Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 233, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400957

ABSTRACT

Enzyme immobilized on magnetic nanomaterials is a promising biocatalyst with efficient recovery under applied magnets. In this study, a recombinant extracellular lipase from Aspergillus niger GZUF36 (PEXANL1) expressed in Pichia pastoris GS115 was immobilized on ionic liquid-modified magnetic nano ferric oxide (Fe3O4@SiO2@ILs) via electrostatic and hydrophobic interaction. The morphology, structure, and properties of Fe3O4@SiO2@ILs and immobilized PEXANL1 were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, vibration sample magnetometer, and zeta potential analysis. Under optimized conditions, the immobilization efficiency and activity recovery of immobilized PEXANL1 were 52 ± 2% and 122 ± 2%, respectively. The enzymatic properties of immobilized PEXANL1 were also investigated. The results showed that immobilized PEXANL1 achieved the maximum activity at pH 5.0 and 45 °C, and the lipolytic activity of immobilized PEXANL1 was more than twice that of PEXANL1. Compared to PEXANL1, immobilized PEXANL1 exhibited enhanced tolerance to temperature, metal ions, surfactants, and organic solvents. The operation stability experiments revealed that immobilized PEXANL1 maintained 86 ± 3% of its activity after 6 reaction cycles. The enhanced catalytic performance in enzyme immobilization on Fe3O4@SiO2@ILs made nanobiocatalysts a compelling choice for bio-industrial applications. Furthermore, Fe3O4@SiO2@ILs could also benefit various industrial enzymes and their practical uses. KEY POINTS: • Immobilized PEXANL1 was confirmed by SEM, FT-IR, and XRD. • The specific activity of immobilized PEXANL1 was more than twice that of PEXANL1. • Immobilized PEXANL1 had improved properties with good operational stability.


Subject(s)
Ionic Liquids , Enzyme Stability , Ionic Liquids/chemistry , Aspergillus niger/genetics , Aspergillus niger/metabolism , Spectroscopy, Fourier Transform Infrared , Silicon Dioxide/chemistry , Lipase/metabolism
2.
Cryobiology ; 114: 104811, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38061638

ABSTRACT

A directed vat set (DVS) starter was proposed to improve the drawbacks of liquid starters in fermented production and enhance the survival rates of B. animalis subsp. lactis BZ11, S. thermophilus Q-1, and Lactiplantibacillus plantarum LB12. The protective agent formula was optimized using the response surface method (RSM), with the survival rate as the benchmark. The best combination of cryoprotectants was determined to be BZ11: 10 % skimmed milk powder, 3 % sodium glutamate, and 15 % trehalose; LB12: 10 % skim milk powder, 5 % glutamate sodium, and 10 % trehalose; Q-1: 10 % skimmed milk powder, 3 % sodium glutamate, and 10 % trehalose. The survival rate of BZ11 significantly increased to 92.87 ± 1.25 %. The DVS fermented milk did not differ significantly from the control group regarding cholesterol removal, live cell counts and pH (p > 0.05). All DVS can be stored for at least 2500 d at -20 °C-this DVS starter for fermented milk benefits from its large-scale and automated commercial production.


Subject(s)
Milk , Sodium Glutamate , Animals , Fermentation , Survival Rate , Trehalose/pharmacology , Powders , Cryopreservation/methods , Cryoprotective Agents/pharmacology
3.
Appl Microbiol Biotechnol ; 105(5): 1925-1941, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33559718

ABSTRACT

The sn-1,3 extracellular lipase from Aspergillus niger GZUF36 (EXANL1) has important potential applications. The cross-linked enzyme aggregate (CLEA) of purified EXANL1 (CLEA-EXANL1) achieved optimum activity recovery (148.5 ± 0.9%), immobilization yield (100 ± 0%), and recovered activity (99.7 ± 0.6%) with 80% tert-butanol as the precipitant, glutaraldehyde (GA) concentration of 30 mM, GA treatment time of 1.5 h, and centrifugal speed of 6000×g. The effect of CLEA strategy on the characterization of EXANL1 was evaluated in this work. CLEA-EXANL1 exhibited a broader optimum pH range (4-6) compared with free EXANL1 (6.5). CLEA-EXANL1 presented optimum activity at 40 °C, which was 5 °C higher than that of free EXANL1. CLEA strategy decreased the maximum reaction rate and increased the Michaelis-Menten constant of EXANL1 when olive oil emulsion was used as a substrate. Moreover, after 30 days, free EXANL1 lost more than 80.0% of its activity, whereas CLEA-EXANL1 retained more than 90.0% of its activity. CLEA strategy improved the tolerance of EXANL1 in polar organic solvents. Fourier transform infrared spectroscopy results showed that the CLEA technique increased the contents of ß-sheets and ß-turns in EXANL1 and reduced those of α-helixes and irregular crimps. CLEA strategy caused no change in the sn-1,3 selectivity of EXANL1. Therefore, EXANL1 in the form of CLEA is a valuable catalyst in the synthesis of 1,3-diacylglycerol. KEY POINTS: • Cross-linked enzyme aggregate (CLEA) strategy broadened the optimum pH range of sn-1,3 extracellular lipase from Aspergillus niger GZUF36 (EXANL1). • CLEA strategy improved the tolerance of EXANL1 in polar organic solvents. • CLEA strategy caused no change in the positional selectivity of EXANL1.


