Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Nature ; 491(7425): 574-7, 2012 Nov 22.
Article in English | MEDLINE | ID: mdl-23135399

ABSTRACT

When two metal nanostructures are placed nanometres apart, their optically driven free electrons couple electrically across the gap. The resulting plasmons have enhanced optical fields of a specific colour tightly confined inside the gap. Many emerging nanophotonic technologies depend on the careful control of this plasmonic coupling, including optical nanoantennas for high-sensitivity chemical and biological sensors, nanoscale control of active devices, and improved photovoltaic devices. But for subnanometre gaps, coherent quantum tunnelling becomes possible and the system enters a regime of extreme non-locality in which previous classical treatments fail. Electron correlations across the gap that are driven by quantum tunnelling require a new description of non-local transport, which is crucial in nanoscale optoelectronics and single-molecule electronics. Here, by simultaneously measuring both the electrical and optical properties of two gold nanostructures with controllable subnanometre separation, we reveal the quantum regime of tunnelling plasmonics in unprecedented detail. All observed phenomena are in good agreement with recent quantum-based models of plasmonic systems, which eliminate the singularities predicted by classical theories. These findings imply that tunnelling establishes a quantum limit for plasmonic field confinement of about 10(-8)λ(3) for visible light (of wavelength λ). Our work thus prompts new theoretical and experimental investigations into quantum-domain plasmonic systems, and will affect the future of nanoplasmonic device engineering and nanoscale photochemistry.

2.
Nanotechnology ; 23(27): 275703, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22705498

ABSTRACT

A new technique is developed to fabricate biomimetic antireflection coatings (ARCs). This technique combines a bottom-up fabrication approach (glancing angle deposition, or GLAD) with a top-down engineering process (ion milling). The GLAD technique is first utilized to produce nanopillar arrays (NPAs) with broadened structures, which are subsequently transformed into biomimetic tapered geometries by means of post-deposition ion milling. This structure transformation, due to milling-induced mass redistribution, remarkably decreases reflection over a wide wavelength range (300-1700 nm) and field of view (angle of incidence < 60° with respect to the substrate normal). The milling-induced antireflection enhancement has been demonstrated in the NPAs made of Si, SiO(x) and TiO(2), illustrating that this integrated technique is readily adapted to a wide variety of materials. Good agreement between simulation and experiment indicates that the enhanced antireflection performance is ascribed to a smoother refractive index transition from the substrate to the air, which improves the impedance match and reduces reflection losses. Additionally, ion bombardment tends to alter the stoichiometry and diminish the crystallographic structure of the NPA materials. The broadband and quasi-omnidirectional antireflection observed establishes the strong competitiveness of this technique with the methods previously reported.


Subject(s)
Nanostructures/chemistry , Nanostructures/ultrastructure , Refractometry/methods , Surface Plasmon Resonance/methods , Ions , Light , Materials Testing , Particle Size , Scattering, Radiation , Surface Properties
3.
Opt Express ; 18(12): 13220-6, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20588451

ABSTRACT

This work presents the successful fabrication of 1D photonic crystals (PCs) with two defects using the glancing angle deposition (GLAD) technique. We study the coupling behavior of the two PC defects and demonstrate the ability to control the defect interaction. GLAD allows engineering of film nanostructure to produce PCs with sinusoidal refractive index variation through control of film nanostructure and porosity. Two phase-shift defects are introduced into the refractive index profile of the film. The observed defect-defect coupling is explained by a coupled-oscillator model and the interaction strength is found to decrease exponentially with increasing defect separation. Furthermore, the results demonstrate the promise of GLAD as a platform technology for PC research and device fabrication.

4.
Opt Lett ; 29(21): 2545-7, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15584289

ABSTRACT

Glancing-angle deposition (GLAD) is a fabrication method capable of producing thin films with engineered nanoscale porosity variations. GLAD can be used to create optical thin-film interference filters from a single source material by modification of the film refractive index through control of film porosity. We present the effects of introducing a layer of constant low density into the center of a rugate thin-film filter fabricated with the GLAD technique. A rugate filter is characterized by a sinusoidal refractive-index profile. Embedding a layer of constant refractive index, with a thickness equal to one period of the rugate index variation, causes a narrow bandpass to appear within the filter's larger stop band. Transmittance measurements of such a gradient-index narrow-bandpass filter, formed with titanium dioxide, revealed an 83% transmittance peak at a vacuum wavelength of 522 nm, near the center of the stop band, with a FWHM bandwidth of 15 nm.

5.
Science ; 319(5867): 1192-3, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18309065
SELECTION OF CITATIONS
SEARCH DETAIL