Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nature ; 615(7952): 472-481, 2023 03.
Article in English | MEDLINE | ID: mdl-36859544

ABSTRACT

The meninges are densely innervated by nociceptive sensory neurons that mediate pain and headache1,2. Bacterial meningitis causes life-threatening infections of the meninges and central nervous system, affecting more than 2.5 million people a year3-5. How pain and neuroimmune interactions impact meningeal antibacterial host defences are unclear. Here we show that Nav1.8+ nociceptors signal to immune cells in the meninges through the neuropeptide calcitonin gene-related peptide (CGRP) during infection. This neuroimmune axis inhibits host defences and exacerbates bacterial meningitis. Nociceptor neuron ablation reduced meningeal and brain invasion by two bacterial pathogens: Streptococcus pneumoniae and Streptococcus agalactiae. S. pneumoniae activated nociceptors through its pore-forming toxin pneumolysin to release CGRP from nerve terminals. CGRP acted through receptor activity modifying protein 1 (RAMP1) on meningeal macrophages to polarize their transcriptional responses, suppressing macrophage chemokine expression, neutrophil recruitment and dural antimicrobial defences. Macrophage-specific RAMP1 deficiency or pharmacological blockade of RAMP1 enhanced immune responses and bacterial clearance in the meninges and brain. Therefore, bacteria hijack CGRP-RAMP1 signalling in meningeal macrophages to facilitate brain invasion. Targeting this neuroimmune axis in the meninges can enhance host defences and potentially produce treatments for bacterial meningitis.


Subject(s)
Brain , Meninges , Meningitis, Bacterial , Neuroimmunomodulation , Humans , Brain/immunology , Brain/microbiology , Calcitonin Gene-Related Peptide/metabolism , Meninges/immunology , Meninges/microbiology , Meninges/physiopathology , Pain/etiology , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Meningitis, Bacterial/complications , Meningitis, Bacterial/immunology , Meningitis, Bacterial/microbiology , Meningitis, Bacterial/pathology , Streptococcus agalactiae/immunology , Streptococcus agalactiae/pathogenicity , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/pathogenicity , Nociceptors/metabolism , Receptor Activity-Modifying Protein 1/metabolism , Macrophages/immunology , Macrophages/metabolism
2.
bioRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38260581

ABSTRACT

Optimizing behavioral strategy requires belief updating based on new evidence, a process that engages higher cognition. In schizophrenia, aberrant belief dynamics may lead to psychosis, but the mechanisms underlying this process are unknown, in part, due to lack of appropriate animal models and behavior readouts. Here, we address this challenge by taking two synergistic approaches. First, we generate a mouse model bearing patient-derived point mutation in Grin2a (Grin2aY700X+/-), a gene that confers high-risk for schizophrenia and recently identified by large-scale exome sequencing. Second, we develop a computationally trackable foraging task, in which mice form and update belief-driven strategies in a dynamic environment. We found that Grin2aY700X+/- mice perform less optimally than their wild-type (WT) littermates, showing unstable behavioral states and a slower belief update rate. Using functional ultrasound imaging, we identified the mediodorsal (MD) thalamus as hypofunctional in Grin2aY700X+/- mice, and in vivo task recordings showed that MD neurons encoded dynamic values and behavioral states in WT mice. Optogenetic inhibition of MD neurons in WT mice phenocopied Grin2aY700X+/- mice, and enhancing MD activity rescued task deficits in Grin2aY700X+/- mice. Together, our study identifies the MD thalamus as a key node for schizophrenia-relevant cognitive dysfunction, and a potential target for future therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL