Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 25(8): 1411-1421, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38997431

ABSTRACT

A subset of individuals exposed to Mycobacterium tuberculosis (Mtb) that we refer to as 'resisters' (RSTR) show evidence of IFN-γ- T cell responses to Mtb-specific antigens despite serially negative results on clinical testing. Here we found that Mtb-specific T cells in RSTR were clonally expanded, confirming the priming of adaptive immune responses following Mtb exposure. RSTR CD4+ T cells showed enrichment of TH17 and regulatory T cell-like functional programs compared to Mtb-specific T cells from individuals with latent Mtb infection. Using public datasets, we showed that these TH17 cell-like functional programs were associated with lack of progression to active tuberculosis among South African adolescents with latent Mtb infection and with bacterial control in nonhuman primates. Our findings suggested that RSTR may successfully control Mtb following exposure and immune priming and established a set of T cell biomarkers to facilitate further study of this clinical phenotype.


Subject(s)
CD4-Positive T-Lymphocytes , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/immunology , Humans , Animals , Adolescent , Tuberculosis/immunology , Tuberculosis/microbiology , CD4-Positive T-Lymphocytes/immunology , Th17 Cells/immunology , Female , Macaca mulatta , Male , Phenotype , Interferon-gamma/metabolism , Interferon-gamma/immunology , Antigens, Bacterial/immunology , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , South Africa , Young Adult , T-Lymphocytes, Regulatory/immunology , Adult
4.
Cell ; 148(3): 434-46, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22304914

ABSTRACT

Susceptibility to tuberculosis is historically ascribed to an inadequate immune response that fails to control infecting mycobacteria. In zebrafish, we find that susceptibility to Mycobacterium marinum can result from either inadequate or excessive acute inflammation. Modulation of the leukotriene A(4) hydrolase (LTA4H) locus, which controls the balance of pro- and anti-inflammatory eicosanoids, reveals two distinct molecular routes to mycobacterial susceptibility converging on dysregulated TNF levels: inadequate inflammation caused by excess lipoxins and hyperinflammation driven by excess leukotriene B(4). We identify therapies that specifically target each of these extremes. In humans, we identify a single nucleotide polymorphism in the LTA4H promoter that regulates its transcriptional activity. In tuberculous meningitis, the polymorphism is associated with inflammatory cell recruitment, patient survival and response to adjunctive anti-inflammatory therapy. Together, our findings suggest that host-directed therapies tailored to patient LTA4H genotypes may counter detrimental effects of either extreme of inflammation.


Subject(s)
Mycobacterium Infections/drug therapy , Mycobacterium Infections/immunology , Tuberculosis, Meningeal/drug therapy , Tuberculosis, Meningeal/immunology , Animals , Disease Models, Animal , Humans , Inflammation/immunology , Leukotriene A4/genetics , Leukotriene A4/immunology , Leukotriene B4/genetics , Leukotriene B4/immunology , Lipoxins/immunology , Mitochondria/metabolism , Mycobacterium Infections/genetics , Mycobacterium marinum , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Signal Transduction , Transcription, Genetic , Tuberculosis, Meningeal/genetics , Tumor Necrosis Factor-alpha/metabolism , Zebrafish/embryology , Zebrafish/immunology
5.
J Immunol ; 213(2): 161-169, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38836816

