piRNA clusters from deep sequencing data. The increase in piRNAs in GSCs and early progeny can be attributed to both canonical and newly identified piRNA clusters. As expected, piRNA clusters in GSCs, but not those in somatic support cells (SCs), exhibit ping-pong signatures. Surprisingly, GSCs and early progeny express more TE transcripts than late germ cells, suggesting that the increase in piRNA levels may be related to the higher levels of TE transcripts in GSCs and early progeny. GSCs also have higher piRNA levels and lower TE levels than SCs. Furthermore, the 3' UTRs of 171 mRNA transcripts may produce sense, antisense, or dual-stranded piRNAs. Finally, we show that alternative promoter usage and splicing are frequently used to modulate gene function in GSCs and SCs. Overall, this study has provided important insight into piRNA production and TE repression in GSCs and SCs. The rich information provided by this study will be a beneficial resource to the fields of piRNA biology and germ cell development.


Subject(s)
DNA Transposable Elements , Drosophila/genetics , Gene Expression Profiling/methods , RNA, Small Interfering/genetics , 3' Untranslated Regions , Animals , Cells, Cultured , Female , Gene Expression Regulation , Ovary/chemistry , Ovary/cytology , RNA, Messenger/genetics , RNA, Transfer, Leu , Stem Cells/chemistry , Stem Cells/cytology
9.
Elife ; 4: e08174, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26452202

ABSTRACT

Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche.


Subject(s)
Cell Differentiation , Gene Expression Regulation , Germ Cells/physiology , Stem Cells/physiology , Wnt Signaling Pathway , Animals , Drosophila , Drosophila Proteins/metabolism , Female , Glutathione Transferase/metabolism , Glycoproteins/metabolism , Ovary/cytology , Oxidation-Reduction , Wnt Proteins/metabolism , Wnt2 Protein/metabolism
10.
PLoS One ; 9(3): e90267, 2014.
Article in English | MEDLINE | ID: mdl-24658126

ABSTRACT

The piRNA pathway plays an important role in maintaining genome stability in the germ line by silencing transposable elements (TEs) from fly to mammals. As a highly conserved piRNA pathway component, Piwi is widely expressed in both germ cells and somatic cells in the Drosophila ovary and is required for piRNA production in both cell types. In addition to its known role in somatic cap cells to maintain germline stem cells (GSCs), this study has demonstrated that Piwi has novel functions in somatic cells and germ cells of the Drosophila ovary to promote germ cell differentiation. Piwi knockdown in escort cells causes a reduction in escort cell (EC) number and accumulation of undifferentiated germ cells, some of which show active BMP signaling, indicating that Piwi is required to maintain ECs and promote germ cell differentiation. Simultaneous knockdown of dpp, encoding a BMP, in ECs can partially rescue the germ cell differentiation defect, indicating that Piwi is required in ECs to repress dpp. Consistent with its key role in piRNA production, TE transcripts increase significantly and DNA damage is also elevated in the piwi knockdown somatic cells. Germ cell-specific knockdown of piwi surprisingly causes depletion of germ cells before adulthood, suggesting that Piwi might control primordial germ cell maintenance or GSC establishment. Finally, Piwi inactivation in the germ line of the adult ovary leads to gradual GSC loss and germ cell differentiation defects, indicating the intrinsic role of Piwi in adult GSC maintenance and differentiation. This study has revealed new germline requirement of Piwi in controlling GSC maintenance and lineage differentiation as well as its new somatic function in promoting germ cell differentiation. Therefore, Piwi is required in multiple cell types to control GSC lineage development in the Drosophila ovary.


Subject(s)
Argonaute Proteins/physiology , Drosophila Proteins/physiology , Drosophila/embryology , Ovary/cytology , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Cell Differentiation , Cell Lineage , DNA Damage , Drosophila/cytology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Ovary/embryology , Signal Transduction
11.
Blood ; 101(2): 383-9, 2003 Jan 15.
Article in English | MEDLINE | ID: mdl-12393558

ABSTRACT

Hematopoietic stem cells (HSCs) maintain hematopoiesis by giving rise to all types of blood cells. Recent reports suggest that HSCs also possess the potential to generate nonhematopoietic tissues. To evaluate the underlying mechanisms in the commitment of HSCs into multitissue and multihematopoietic lineages, we performed oligonucleotide array analyses targeting for prospectively purified HSCs, multipotent progenitors (MPPs), common lymphoid progenitors (CLPs), and common myeloid progenitors (CMPs). Here we show that HSCs coexpress multiple nonhematopoietic genes as well as hematopoietic genes; MPPs coexpress myeloid and lymphoid genes; CMPs coexpress myeloerythroid, but not lymphoid genes, whereas CLPs coexpress T-, B-, and natural killer-lymphoid, but not myeloid, genes. Thus, the stepwise decrease in transcriptional accessibility for multilineage-affiliated genes may represent progressive restriction of developmental potentials in early hematopoiesis. These data support the hypothesis that stem cells possess a wide-open chromatin structure to maintain their multipotentiality, which is progressively quenched as they go down a particular pathway of differentiation.


Subject(s)
Gene Expression Regulation/physiology , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Transcription, Genetic/genetics , Animals , Cell Differentiation , Cell Lineage , Gene Expression Profiling , Hematopoietic Stem Cells/cytology , Mice , Mice, Inbred C57BL , RNA/analysis , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL