Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
J Biol Chem ; : 107485, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906255

ABSTRACT

Hyperuricemia (HUA) is a metabolic disorder characterized by elevated serum uric acid (UA), primarily attributed to the hepatic overproduction and renal underexcretion of UA. Despite the elucidation of molecular pathways associated with this underexcretion, the etiology of HUA remains largely unknown. In our study, using by Uox knockout rats, HUA mouse and cell line models, we discovered that the increased WWC1 levels were associated with decreased renal UA excretion. Additionally, using by knockdown and overexpression approaches, we found that WWC1 inhibited UA excretion in renal tubular epithelial cells. Mechanistically, WWC1 activated the Hippo pathway, leading to phosphorylation and subsequent degradation of the downstream transcription factor YAP1, thereby impairing the ABCG2 and OAT3 expression through transcriptional regulation. Consequently, this reduction leaded to a decrease in UA excretion in renal tubular epithelial cells. In conclusion, our study has elucidated the role of upregulated WWC1 in renal tubular epithelial cells inhibiting the excretion of UA in the kidneys and causing HUA.

2.
J Environ Sci (China) ; 142: 193-203, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38527884

ABSTRACT

Neburon is a phenylurea herbicide that is widely used worldwide, but its toxicity is poorly studied. In our previous study, we found that neburon has strong aryl hydrocarbon receptor (AhR) agonist activity, but whether it causes reproductive toxicity is not clear. In the present study, zebrafish were conducted as a model organism to evaluate whether environmental concentrations of neburon (0.1, 1 and 10 µg/L) induce reproductive disorder in males. After exposure to neburon for 150 days from embryo to adult, that the average spawning egg number in high concentration group was 106.40, which was significantly lower than 193.00 in control group. This result was mainly due to the abnormal male reproductive behavior caused by abnormal transcription of genes associated with reproductive behavior in the brain, such as secretogranin-2a. The proportions of spermatozoa in the medium and high concentration groups were 82.40% and 83.84%, respectively, which were significantly lower than 89.45% in control group. This result was mainly caused by hormonal disturbances and an increased proportion of apoptotic cells. The hormonal disruption was due to the significant changes in the transcription levels of key genes in the hypothalamus-pituitary-gonadal axis following neburon treatment. Neburon treatment also significantly activated the AhR signaling pathway, causing oxidative stress damage and eventually leading to a significant increase in apoptosis in the exposed group. Together, these data filled the currently more vacant profile of neburon toxicity and might provide information to assess the ecotoxicity of neburon on male reproduction at environmentally relevant concentrations.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Male , Zebrafish/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Phenylurea Compounds/pharmacology , Reproduction , Water Pollutants, Chemical/metabolism
3.
J Gen Virol ; 104(2)2023 02.
Article in English | MEDLINE | ID: mdl-36802334

ABSTRACT

The coat protein (CP) of plant viruses generally has multiple functions involving infection, replication, movement and pathogenicity. Functions of the CP of prunus necrotic ringspot virus (PNRSV), the causal agent of several threatening diseases of Prunus fruit trees, are poorly studied. Previously, we identified a novel virus in apple, apple necrotic mosaic virus (ApNMV), which is phylogenetically related to PNRSV and probably associated with apple mosaic disease in China. Full-length cDNA clones of PNRSV and ApNMV were constructed, and both are infectious in cucumber (Cucumis sativus L.), an experimental host. PNRSV exhibited higher systemic infection efficiency with more severe symptoms than ApNMV. Reassortment analysis of genomic RNA segments 1-3 found that RNA3 of PNRSV could enhance the long-distance movement of an ApNMV chimaera in cucumber, indicating the association of RNA3 of PNRSV with viral long-distance movement. Deletion mutagenesis of the PNRSV CP showed that the basic motif from amino acids 38 to 47 was crucial for the CP to maintain the systemic movement of PNRSV. Moreover, we found that arginine residues 41, 43 and 47 codetermine viral long-distance movement. The findings demonstrate that the CP of PNRSV is required for long-distance movement in cucumber, which expands the functions of ilarvirus CPs in systemic infection. For the first time, we identified involvement of Ilarvirus CP protein during long-distance movement.