ABSTRACT

Alveolar macrophages (AMs) and recruited monocyte-derived macrophages (MDMs) mediate early lung immune responses to Mycobacterium tuberculosis. Differences in the response of these distinct cell types are poorly understood and may provide insight into mechanisms of tuberculosis pathogenesis. The objective of this study was to determine whether M. tuberculosis induces unique and essential antimicrobial pathways in human AMs compared with MDMs. Using paired human AMs and 5-d MCSF-derived MDMs from six healthy volunteers, we infected cells with M. tuberculosis H37Rv for 6 h, isolated RNA, and analyzed transcriptomic profiles with RNA sequencing. We found 681 genes that were M. tuberculosis dependent in AMs compared with MDMs and 4538 that were M. tuberculosis dependent in MDMs, but not AMs (false discovery rate [FDR] < 0.05). Using hypergeometric enrichment of DEGs in Broad Hallmark gene sets, we found that type I and II IFN Response were the only gene sets selectively induced in M. tuberculosis-infected AM (FDR < 0.05). In contrast, MYC targets, unfolded protein response and MTORC1 signaling, were selectively enriched in MDMs (FDR < 0.05). IFNA1, IFNA8, IFNE, and IFNL1 were specifically and highly upregulated in AMs compared with MDMs at baseline and/or after M. tuberculosis infection. IFNA8 modulated M. tuberculosis-induced proinflammatory cytokines and, compared with other IFNs, stimulated unique transcriptomes. Several DNA sensors and IFN regulatory factors had higher expression at baseline and/or after M. tuberculosis infection in AMs compared with MDMs. These findings demonstrate that M. tuberculosis infection induced unique transcriptional responses in human AMs compared with MDMs, including upregulation of the IFN response pathway and specific DNA sensors.


Subject(s)
Macrophages, Alveolar , Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/immunology , Macrophages, Alveolar/immunology , Transcriptome , Macrophages/immunology , Tuberculosis/immunology , Cells, Cultured , Signal Transduction/immunology , Monocytes/immunology
6.
PLoS Genet ; 19(3): e1010387, 2023 03.
Article in English | MEDLINE | ID: mdl-36972313

ABSTRACT

BACKGROUND: Tuberculosis (TB) remains a major public health problem globally, even compared to COVID-19. Genome-wide studies have failed to discover genes that explain a large proportion of genetic risk for adult pulmonary TB, and even fewer have examined genetic factors underlying TB severity, an intermediate trait impacting disease experience, quality of life, and risk of mortality. No prior severity analyses used a genome-wide approach. METHODS AND FINDINGS: As part of our ongoing household contact study in Kampala, Uganda, we conducted a genome-wide association study (GWAS) of TB severity measured by TBScore, in two independent cohorts of culture-confirmed adult TB cases (n = 149 and n = 179). We identified 3 SNPs (P<1.0 x 10-7) including one on chromosome 5, rs1848553, that was GWAS significant (meta-analysis p = 2.97x10-8). All three SNPs are in introns of RGS7BP and have effect sizes corresponding to clinically meaningful reductions in disease severity. RGS7BP is highly expressed in blood vessels and plays a role in infectious disease pathogenesis. Other genes with suggestive associations defined gene sets involved in platelet homeostasis and transport of organic anions. To explore functional implications of the TB severity-associated variants, we conducted eQTL analyses using expression data from Mtb-stimulated monocyte-derived macrophages. A single variant (rs2976562) associated with monocyte SLA expression (p = 0.03) and subsequent analyses indicated that SLA downregulation following MTB stimulation associated with increased TB severity. Src Like Adaptor (SLAP-1), encoded by SLA, is highly expressed in immune cells and negatively regulates T cell receptor signaling, providing a potential mechanistic link to TB severity. CONCLUSIONS: These analyses reveal new insights into the genetics of TB severity with regulation of platelet homeostasis and vascular biology being central to consequences for active TB patients. This analysis also reveals genes that regulate inflammation can lead to differences in severity. Our findings provide an important step in improving TB patient outcomes.


Subject(s)
Tuberculosis , Adult , Humans , Genetic Predisposition to Disease , Genome-Wide Association Study , Inflammation/genetics , Polymorphism, Single Nucleotide , Quality of Life , Tuberculosis/genetics , Uganda , Quantitative Trait Loci
7.
Cell ; 140(5): 717-30, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20211140

ABSTRACT

Exposure to Mycobacterium tuberculosis produces varied early outcomes, ranging from resistance to infection to progressive disease. Here we report results from a forward genetic screen in zebrafish larvae that identify multiple mutant classes with distinct patterns of innate susceptibility to Mycobacterium marinum. A hypersusceptible mutant maps to the lta4h locus encoding leukotriene A(4) hydrolase, which catalyzes the final step in the synthesis of leukotriene B(4) (LTB(4)), a potent chemoattractant and proinflammatory eicosanoid. lta4h mutations confer hypersusceptibility independent of LTB(4) reduction, by redirecting eicosanoid substrates to anti-inflammatory lipoxins. The resultant anti-inflammatory state permits increased mycobacterial proliferation by limiting production of tumor necrosis factor. In humans, we find that protection from both tuberculosis and multibacillary leprosy is associated with heterozygosity for LTA4H polymorphisms that have previously been correlated with differential LTB(4) production. Our results suggest conserved roles for balanced eicosanoid production in vertebrate resistance to mycobacterial infection.


Subject(s)
Epoxide Hydrolases/genetics , Fish Diseases/genetics , Leprosy/genetics , Tuberculosis/genetics , Animals , Disease Models, Animal , Fish Diseases/immunology , Genetic Predisposition to Disease , Humans , Leprosy/immunology , Tuberculosis/immunology , Zebrafish
8.
Bioinformatics ; 39(5)2023 05 04.
Article in English | MEDLINE | ID: mdl-37140544

ABSTRACT

MOTIVATION: The identification of differentially expressed genes (DEGs) from transcriptomic datasets is a major avenue of research across diverse disciplines. However, current bioinformatic tools do not support covariance matrices in DEG modeling. Here, we introduce kimma (Kinship In Mixed Model Analysis), an open-source R package for flexible linear mixed effects modeling including covariates, weights, random effects, covariance matrices, and fit metrics. RESULTS: In simulated datasets, kimma detects DEGs with similar specificity, sensitivity, and computational time as limma unpaired and dream paired models. Unlike other software, kimma supports covariance matrices as well as fit metrics like Akaike information criterion (AIC). Utilizing genetic kinship covariance, kimma revealed that kinship impacts model fit and DEG detection in a related cohort. Thus, kimma equals or outcompetes current DEG pipelines in sensitivity, computational time, and model complexity. AVAILABILITY AND IMPLEMENTATION: Kimma is freely available on GitHub https://github.com/BIGslu/kimma with an instructional vignette at https://bigslu.github.io/kimma_vignette/kimma_vignette.html.


Subject(s)
Gene Expression Profiling , Software , Humans , RNA-Seq , Sequence Analysis, RNA , Linear Models
9.
J Immunol ; 209(3): 435-445, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35803695

ABSTRACT

TOLLIP is a central regulator of multiple innate immune signaling pathways, including TLR2, TLR4, IL-1R, and STING. Human TOLLIP deficiency, regulated by single-nucleotide polymorphism rs5743854, is associated with increased tuberculosis risk and diminished frequency of bacillus Calmette-Guérin vaccine-specific CD4+ T cells in infants. How TOLLIP influences adaptive immune responses remains poorly understood. To understand the mechanistic relationship between TOLLIP and adaptive immune responses, we used human genetic and murine models to evaluate the role of TOLLIP in dendritic cell (DC) function. In healthy volunteers, TOLLIP single-nucleotide polymorphism rs5743854 G allele was associated with decreased TOLLIP mRNA and protein expression in DCs, along with LPS-induced IL-12 secretion in peripheral blood DCs. As in human cells, LPS-stimulated Tollip -/- bone marrow-derived murine DCs secreted less IL-12 and expressed less CD40. Tollip was required in lung and lymph node-resident DCs for optimal induction of MHC class II and CD40 expression during the first 28 d of Mycobacterium tuberculosis infection in mixed bone marrow chimeric mice. Tollip -/- mice developed fewer M. tuberculosis-specific CD4+ T cells after 28 d of infection and diminished responses to bacillus Calmette-Guérin vaccination. Furthermore, Tollip -/- DCs were unable to optimally induce T cell proliferation. Taken together, these data support a model where TOLLIP-deficient DCs undergo suboptimal maturation after M. tuberculosis infection, impairing T cell activation and contributing to tuberculosis susceptibility.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Mice , BCG Vaccine , CD40 Antigens , Dendritic Cells , Interleukin-12/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/metabolism , Mice, Inbred C57BL
10.
J Immunol ; 208(6): 1352-1361, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35217585

ABSTRACT

The major human genes regulating Mycobacterium tuberculosis-induced immune responses and tuberculosis (TB) susceptibility are poorly understood. Although IL-12 and IL-10 are critical for TB pathogenesis, the genetic factors that regulate their expression in humans are unknown. CNBP, REL, and BHLHE40 are master regulators of IL-12 and IL-10 signaling. We hypothesized that common variants in CNBP, REL, and BHLHE40 were associated with IL-12 and IL-10 production from dendritic cells, and that these variants also influence adaptive immune responses to bacillus Calmette-Guérin (BCG) vaccination and TB susceptibility. We characterized the association between common variants in CNBP, REL, and BHLHE40, innate immune responses in dendritic cells and monocyte-derived macrophages, BCG-specific T cell responses, and susceptibility to pediatric and adult TB in human populations. BHLHE40 single-nucleotide polymorphism (SNP) rs4496464 was associated with increased BHLHE40 expression in monocyte-derived macrophages and increased IL-10 from peripheral blood dendritic cells and monocyte-derived macrophages after LPS and TB whole-cell lysate stimulation. SNP BHLHE40 rs11130215, in linkage disequilibrium with rs4496464, was associated with increased BCG-specific IL-2+CD4+ T cell responses and decreased risk for pediatric TB in South Africa. SNPs REL rs842634 and rs842618 were associated with increased IL-12 production from dendritic cells, and SNP REL rs842618 was associated with increased risk for TB meningitis. In summary, we found that genetic variations in REL and BHLHE40 are associated with IL-12 and IL-10 cytokine responses and TB clinical outcomes. Common human genetic regulation of well-defined intermediate cellular traits provides insights into mechanisms of TB pathogenesis.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Proto-Oncogene Proteins c-rel/genetics , Tuberculosis , Adult , BCG Vaccine , Basic Helix-Loop-Helix Transcription Factors , Child , Homeodomain Proteins , Humans , Interleukin-10/genetics , Interleukin-12/genetics , Tuberculosis/genetics
11.
Clin Chem ; 69(12): 1409-1419, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37956323

ABSTRACT

BACKGROUND: Novel approaches that allow early diagnosis and treatment monitoring of both human immunodeficiency virus-1 (HIV-1) and tuberculosis disease (TB) are essential to improve patient outcomes. METHODS: We developed and validated an immuno-affinity liquid chromatography-tandem mass spectrometry (ILM) assay that simultaneously quantifies single peptides derived from HIV-1 p24 and Mycobacterium tuberculosis (Mtb) 10-kDa culture filtrate protein (CFP10) in trypsin-digested serum derived from cryopreserved serum archives of cohorts of adults and children with/without HIV and TB. RESULTS: ILM p24 and CFP10 results demonstrated good intra-laboratory precision and accuracy, with recovery values of 96.7% to 104.6% and 88.2% to 111.0%, total within-laboratory precision (CV) values of 5.68% to 13.25% and 10.36% to 14.92%, and good linearity (r2 > 0.99) from 1.0 to 256.0 pmol/L and 0.016 to 16.000 pmol/L, respectively. In cohorts of adults (n = 34) and children (n = 17) with HIV and/or TB, ILM detected p24 and CFP10 demonstrated 85.7% to 88.9% and 88.9% to 100.0% diagnostic sensitivity for HIV-1 and TB, with 100% specificity for both, and detected HIV-1 infection earlier than 3 commercial p24 antigen/antibody immunoassays. Finally, p24 and CFP10 values measured in longitudinal serum samples from children with HIV-1 and TB distinguished individuals who responded to TB treatment from those who failed to respond or were untreated, and who developed TB immune reconstitution inflammatory syndrome. CONCLUSIONS: Simultaneous ILM evaluation of p24 and CFP10 results may allow for early TB and HIV detection and provide valuable information on treatment response to facilitate integration of TB and HIV diagnosis and management.


Subject(s)
HIV Infections , HIV-1 , Mycobacterium tuberculosis , Adult , Child , Humans , Tandem Mass Spectrometry , HIV Infections/diagnosis , Peptides , Chromatography, Liquid , Sensitivity and Specificity
12.
Clin Infect Dis ; 75(12): 2253-2256, 2022 12 19.
Article in English | MEDLINE | ID: mdl-35607710

ABSTRACT

Cumulative 24-month Mycobacterium tuberculosis infection incidence (measured primarily by tuberculin skin test [TST]) was high among human immunodeficiency virus exposed but uninfected infants (8.7 [95% confidence interval, 6.3-11.9] per 100 person-years). Trend for decreased TST positivity among infants at trial end (12 months postenrollment) randomized to isoniazid at 6 weeks of age was not sustained through observational follow-up to 24 months of age. CLINICAL TRIALS REGISTRATION: NCT02613169.


Subject(s)
HIV Infections , Mycobacterium tuberculosis , Tuberculosis , Infant , Humans , Child, Preschool , Isoniazid/therapeutic use , Tuberculin Test , HIV , Follow-Up Studies , Incidence , Tuberculosis/epidemiology , Antitubercular Agents/therapeutic use , HIV Infections/drug therapy
13.
Am J Respir Cell Mol Biol ; 65(2): 157-166, 2021 08.
Article in English | MEDLINE | ID: mdl-33848452

ABSTRACT

Cystic fibrosis (CF) is characterized by chronic airway infection, inflammation, and tissue damage that lead to progressive respiratory failure. NLRP3 and NLRC4 are cytoplasmic pattern recognition receptors that activate the inflammasome, initiating a caspase-1-mediated response. We hypothesized that gain-of-function inflammasome responses are associated with worse outcomes in children with CF. We genotyped nonsynonymous variants in NLRP3 and the NLRC4 pathway from individuals in the EPIC (Early Pseudomonas Infection Control) Observational Study cohort and tested for association with CF outcomes. We generated knockouts of NLRP3 and NLRC4 in human macrophage-like cells and rescued knockouts with wild-type or variant forms of NLRP3 and NLRC4. We identified a SNP in NLRP3, p.(Q705K), that was associated with a higher rate of P. aeruginosa colonization (N = 609; P = 0.01; hazard ratio, 2.3 [Cox model]) and worsened lung function over time as measured by forced expiratory volume in 1 second (N = 445; P = 0.001 [generalized estimating equation]). We identified a SNP in NLRC4, p.(A929S), that was associated with a lower rate of P. aeruginosa colonization as part of a composite of rare variants (N = 405; P = 0.045; hazard ratio, 0.68 [Cox model]) and that was individually associated with protection from lung function decline (P < 0.001 [generalized estimating equation]). Rescue of the NLRP3 knockout with the p.(Q705K) variant produced significantly more IL-1ß in response to NLRP3 stimulation than rescue with the wild type (P = 0.020 [Student's t test]). We identified a subset of children with CF at higher risk of early lung disease progression. Knowledge of these genetic modifiers could guide therapies targeting inflammasome pathways.


Subject(s)
CARD Signaling Adaptor Proteins/genetics , Calcium-Binding Proteins/genetics , Cystic Fibrosis , Inflammasomes/genetics , Macrophages/microbiology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Polymorphism, Single Nucleotide , Pseudomonas Infections/genetics , Pseudomonas aeruginosa , Child , Child, Preschool , Cystic Fibrosis/genetics , Cystic Fibrosis/microbiology , Female , Humans , Inflammasomes/metabolism , Male , THP-1 Cells , U937 Cells
14.
Infect Immun ; 89(3)2021 02 16.
Article in English | MEDLINE | ID: mdl-33199356

