ABSTRACT
Congenital disorders of glycosylation (CDG) are a growing group of inborn metabolic disorders with multiorgan presentation. SLC39A8-CDG is a severe subtype caused by biallelic mutations in the manganese transporter SLC39A8, reducing levels of this essential cofactor for many enzymes including glycosyltransferases. The current diagnostic standard for disorders of N-glycosylation is the analysis of serum transferrin. Exome and Sanger sequencing were performed in two patients with severe neurodevelopmental phenotypes suggestive of CDG. Transferrin glycosylation was analyzed by high-performance liquid chromatography (HPLC) and isoelectric focusing in addition to comprehensive N-glycome analysis using matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry (MS). Atomic absorption spectroscopy was used to quantify whole blood manganese levels. Both patients presented with a severe, multisystem disorder, and a complex neurological phenotype. Magnetic resonance imaging (MRI) revealed a Leigh-like syndrome with bilateral T2 hyperintensities of the basal ganglia. In patient 1, exome sequencing identified the previously undescribed homozygous variant c.608T>C [p.F203S] in SLC39A8. Patient 2 was found to be homozygous for c.112G>C [p.G38R]. Both individuals showed a reduction of whole blood manganese, though transferrin glycosylation was normal. N-glycome using MALDI-TOF MS identified an increase of the asialo-agalactosylated precursor N-glycan A2G1S1 and a decrease in bisected structures. In addition, analysis of heterozygous CDG-allele carriers identified similar but less severe glycosylation changes. Despite its reliance as a clinical gold standard, analysis of transferrin glycosylation cannot be categorically used to rule out SLC39A8-CDG. These results emphasize that SLC39A8-CDG presents as a spectrum of dysregulated glycosylation, and MS is an important tool for identifying deficiencies not detected by conventional methods.
Subject(s)
Basal Ganglia/physiopathology , Cation Transport Proteins/genetics , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/physiopathology , Adolescent , Cation Transport Proteins/deficiency , Child , Child, Preschool , Chromatography, High Pressure Liquid , Female , Glycosylation , Humans , Infant , Magnetic Resonance Imaging , Male , Manganese/metabolism , Mass Spectrometry , Phenotype , Transferrin/analysis , Exome Sequencing , Young AdultABSTRACT
Hydrogen sulfide, a signaling molecule formed mainly from cysteine, is catabolized by sulfide:quinone oxidoreductase (gene SQOR). Toxic hydrogen sulfide exposure inhibits complex IV. We describe children of two families with pathogenic variants in SQOR. Exome sequencing identified variants; SQOR enzyme activity was measured spectrophotometrically, protein levels evaluated by western blotting, and mitochondrial function was assayed. In family A, following a brief illness, a 4-year-old girl presented comatose with lactic acidosis and multiorgan failure. After stabilization, she remained comatose, hypotonic, had neurostorming episodes, elevated lactate, and Leigh-like lesions on brain imaging. She died shortly after. Her 8-year-old sister presented with a rapidly fatal episode of coma with lactic acidosis, and lesions in the basal ganglia and left cortex. Muscle and liver tissue had isolated decreased complex IV activity, but normal complex IV protein levels and complex formation. Both patients were homozygous for c.637G > A, which we identified as a founder mutation in the Lehrerleut Hutterite with a carrier frequency of 1 in 13. The resulting p.Glu213Lys change disrupts hydrogen bonding with neighboring residues, resulting in severely reduced SQOR protein and enzyme activity, whereas sulfide generating enzyme levels were unchanged. In family B, a boy had episodes of encephalopathy and basal ganglia lesions. He was homozygous for c.446delT and had severely reduced fibroblast SQOR enzyme activity and protein levels. SQOR dysfunction can result in hydrogen sulfide accumulation, which, consistent with its known toxicity, inhibits complex IV resulting in energy failure. In conclusion, SQOR deficiency represents a new, potentially treatable, cause of Leigh disease.
Subject(s)
Hydrogen Sulfide/metabolism , Leigh Disease/enzymology , Mitochondria/metabolism , Oxidoreductases Acting on Sulfur Group Donors/genetics , Quinone Reductases/physiology , Acidosis, Lactic/pathology , Brain Diseases/pathology , Child, Preschool , Electron Transport Complex IV/metabolism , Family , Female , Homozygote , Humans , Hydrogen Sulfide/chemistry , Kinetics , Leigh Disease/metabolism , Magnetic Resonance Imaging , Male , Oxidation-Reduction , Quinone Reductases/chemistryABSTRACT
Pathogenic de novo variants in the X-linked gene SLC35A2 encoding the major Golgi-localized UDP-galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2-congenital disorders of glycosylation (CDG; formerly CDG-IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities. Surprisingly, most affected individuals do not show abnormalities in serum transferrin N-glycosylation, a common biomarker for most types of CDG. Here we present data characterizing 30 individuals and add 26 new variants, the single largest study involving SLC35A2-CDG. The great majority of these individuals had normal transferrin glycosylation. In addition, expanding the molecular and clinical spectrum of this rare disorder, we developed a robust and reliable biochemical assay to assess SLC35A2-dependent UDP-galactose transport activity in primary fibroblasts. Finally, we show that transport activity is directly correlated to the ratio of wild-type to mutant alleles in fibroblasts from affected individuals.
Subject(s)
Congenital Disorders of Glycosylation/genetics , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Uridine Diphosphate Galactose/metabolism , Animals , Biopsy , CHO Cells , Cells, Cultured , Congenital Disorders of Glycosylation/metabolism , Congenital Disorders of Glycosylation/pathology , Cricetulus , Female , Humans , Male , MutationABSTRACT
BACKGROUND: Krüppel-type zinc finger genes (ZNF) constitute a large yet relatively poorly characterized gene family. ZNF genes encode proteins that recognize specific DNA motifs in gene promotors. They act as transcriptional co-activators or -repressors via interaction with chromatin remodeling proteins and other transcription factors. Only few ZNF genes are currently linked to human disorders and identification of ZNF gene-associated human diseases may help understand their function. Here we provide genetic, statistical, and clinical evidence to support association of ZNF148 with a new intellectual disability (ID) syndrome disorder. METHODS: Routine diagnostic exome sequencing data were obtained from 2172 patients with ID and/or multiple congenital anomalies. RESULTS: In a cohort of 2172 patient-parent trios referred for routine diagnostic whole exome sequencing for ID and/or multiple congenital anomalies (MCA) in the period 2012-2016, four patients were identified who carried de novo heterozygous nonsense or frameshift mutations in the ZNF148 gene. This was the only ZNF gene with recurrent truncating de novo mutations in this cohort. All mutations resulted in premature termination codons in the last exon of ZNF148. The number of the de novo truncating mutations in the ZNF148 gene was significantly enriched (p = 5.42 × 10-3). The newly described ZNF148-associated syndrome is characterized by underdevelopment of the corpus callosum, mild to moderate developmental delay and ID, variable microcephaly or mild macrocephaly, short stature, feeding problems, facial dysmorphisms, and cardiac and renal malformations. CONCLUSIONS: We propose ZNF148 as a gene involved in a newly described ID syndrome with a recurrent phenotype and postulate that the ZNF148 is a hitherto unrecognized but crucial transcription factor in the development of the corpus callosum. Our study illustrates the advantage of whole exome sequencing in a large cohort using a parent-offspring trio approach for identifying novel genes involved in rare human diseases.