Subject(s)
Ilarvirus , Prunus , Ilarvirus/genetics , Ilarvirus/metabolism , RNA, Viral/metabolism , Prunus/genetics , China
4.
J Exp Bot ; 74(14): 4189-4207, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37086216

ABSTRACT

Apple necrotic mosaic virus (ApNMV) is associated with apple mosaic disease in China. However, the mechanisms of ApNMV infection, as well as host defence against the virus, are still poorly understood. Mitochondrial ATP synthase plays a fundamental role in the regulation of plant growth and development. However, mitochondrial ATP synthase function in response to virus infection remains to be defined. In the present study, a yeast two-hybrid (Y2H) screening revealed that the apple mitochondrial ATP synthase oligomycin sensitivity-conferring protein (OSCP) subunit (MdATPO) interacts with ApNMV coat protein (CP). It was further verified that overexpression of MdATPO in Nicotiana benthamiana inhibited viral accumulation. In contrast, silencing of NbATPO facilitated viral accumulation, indicating that ATPO plays a defensive role during ApNMV infection. Further investigation demonstrated that ApNMV infection accelerated abscisic acid (ABA) accumulation, and ABA negatively regulated ATPO transcription, which was related to the ability of ABA insensitive 5 (ABI5) to bind to the ABA-responsive elements (ABREs) of the ATPO promoter. Taken together, our results indicated that transcription factor ABI5 negatively regulated ATPO transcription by directly binding to its promoter, leading to the susceptibility of apple and N. benthamiana to ApNMV infection. The current study facilitates a comprehensive understanding of the intricate responses of the host to ApNMV infection.


Subject(s)
Arabidopsis Proteins , Mitochondrial Proton-Translocating ATPases , Mitochondrial Proton-Translocating ATPases/metabolism , Down-Regulation , Transcription Factors/metabolism , Abscisic Acid/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Arabidopsis Proteins/metabolism
5.
Environ Sci Technol ; 57(28): 10201-10210, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37406193

ABSTRACT

This study aimed to investigate the transgenerational effects of tributyltin exposure on rat neurodevelopment in male offspring and the potential mechanisms. Neonatal female rats were exposed to the environmental level of tributyltin and then mated with nonexposed males after sexual maturity to produce the F1 generation. The F1 generation (with primordial germ cell exposure) was mated with nonexposed males to produce nonexposed offspring (the F2 and F3 generations). Neurodevelopmental indicators and behavior were observed for the F1, F2, and F3 generations during postnatal days 1-25 and 35-56, respectively. We found premature eye-opening and delayed visual positioning in newborn F1 rats and anxiety and cognitive deficits in prepubertal F1 male rats. These neurodevelopmental impacts were also observed in F2 and F3 males. Additionally, F1-F3 males exhibited increased serotonin and dopamine levels and a loose arrangement of neurons in the hippocampus. We also observed a reduction in the expression of genes involved in intercellular adhesion and increased DNA methylation of the Dsc3 promoter in F1-F3 males. We concluded that tributyltin exposure led to transgenerational effects on neurodevelopment via epigenetic reprogramming in male offspring. These findings provide insights into the risks of neurodevelopmental disorders in offspring from parents exposed to tributyltin.


Subject(s)
Prenatal Exposure Delayed Effects , Trialkyltin Compounds , Rats , Animals , Male , Female , Humans , Reproduction , DNA Methylation , Trialkyltin Compounds/toxicity , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/psychology , Epigenesis, Genetic
6.
Ecotoxicol Environ Saf ; 261: 115093, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37270882

ABSTRACT

Polychlorinated biphenyls (PCBs) are a type of persistent organic pollutant (POP). Our previous study demonstrated that exposure to 0.5-50 µg/kg bw PCB138 during postnatal days (PND) 3-21 led to elevated serum uric acid (UA) levels and kidney injury in adult male mice. Given that the prevalence of hyperuricemia (HUA) is significantly lower in women than in men, it is worth investigating whether POP-induced HUA and its secondary kidney injury have sexual dimorphism. Herein, we exposed female mice to 0.5-50 µg/kg bw PCB138 during PND 3-21, resulting in elevated serum UA levels, but without causing significant kidney damage. Concurrently, we found a negative correlation between serum 17ß-estradiol (E2) and serum UA levels. We also observed down-regulation of estrogen receptor (ER) protein levels in the kidneys of the PCB138-exposed groups. Furthermore, our study showed that E2 rescued the increased UA level and cytotoxicity caused by HUA in human renal tubular epithelial (HK-2) cells. Collectively, our findings suggest that E2 likely plays a crucial protective role in PCB138-induced HUA and kidney injury in female mice. Our research highlights the existence of sexual dimorphism in kidney injury secondary to HUA induced by POPs, which could provide guidance for individuals of different genders in preventing kidney injury caused by environmental factors.