ABSTRACT

Bacterial vaginosis (BV) is a vaginal dysbiotic condition linked to negative gynecological and reproductive sequelae. Flagellated bacteria have been identified in women with BV, including Mobiluncus spp. and BV-associated bacterium-1 (BVAB1), an uncultivated, putatively flagellated species. The host response to flagellin mediated through Toll-like receptor 5 (TLR5) has not been explored in BV. Using independent discovery and validation cohorts, we examined the hypothesis that TLR5 deficiency-defined by a dominant negative stop codon polymorphism, rs5744168-is associated with an increased risk for BV and increased colonization with flagellated bacteria associated with BV (BVAB1, Mobiluncus curtisii, and Mobiluncus mulieris). TLR5 deficiency was not associated with BV status, and TLR5-deficient women had decreased colonization with BVAB1 in both cohorts. We stimulated HEK-hTLR5-overexpressing NF-κB reporter cells with whole, heat-killed M. mulieris or M. curtisii and with partially purified flagellin from these species; as BVAB1 is uncultivated, we used cervicovaginal lavage (CVL) fluid supernatant from women colonized with BVAB1 for stimulation. While heat-killed M. mulieris and CVL fluid from women colonized with BVAB1 stimulate a TLR5-mediated response, heat-killed M. curtisii did not. In contrast, partially purified flagellin from both Mobiluncus species stimulated a TLR5-mediated response in vitro We observed no correlation between vaginal interleukin 8 (IL-8) and flagellated BVAB concentrations among TLR5-sufficient women. Interspecies variation in accessibility of flagellin recognition domains may be responsible for these observations, as reflected in the potentially novel flagellin products encoded by Mobiluncus species versus those encoded by BVAB1.


Subject(s)
Flagellin/analysis , Flagellin/genetics , Mobiluncus/genetics , Toll-Like Receptor 5/genetics , Vagina/microbiology , Vaginosis, Bacterial/genetics , Adolescent , Adult , Cohort Studies , Female , Genes, Bacterial , Genetic Variation , Genotype , Humans , Middle Aged , Toll-Like Receptor 5/analysis , Washington , Young Adult
15.
Clin Infect Dis ; 73(2): e337-e344, 2021 07 15.
Article in English | MEDLINE | ID: mdl-32564076

ABSTRACT

BACKGROUND: Human immunodeficiency virus (HIV)-exposed uninfected (HEU) infants in endemic settings are at high risk of tuberculosis (TB). For infants, progression from primary Mycobacterium tuberculosis (Mtb) infection to TB disease can be rapid. We assessed whether isoniazid (INH) prevents primary Mtb infection. METHODS: We conducted a randomized nonblinded controlled trial enrolling HEU infants 6 weeks of age without known TB exposure in Kenya. Participants were randomized (1:1) to 12 months of daily INH (10 mg/kg) vs no INH. Primary endpoint was Mtb infection at end of 12 months, assessed by interferon-γ release assay (QuantiFERON-TB Gold Plus) and/or tuberculin skin test (TST, added 6 months after first participant exit). RESULTS: Between 15 August 2016 and 6 June 2018, 416 infants were screened, with 300 (72%) randomized to INH or no INH (150 per arm); 2 were excluded due to HIV infection. Among 298 randomized HEU infants, 12-month retention was 96.3% (287/298), and 88.9% (265/298) had primary outcome data. Mtb infection prevalence at 12-month follow-up was 10.6% (28/265); 7.6% (10/132) in the INH arm and 13.5% (18/133) in the no INH arm (7.0 vs 13.4 per 100 person-years; hazard ratio, 0.53 [95% confidence interval {CI}, .24-1.14]; P = .11]), and driven primarily by TST positivity (8.6% [8/93] in INH and 18.1% [17/94] in no INH; relative risk, 0.48 [95% CI, .22-1.05]; P = .07). Frequency of severe adverse events was similar between arms (INH, 14.0% [21/150] vs no INH, 10.7% [16/150]; P = .38), with no INH-related adverse events. CONCLUSIONS: Further studies evaluating TB preventive therapy to prevent or delay primary Mtb infection in HEU and other high-risk infants are warranted. CLINICAL TRIALS REGISTRATION: NCT02613169.