Subject(s)
Hyperuricemia , Kidney Diseases , Adult , Humans , Male , Female , Mice , Animals , Uric Acid , Estradiol , Kidney/metabolism
7.
Ecotoxicol Environ Saf ; 266: 115574, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37839186

ABSTRACT

Pyrrolizidine alkaloids (PAs) are a class of phytotoxins that are widely distributed and can be consumed by humans through their daily diets. Echimidine is one of the most abundant PAs, but its safety, particularly its effects on development, is not fully understood. In this study, we used a zebrafish model to assess the developmental toxicity of echimidine. Zebrafish embryos were exposed to echimidine at concentrations of 0.02, 0.2, and 2 mg/L for 96 h. Our study revealed that embryonic exposure to echimidine led to developmental toxicity, characterized by delayed hatching and reduced body length. Additionally, echimidine exposure had a notable impact on heart development in larvae, causing tachycardia and reducing stroke volume (SV)and cardiac output (CO). Upon exposing the transgenic zebrafish strain Tg(cmlc2:EGFP) to echimidine, we observed atrial dilation and thinning of the atrial wall in developing embryos. Moreover, our findings indicated abnormal expression of genes associated with cardiac development (including gata4, tbx5, nkx2.5 and myh6) and genes involved in calcium signaling pathways (such as cacna1aa, cacna1sa, ryr2a, ryr2b, atp2a2a, atp2a2b, slc8a1, slc8a3 and slc8a4a). In summary, our findings demonstrate that echimidine may impair cardiac development and function in zebrafish larvae by disrupting calcium transport, leading to developmental toxicity. These findings provide insights regarding the safety of products containing PAs in food and medicine.


Subject(s)
Atrial Fibrillation , Pyrrolizidine Alkaloids , Animals , Humans , Zebrafish/metabolism , Larva , Pyrrolizidine Alkaloids/metabolism , Embryo, Nonmammalian/metabolism
8.
Ecotoxicol Environ Saf ; 256: 114899, 2023 May.
Article in English | MEDLINE | ID: mdl-37060801

ABSTRACT

Phenanthrene (Phe), one of the most frequently occurring pollutants in nature, can cause substantial damage to the human liver. Herbt Tea Essences (HTE), a kind of black tea extract with strong anti-inflammatory activity, can protect humans against disease. Currently, whether HTE can protect the liver from Phe-induced hepatotoxicity remains unclear. Herein, we explore the protective effects of HTE against Phe-induced hepatotoxicity. Our results showed that Phe exposure could significantly induce liver damage and increase serum hepatic enzyme levels in mice. HTE could prevent liver damage and recover the expression levels of inflammatory factors. Furthermore, we found that HTE suppressed the excessive activation of the nuclear transcription factor kappa-B and transforming growth factor-ß/SMAD signaling pathways to alleviate Phe-induced liver inflammation and fibrosis. Overall, our data showed that HTE treatment could be a new preventive means for Phe-induced liver disease.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Diseases , Mice , Humans , Animals , Plant Extracts/pharmacology , Liver , NF-kappa B/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Tea
9.
J Environ Sci (China) ; 124: 76-88, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182181

ABSTRACT

Mepanipyrim, an anilinopyrimidine fungicide, has been extensively used to prevent fungal diseases in fruit culture. Currently, research on mepanipyrim-induced toxicity in organisms is still very scarce, especially visual developmental toxicity. Here, zebrafish larvae were employed to investigate mepanipyrim-induced visual developmental toxicity. Intense light and monochromatic light stimuli-evoked escape experiments were used to investigate vision-guided behaviors. Meanwhile, transcriptomic sequencing and real-time quantitative PCR assays were applied to assess the potential mechanisms of mepanipyrim-induced visual developmental toxicity and vision-guided behavioral alteration. Our results showed that mepanipyrim exposure could induce retinal impairment and vision-guided behavioral alteration in larval zebrafish. In addition, the grk1b gene of the phototransduction signaling pathway was found to be a potential aryl hydrocarbon receptor (AhR)-regulated gene. Mepanipyrim-induced visual developmental toxicity was potentially related to the AhR signaling pathway. Furthermore, mepanipyrim-induced behavioral alteration was guided by the visual function, and the effects of mepanipyrim on long and middle wavelength light-sensitive opsins may be the main cause of vision-guided behavioral alteration. Our results provide insights into understanding the relationship between visual development and vision-guided behaviors induced by mepanipyrim exposure.


Subject(s)
Fungicides, Industrial , Water Pollutants, Chemical , Animals , Embryo, Nonmammalian , Fungicides, Industrial/toxicity , Larva , Opsins/metabolism , Opsins/pharmacology , Pyrimidines , Receptors, Aryl Hydrocarbon/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
10.
J Environ Sci (China) ; 125: 650-661, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36375947

ABSTRACT

The wide use of pesticides has seriously threatened human health and the survival of beneficial organisms. The fungicide mepanipyrim is widely used in viticulture practices. Studies of mepanipyrim-induced toxicity in organisms are still scarce, especially studies on cardiotoxicity. In this study, we aimed to investigate mepanipyrim-induced cardiotoxicity in zebrafish (Danio rerio) larvae. We found that mepanipyrim could induce cardiotoxicity by altering the heart rate and cardiomyocyte diameter of larvae. Meanwhile, RNA sequencing and RT-qPCR data indicated that mepanipyrim exposure could dramatically alter the mRNA expression of calcium signaling pathway-, cardiac muscle contraction-, and oxidative respiratory chain-related genes. Interestingly, by the CALUX cell bioassay, we found that most cytochrome c oxidase (COX) family genes exhibited potential AhR-regulated activity, suggesting that mepanipyrim induced cardiotoxicity via a novel AhR-regulated manner in larvae. Additionally, the AhR antagonist CH223191 could effectively prevent mepanipyrim-induced cardiotoxicity in zebrafish larvae. In conclusion, the AhR agonist mepanipyrim could induce cardiotoxicity in a novel unreported AhR-regulated manner, which could specifically affect the expression of COX family genes involved in the mitochondrial oxidative respiratory chain. Our data will help explain the toxic effects of mepanipyrim on organisms and provide new insight into the AhR agonistic activity pesticide-induced cardiotoxicity.


Subject(s)
Cardiotoxicity , Pesticides , Water Pollutants, Chemical , Animals , Cardiotoxicity/metabolism , Electron Transport Complex IV/metabolism , Embryo, Nonmammalian , Larva , Pesticides/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
11.
Ecotoxicol Environ Saf ; 246: 114168, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36244174

ABSTRACT

Black phosphorus quantum dots (BPQDs) are considered to have wide application prospects due to their excellent properties. However, there is no study on the effect of BPQDs on glucose metabolism. In this study, blood glucose was significantly increased when mice were continuously intragastrically administered 0.1 and 1 mg/kg bw BPQDs. The blood glucose level of the mice was elevated from Day 7 to Day 28. BPQD exposure also decreased the area under the curve (AUC) of the oral glucose tolerance test (OGTT). After exposure, the pancreas somatic index was increased. Moreover, the serum insulin and glucagon levels were elevated and the relative area of islet ß cells was increased in BPQD-exposed mice, while insulin signaling cascades were reduced in muscle tissues. In summary, our study demonstrated for the first time that BPQD exposure induces glucose disorder and insulin resistance in muscle, which is helpful to understand the biosafety of black phosphorus nanomaterials and promote the sustainable development of nanotechnology.


Subject(s)
Insulin Resistance , Insulins , Quantum Dots , Mice , Animals , Quantum Dots/toxicity , Phosphorus , Blood Glucose
12.
Plant Dis ; 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33736465

ABSTRACT

Strawberry (Fragaria × ananassa Duch.) is one of the most important horticultural plants worldwide with high economic and nutritional value. Strawberry associated virus 1 (SaV1) is a putative Cytorhabdovirus isolated from strawberry in Fujian province, China (Ding et al., 2019). Strawberry virus 1 (StrV-1) is another putative Cytorhabdovirus characterized from F. ananassa and F. vesca in Czech Republic (Fránová et al., 2019). The complete genomes of isolates of SaV1 and StrV-1 share 79 to 98% nucleotide (nt) identities. In August 2020, foliar chlorotic spots or streaks were observed in four strawberry cultivars (cv. Honeoye, Mibao, 8128 and All Star) in Yantai, Shandong province, China. To identify the associated viruses, symptomatic leaves from two plants of each cultivar (8 samples) were pooled for high-throughput sequencing (HTS). Total RNA was extracted from the composite sample and used for constructing a cDNA library after ribosomal RNA (rRNA)-depletion. Sequencing was carried out on Illumina Hiseq 4000 (Novogene, China). Raw reads were filtered, trimmed and de novo assembled as described previously (Grabherr et al., 2013; Zhou et al. 2020). The resulting contigs were screened by BLASTn and BLASTx against GenBank database. Subsequent analyses indicated the presence of strawberry vein banding virus, strawberry pallidosis associated virus and strawberry mottle virus in the analyzed sample, which had been reported previously in strawberry (Martin and Tzanetakis, 2013; Shi et al., 2018; Bhagwat et al., 2016). Besides, five contigs ranging from 266 to 6,057 nt were obtained. They shared 87 to 91% nt sequence identity with StrV-1 isolate B (GenBank accession no. MK211271). To confirm StrV-1 infection in the strawberry plants, total RNA was isolated from all eight samples using RNAprep Pure Plant Plus Kit (Tiangen, China). Reverse transcription polymerase chain reaction (RT-PCR) was conducted with two pairs of specific primers StrVp1 (Forward: 5'-CATTACTGAAGCATTCCGTG-3'/Reverse: 5'-AGATATCACGCACAGTGAC-3'), and StrVp2 (Forward: 5'-TTGCGCGAAGCGGATGTCCG-3'/Reverse: 5'-GGCTGCCAGAGCGTTGGATG-3'), targeting nt positions 70-1,231 and 7,825-9,348 of StrV-1 isolate B, respectively. Fragments with the expected sizes were amplified from two samples of cv. All Star. The amplicons were cloned, sequenced, and deposited in GenBank under accession no. MW419123-124 and MW645247-248. Both protein encoding sequences shared 91 to 92% and 80 to 84% nt identities with the corresponding sequences of StrV-1 isolate B and SaV1, respectively, indicating that the isolates from this study are genetic variants of StrV-1 and distantly related to SaV1. Crude sap was prepared by homogenizing leaf tissues of StrV-1 infected strawberry in 0.02 mol/L sodium phosphate buffer with 0.45% (w/v) sodium diethyldithiocarbamate thihydrate, then gently rubbed onto five healthy Nicotiana benthamiana plants. Neither the inoculated leaves nor the systemically infected leaves showed obvious symptoms seven days post inoculation. However, StrV-1 was detected by RT-PCR in all five N. benthamiana plants as described above. In addition, a survey of strawberry greenhouses was conducted in August 2020 and approximately 10% of plants in a 667 m2 greenhouse in Yantai had StrV-1-like symptoms. To the best of our knowledge, this is the first report of the occurrence of StrV-1 infecting strawberry in Shandong province, China. Our findings expand the geographic range and genetic diversity of StrV-1 and indicate it could be a potential virus threat to strawberry production in China.

13.
Environ Toxicol ; 36(4): 665-674, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33258555

ABSTRACT

Numerous studies have shown that endocrine-disrupting chemicals are one of the important pathogenic factors in women with polycystic ovary syndrome. Our previous study has revealed that bisphenol A (BPA) can cause steroid hormone imbalance, polycystic ovary, and estrus cycle disorder. In this study, we aimed to explore the effect of BPA, a typical environmental estrogen, on the synthesis of steroid hormones in human ovarian granulosa KGN cells. Exposure of KGN cells to BPA (0.5, 5, 50, and 500 µg/L) resulted in the decrease of progesterone (P), estradiol (E2), and the ratio of estradiol to testosterone (E2/T). BPA affected the expression of genes related to steroid hormone synthesis in KGN cells, including the decreased expression of the steroidogenic acute regulatory protein, ferredoxin, and ferredoxin reductase genes during progesterone synthesis; upregulating the expression of cytochrome p450 oxidoreductase gene associated with E2 and T synthesis; and the downregulated cytochrome P450 family 1 subfamily A member 1 and cytochrome P450 family 1 subfamily B member 1 in E2 degradation. BPA also reduced the expression of stimulatory G proteins (GS) in follicle-stimulating hormone receptor (FSHR)/GS/adenylate cyclase (AC) signaling pathway. In summary, our research has demonstrated that environment-relevant level of BPA exposure leads to steroid hormone synthesis disorder in human ovarian granulosa cells, which might cause the reduction of gene expression in hormone synthesis and the suppression of the FSHR/GS/AC signaling pathway.


Subject(s)
Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Estradiol/biosynthesis , Granulosa Cells/drug effects , Phenols/toxicity , Progesterone/biosynthesis , Testosterone/biosynthesis , Animals , Cell Culture Techniques , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Dose-Response Relationship, Drug , Down-Regulation , Female , Gene Expression/drug effects , Humans , Up-Regulation
14.
J Environ Sci (China) ; 100: 240-249, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33279036