Subject(s)
HIV Infections , Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/therapeutic use , HIV , HIV Infections/drug therapy , Humans , Infant , Isoniazid/therapeutic use , Kenya/epidemiology , Tuberculin Test , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Tuberculosis/prevention & control
16.
Clin Infect Dis ; 73(9): e3384-e3390, 2021 11 02.
Article in English | MEDLINE | ID: mdl-33388766

ABSTRACT

BACKGROUND: Tuberculosis (TB) has been linked to an increased risk of atherosclerotic cardiovascular disease (ASCVD). We assessed whether latent TB infection (LTBI) is associated with subclinical coronary atherosclerosis in 2 TB-prevalent areas. METHODS: We analyzed cross-sectional data from studies conducted in Lima, Peru, and Kampala, Uganda. Individuals ≥40 years old were included. We excluded persons with known history of ASCVD events or active TB. Participants underwent QuantiFERON-TB (QFT) testing to define LTBI and computed tomography angiography to examine coronary atherosclerosis. A Coronary Artery Disease-Reporting Data System (CAD-RADS) score ≥3 defined obstructive CAD (plaque causing ≥50% stenosis). RESULTS: 113 and 91 persons with and without LTBI, respectively, were included. There were no significant differences between LTBI and non-LTBI participants in terms of age (median [interquartile range]; 56 [51-62] vs 55 [49-64] years; P = .829), male sex (38% vs 42%; P = .519), or 10-year ASCVD risk scores (7.1 [3.2-11.7] vs 6.1 [2.8-1.8]; P = .533). CAD prevalence (any plaque) was similar between groups (29% vs 24%; P = .421). Obstructive CAD was present in 9% of LTBI and 3% of non-LTBI individuals (P = .095). LTBI was associated with obstructive CAD after adjusting for ASCVD risk score, HIV status, and study site (adjusted OR, 4.96; 95% CI, 1.05-23.44; P = .043). Quantitative QFT TB antigen minus Nil interferon-γ responses were associated with obstructive CAD (adjusted OR, 1.2; 95% CI, 1.03-1.41; P = .022). CONCLUSIONS: LTBI was independently associated with an increased likelihood of subclinical obstructive CAD. Our data indicate that LTBI is a nontraditional correlate of ASCVD risk.


Subject(s)
Coronary Artery Disease , Latent Tuberculosis , Adult , Coronary Artery Disease/epidemiology , Cross-Sectional Studies , Humans , Interferon-gamma Release Tests , Latent Tuberculosis/complications , Latent Tuberculosis/diagnosis , Latent Tuberculosis/epidemiology , Male , Middle Aged , Peru/epidemiology , Tuberculin Test , Uganda/epidemiology
17.
J Infect Dis ; 221(6): 989-999, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31665359

ABSTRACT

Novel antimicrobials for treatment of Mycobacterium tuberculosis are needed. We hypothesized that nicotinamide (NAM) and nicotinic acid (NA) modulate macrophage function to restrict M. tuberculosis replication in addition to their direct antimicrobial properties. Both compounds had modest activity in 7H9 broth, but only NAM inhibited replication in macrophages. Surprisingly, in macrophages NAM and the related compound pyrazinamide restricted growth of bacille Calmette-Guérin but not wild-type Mycobacterium bovis, which both lack a functional nicotinamidase/pyrazinamidase (PncA) rendering each strain resistant to these drugs in broth culture. Interestingly, NAM was not active in macrophages infected with a virulent M. tuberculosis mutant encoding a deletion in pncA. We conclude that the differential activity of NAM and nicotinic acid on infected macrophages suggests host-specific NAM targets rather than PncA-dependent direct antimicrobial properties. These activities are sufficient to restrict attenuated BCG, but not virulent wild-type M. bovis or M. tuberculosis.


Subject(s)
Macrophages/microbiology , Mycobacterium bovis/drug effects , Mycobacterium tuberculosis/drug effects , Niacinamide/pharmacology , Vitamin B Complex/pharmacology , Animals , CHO Cells , Cricetinae , Cricetulus , Cytokines , Gene Expression Regulation/drug effects , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Macrophages/drug effects , Microbial Sensitivity Tests , Niacin/pharmacology , Niacinamide/administration & dosage , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , U937 Cells
18.
PLoS Pathog ; 14(1): e1006829, 2018 01.
Article in English | MEDLINE | ID: mdl-29298342