ABSTRACT

Quantum dots (QDs) are new types of nanomaterials. Few studies have focused on the effect of different surface modified QDs on embryonic development. Herein, we compared the in vivo toxicity of CdSe/ZnS QDs with carboxyl (-COOH) and amino (-NH2) modification using zebrafish embryos. After exposure, the two CdSe/ZnS QDs decreased the survival rate, hatching rate, and embryo movement of zebrafish. Moreover, we found QDs attached to the embryo membrane before hatching and the eyes, yolk and heart after hatching. The attached amount of carboxyl QDs was more. Consistently, the Cd content in embryos and larvae was higher in carboxyl QD-treatment. We further observed that the two QDs caused zebrafish pericardial edema and cardiac dysfunction. In line with it, both carboxyl and amino QDs up-regulated the transcription levels of cardiac development-related genes, and the levels were higher in carboxyl QD-treated groups. Furthermore, the chelator of Cd2+ diethylene triamine pentacetate acid could partially rescued the developmental toxicity caused by the two types of QDs suggesting that both the nature of QDs and the release of Cd2+ contribute to the developmental toxicity. In conclusion, the two CdSe/ZnS QDs have developmental toxicity and affect the cardiac development, and the carboxyl QDs is more toxic possibly due to the higher affinity and more release to embryos and larvae. Our study provides new knowledge that the surface functional modification of QDs is critical on the development on aquatic species, which is beneficial to develop and applicate QDs more safely and environment-friendly.


Subject(s)
Cadmium Compounds , Quantum Dots , Selenium Compounds , Animals , Cadmium Compounds/toxicity , Quantum Dots/toxicity , Selenium Compounds/toxicity , Sulfides/toxicity , Zebrafish , Zinc Compounds/toxicity
15.
Small ; 16(22): e2001371, 2020 06.
Article in English | MEDLINE | ID: mdl-32338439

ABSTRACT

Quantum dots (QDs) have numerous potential applications in lighting, engineering, and biomedicine. QDs are mainly excreted through the kidney due to their ultrasmall sizes; thus, the kidneys are target organs of QD toxicity. Here, an organoid screening platform is established and used to study the nephrotoxicity of QDs. Organoids are templated from monodisperse microfluidic Matrigel droplets and found to be homogeneous in both tissue structure and functional recapitulation within a population and suitable for the quantitative screening of toxic doses. Kidney organoids are proved displaying higher sensitivity than 2D-cultured cell lines. Similar to metal-containing QDs, black phosphorus (BP)-QDs are found to have moderate toxicity in the kidney organoids. The nephrotoxicity of BP-QDs are validated in both mice and human renal tubular epithelial cells. BP-QDs are also found to cause insulin insensitivity and endoplasmic reticulum (ER) stress in the kidney. Furthermore, ER stress-related IRE1α signaling is shown to mediate renal toxicity and insulin insensitivity caused by BP-QDs. In summary, this work demonstrates the use of constructed kidney organoids as 3D high-throughput screening tools to assess nanosafety and further illuminates the effects and molecular mechanisms of BP-QD nephrotoxicity. The findings will hopefully enable improvement of the safety of BP-QD applications.


Subject(s)
Quantum Dots , Animals , Endoribonucleases , Humans , Mice , Organoids , Phosphorus , Protein Serine-Threonine Kinases , Quantum Dots/toxicity
16.
J Appl Toxicol ; 40(6): 794-803, 2020 06.
Article in English | MEDLINE | ID: mdl-31943283

ABSTRACT

Graphene oxide quantum dots (GOQDs) have broad applications such as bioimaging and drug delivery, among others, even expanding into the aquatic environment. However, reports on the adverse effects of GOQDs on fish development are limited. In this study, we exposed zebrafish embryos to GOQDs for 7 days after fertilization and found that GOQDs exposure at low concentrations (12.5, 25, 50 or 100 µg/L) decreased the total distance and the mean velocity of larvae movement. Additionally, the GOQDs significantly reduced the enzyme activity related to energy supply and locomotor capacity, including Ca2+ -ATPase in the 12.5, 25, 50 and 100 µg/L GOQDs groups and Na+ /K+ -ATPase in the 25 and 50 µg/L GOQDs groups. Moreover, GOQD exposure altered the mRNA expression of genes involved in energy supply and calcium transport. The levels of the atp2a2b, atp2a1, and cacna1sb genes were significantly downregulated in the 25, 50 and 100 µg/L GOQDs groups, and ryr3 expression was significantly reduced in the 25 and 50 µg/L GOQDs groups. The expression level of cacna1c was significantly upregulated in the 50 and 100 µg/L GOQDs groups. In summary, GOQD exposure induced a decrease in locomotor capacity in zebrafish, which may be due to the reduction of Ca2+ -ATPase and Na+ /K+ -ATPase activity levels, and dysregulated expression of the genes involved in energy metabolism and calcium transport. Our study provides novel insight into the effects of GOQDs on the embryonic development of fish, which will be useful for the development of environment-friendly GOQDs that reduce the potential hazard to aquatic species.


Subject(s)
Embryo, Nonmammalian/drug effects , Graphite/toxicity , Locomotion/drug effects , Quantum Dots/toxicity , Animals , Calcium-Transporting ATPases/genetics , Calcium-Transporting ATPases/metabolism , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Zebrafish/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
17.
Ecotoxicol Environ Saf ; 201: 110808, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32516676

ABSTRACT

Cyprodinil is a broad-spectrum pyrimidine amine fungicide that has been reportedly used worldwide. However, toxicity studies of cyprodinil on aquatic organisms, specifically zebrafish (Danio rerio), are lacking. In our present study, we predicted cyprodinil binding to the aryl hydrocarbon receptor (AhR) by using molecular docking simulation. Then, we used recombinant HepG2 cells and Tg(cyp1a1-12DRE:egfp) transgenic zebrafish to further assess the AhR agonistic activity of cyprodinil. Besides, the significant upregulation of cyp1a1 further verified that statement. Moreover, we found that zebrafish exposure to cyprodinil induced developmental toxicity in the larvae, particularly during cardiac development. The expression levels of cardiac development-related genes, namely tbx5, nkx2.5, gata4, and tnnt2, were markedly altered, which might cause the adverse effects of cyprodinil on cardiac function and development. In summary, we found that cyprodinil, as an AhR agonist, induced development toxicity in zebrafish larvae, especially on cardiac. Data here can assess the potential effects on organisms in the aquatic environment and promote the regulation and safe use of cyprodinil.


Subject(s)
Animals, Genetically Modified/metabolism , Larva/drug effects , Pyrimidines/toxicity , Receptors, Aryl Hydrocarbon/agonists , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism , Animals , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Fungicides, Industrial/metabolism , Heart/drug effects , Heart/embryology , Hep G2 Cells , Humans , Larva/genetics , Larva/metabolism , Molecular Docking Simulation , Organogenesis/drug effects , Organogenesis/genetics , Protein Binding , Zebrafish/genetics
18.
J Cell Mol Med ; 23(9): 5920-5933, 2019 09.
Article in English | MEDLINE | ID: mdl-31282064

ABSTRACT

Hepatitis B virus (HBV) infection and aflatoxin B1 (AFB1) exposure have been recognized as independent risk factors for the occurrence and exacerbation of hepatic steatosis but their combined impacts and the potential mechanisms remain to be further elucidated. Here, we showed that exposure to AFB1 impaired mitochondrial dynamics and increased intracellular lipid droplets (LDs) in the liver of HBV-transgenic mice in vivo and the hepatitis B virus X protein (HBx)-expressing human hepatocytes both ex vivo and in vitro. HBx combined with AFB1 exposure also up-regulated receptor interaction protein 1 (RIP1), receptor interaction protein 3 (RIP3) and activated mixed lineage kinase domain like protein (MLKL), providing evidence of necrosome formation in the hepatocytes. The shift of the mitochondrial dynamics towards imbalance of fission and fusion was rescued when MLKL was inhibited in the HBx and AFB1 co-treated hepatocytes. Most importantly, based on siRNA or CRISPR/Cas9 system, we found that the combination of HBx and AFB1 exposure increased cyclooxygenase-2 (COX-2) to mediate up-regulation of RIP3 and dynamin-related protein 1 (Drp1), which in turn promoted location of RIP3-MLKL necrosome on mitochondria, subsequently exacerbated steatosis in hepatocytes. Taken together, these findings advance the understanding of mechanism associated with HBx and AFB1-induced hepatic necrosome formation, mitochondrial dysfunction and steatosis and make COX-2 a good candidate for treatment.


Subject(s)
Aflatoxin B1/metabolism , Cyclooxygenase 2/metabolism , Fatty Liver/pathology , Hepatitis B/pathology , Mitochondrial Dynamics/physiology , Trans-Activators/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Dynamins/metabolism , Hep G2 Cells , Hepatitis B virus , Hepatocytes/transplantation , Hepatocytes/virology , Humans , Lipid Droplets/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Nuclear Pore Complex Proteins/metabolism , Protein Kinases/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA-Binding Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Transplantation, Heterologous
19.
Phytopathology ; 109(4): 531-541, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30130146