ABSTRACT

The cyclic GMP-AMP synthase (cGAS)-STING pathway is central for innate immune sensing of various bacterial, viral and protozoal infections. Recent studies identified the common HAQ and R232H alleles of TMEM173/STING, but the functional consequences of these variants for primary infections are unknown. Here we demonstrate that cGAS- and STING-deficient murine macrophages as well as human cells of individuals carrying HAQ TMEM173/STING were severely impaired in producing type I IFNs and pro-inflammatory cytokines in response to Legionella pneumophila, bacterial DNA or cyclic dinucleotides (CDNs). In contrast, R232H attenuated cytokine production only following stimulation with bacterial CDN, but not in response to L. pneumophila or DNA. In a mouse model of Legionnaires' disease, cGAS- and STING-deficient animals exhibited higher bacterial loads as compared to wild-type mice. Moreover, the haplotype frequency of HAQ TMEM173/STING, but not of R232H TMEM173/STING, was increased in two independent cohorts of human Legionnaires' disease patients as compared to healthy controls. Our study reveals that the cGAS-STING cascade contributes to antibacterial defense against L. pneumophila in mice and men, and provides important insight into how the common HAQ TMEM173/STING variant affects antimicrobial immune responses and susceptibility to infection. TRIAL REGISTRATION: ClinicalTrials.gov DRKS00005274, German Clinical Trials Register.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Immunity, Innate/genetics , Legionella pneumophila/immunology , Legionnaires' Disease/drug therapy , Legionnaires' Disease/genetics , Membrane Proteins/genetics , Nucleotidyltransferases/physiology , Adult , Aged , Aged, 80 and over , Animals , Case-Control Studies , Cells, Cultured , Female , Genetic Predisposition to Disease , HEK293 Cells , Humans , Immunity, Innate/drug effects , Male , Mice , Mice, Inbred C57BL , Middle Aged , Polymorphism, Genetic , Treatment Outcome
19.
J Infect Dis ; 220(7): 1091-1098, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31165861

ABSTRACT

Development of an improved tuberculosis (TB) vaccine is a high worldwide public health priority. Bacillus Calmette-Guerin (BCG), the only licensed TB vaccine, provides variable efficacy against adult pulmonary TB, but why this protection varies is unclear. Humans are regularly exposed to non-tuberculous mycobacteria (NTM) that live in soil and water reservoirs and vary in different geographic regions around the world. Immunologic cross-reactivity may explain disparate outcomes of BCG vaccination and susceptibility to TB disease. Evidence supporting this hypothesis is increasing but challenging to obtain due to a lack of reliable research tools. In this review, we describe the progress and bottlenecks in research on NTM epidemiology, immunology and heterologous immunity to Mtb. With ongoing efforts to develop new vaccines for TB, understanding the effect of NTM on vaccine efficacy may be a critical determinant of success.


Subject(s)
Immunity, Heterologous , Mycobacterium Infections, Nontuberculous/epidemiology , Nontuberculous Mycobacteria/immunology , Tuberculosis, Pulmonary/immunology , Adult , Animals , BCG Vaccine/immunology , Humans , Immunity, Cellular , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium tuberculosis/immunology , Vaccination
20.
J Infect Dis ; 219(10): 1518-1524, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30590592

ABSTRACT

New therapeutics to augment current approaches and shorten treatment duration are of critical importance for combating tuberculosis (TB), especially those with novel mechanisms of action to counter the emergence of drug-resistant TB. Host-directed therapy (HDT) offers a novel strategy with mechanisms that include activating immune defense mechanisms or ameliorating tissue damage. These and related concepts will be discussed along with issues that emerged from the workshop organized by the Stop TB Working Group on New Drugs, held at the Gordon Research Conference for Tuberculosis Drug Development in Lucca, Italy in June 2017, titled "Strategic Discussion on Repurposing Drugs & Host Directed Therapies for TB." In this review, we will highlight recent data regarding drugs, pathways, and concepts that are important for successful development of HDTs for TB.


Subject(s)
Antitubercular Agents/therapeutic use , Drug Development/methods , Tuberculosis/drug therapy , Antitubercular Agents/pharmacology , Humans , Mycobacterium tuberculosis/drug effects , Tuberculosis/immunology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/immunology
SELECTION OF CITATIONS
SEARCH DETAIL