ABSTRACT

The fungus Colletotrichum fructicola (a species of C. gloeosporioides complex) causes devastating anthracnose in strawberry. Like other species of the genus Colletotrichum, it uses a composite strategy including both the biotrophic and necrotrophic processes for pathogenesis. Host-derived hormones are central regulators of immunity, among which salicylic acid (SA) is the core defense one against biotrophic and hemibiotrophic pathogens. However, the manner and timing of pathogen manipulation of SA are largely elusive in strawberry. To achieve better understanding of the early challenges that SA-mediated defense experiences during strawberry/C. fructicola interaction, dynamic changes of SA levels were followed through the high-performance liquid chromatography method. A very early burst of free SA at 1 h postinoculation (hpi) followed by a fast quenching during the next 12 h was noticed, although rhythm variations were present in two hosts. Transcriptional characterization of genes related to SA pathway in two varieties on C. fructicola inoculation revealed that these genes were differentially expressed, although they were all induced at different time points. At the same time, three types of genes encoding homologous effectors interfering with SA accumulation were found to be first inhibited but sequentially activated during the first 24 hpi. Furthermore, subcellular localization analysis suggests that CfShy1 is a weapon of C. fructicola for strawberry invasion. Based on these results, we propose that the infection strategy that C. fructicola utilizes on strawberry is specialized, which is implemented through the optimized expression of a specific set of effector genes. Transcriptional characterization of host genes supports that de novo SA biosynthesis and the free SA release from methyl salicylate might contribute equally to the intricate control of SA homeostasis in strawberry. C. fructicola manipulation of SA-dependent resistance in strawberry might be closely related to multihormonal interplay among SA, jasmonic acid, abscisic acid, and cytokinin.


Subject(s)
Colletotrichum , Fragaria , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Salicylic Acid , Colletotrichum/genetics , Colletotrichum/pathogenicity , Fragaria/genetics , Fragaria/microbiology , Plant Diseases/microbiology
20.
Arch Toxicol ; 93(11): 3305-3320, 2019 11.
Article in English | MEDLINE | ID: mdl-31612242

ABSTRACT

Aflatoxin B1 (AFB1), a food contaminant derived from Aspergillus fungi, has been reported to cause hepatic immunotoxicity via inflammatory infiltration and cytokines release. As a pro-inflammatory factor, cyclooxygenase-2 (COX-2) is widely involved in liver inflammation induced by xenobiotics. However, the mechanism by which AFB1-induced COX-2 regulates liver inflammatory injury via hepatocytes-Kupffer cells (KCs) crosstalk remains unclear and requires further elucidation. Here, we established a COX-2 upregulated model with AFB1 treatment in vivo (C57BL/6 mice, 1 mg/kg body weight, i.g, 4 weeks) and in vitro (human liver HepaRG cells, 1 µM for 24 h). In vivo, AFB1-treated mice exhibited NLRP3 inflammasome activation, inflammatory infiltration, and increased recruitment of KCs. In vitro, dephosphorylated COX-2 by protein phosphatase 2A (PP2A)-B55δ promoted NLRP3 inflammasome activation, including mitochondrial translocation of NLRP3, caspase 1 cleavage, and IL-1ß release. Moreover, phosphorylated COX-2 at serine 601 (p-COX-2Ser601) underwent endoplasmic reticulum (ER) retention for proteasome degradation. Furthermore, pyroptosis and inflammatory response induced by AFB1 were relieved with COX-2 genetic (siPTGS2) intervention or pharmaceutic (celecoxib, 30 mg/kg body weight, i.g, 4 weeks) inhibition of COX-2 via NLRP3 inflammasome suppression in vivo and in vitro. Ex vivo, in a co-culture system with murine primary hepatocytes and KCs, activated KCs induced by damaged signals from pyroptotic hepatocytes, formed a feedback loop to amplify NLRP3-dependent pyroptosis of hepatocytes via pro-inflammatory signaling, leading to liver inflammatory injury. Taken together, our data suggest a novel mechanism that protein quality control of COX-2 determines the intracellular distribution and activation of NLRP3 inflammasome, which promotes liver inflammatory injury via hepatocytes-KCs crosstalk.


Subject(s)
Aflatoxin B1/toxicity , Chemical and Drug Induced Liver Injury/etiology , Cyclooxygenase 2/metabolism , Hepatocytes/drug effects , Kupffer Cells/drug effects , Pyroptosis/drug effects , Animals , Cell Line, Tumor , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/pathology , HEK293 Cells , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Inflammation , Interleukin-1beta/metabolism , Kupffer Cells/metabolism , Liver/drug effects , Liver/immunology , Liver/pathology , Mice, Inbred C57BL , Phosphorylation , Primary Cell Culture
SELECTION OF CITATIONS
SEARCH DETAIL