Subject(s)
Aspergillus niger , Lipase , Aspergillus niger/metabolism , Enzyme Stability , Enzymes, Immobilized/metabolism , Glutaral , Hydrogen-Ion Concentration , Lipase/metabolism , Temperature
4.
J Food Sci Technol ; 57(7): 2669-2680, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32549617

ABSTRACT

Sn-1,3 extracellular Aspergillus niger GZUF36 lipase (EXANL1) has wide application potential in the food industry. However, the A. niger strain has defects such as easy degradation and instability in the expression of sn-1,3 lipase. To obtain a stable expression of this lipase and its subsequent enzymatic properties, the gene encoding EXANL1 was cloned and expressed in Escherichia coli BL21 (DE3) cells using pET-28a as the expression vector. The temperature-induced conditions were optimized, and we successfully achieved its active expression in E. coli. These conditions significantly influenced the active expression of EXANL1 (P < 0.05), and the highest enzyme activity of the supernatant of lysis cells expressed at 20 °C was at 7.02 ± 0.05 U/mL. The expressed recombinant EXANL1 was purified using Ni-NTA, showing an estimated relative molecular mass of 35 kDa. The recombinant EXANL1 exhibited maximum activity at 35 °C and pH 4.0, with a wide acid pH range. Thin-layer chromatography analysis showed that the enzyme displayed sn-1,3 positional selectivity toward triolein. The recombinant EXANL1 could maintain its relative activities (> 80%) after 24 h of incubation at pH 3-10, suggesting its suitability for a wide range of industrial applications. After comparing these properties with those of the other A. niger lipases, we found that some key amino acids may play a decisive role in enzymology. This work laid a foundation for the stable expression of the EXANL1 gene and its potential industrial application.

5.
J Food Sci Technol ; 57(12): 4414-4423, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33087955

ABSTRACT

Nattokinase activity (NK), biogenic amine content and sensory properties of natto are of great significance to consumers, which are affected by strains and fermentation methods. In this study, changes in the pH, biogenic amine and free amino nitrogen (FAN) contents, NK and protease activities, and sensory characteristics of natto prepared using Bacillus subtilis GUTU09 combined with different strains (Lactobacillus, Bifidobacterium and Mucor) and fermentation methods were investigated. The combination of two strains showed the best fermentation performance among all samples. The NK and protease activity and FAN content in double-strain fermentation increased by 10.33 FU/g, 88.78 U/g, and 2.34 g/kg, respectively, compared with those in single-strain fermentation. Sensory evaluation demonstrated that mixed fermentation primarily affected the sensory acceptance. This method also reduced the contents of various biogenic amines in natto compared with single-strain fermentation. Tyramine, cadaverine, spermine, and spermidine were significantly reduced, whereas histamine was slightly increased. The total biogenic amines decreased from 390.76 mg/kg to a minimum of 16.16 mg/kg. Some Mucor strains also reduced the contents of various biogenic amines. In the dual-bacteria fermentation of Mucor and GUTU09, co-fermentation has advantages over stage-fermentation, with higher NK and protease activity and higher sensory scores. Correlation analysis showed that the formation and accumulation of some biogenic amines in natto prepared using different microbial combinations were related to NK activity and pH. All these results showed that the quality of natto was improved by mixed fermentation and suitable fermentation methods, which laid a foundation for its potential industrial application.

6.
J Food Sci Technol ; 56(6): 2899-2908, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31205345

ABSTRACT

There are few reports on the feasibility of combined reverse micelle extraction and acetone precipitation to obtain electrophoretic pure enzymes. We aimed to purify a sn-1,3 extracellular lipase from a novel Aspergillus niger GZUF36 through this combination in this work. This lipase preliminarily purified by controlling the volume ratio (1:2.5) of crude enzyme solution and acetone. Then, we studied effects of different parameters on reverse micelle extraction. The suitable surfactant, pH, salt and cosolvent and extraction time for forward extraction were 125 mM cetyl trimethylammonium bromide (CTAB), 9.0, 0.075 M NaCl, 10% n-hexanol and 30 min, respectively. Under these conditions, the forward extraction rate reached 90.3% ± 3.2%. The suitable salt, pH, extraction time and short chain alcohol for backward extraction were consecutively 1.5 M KCl, 6.5, 60 min and 10% ethanol. Adding 10% ethanol shows a significant advantage of improvement the extraction rate. Under these optimal conditions, the total extraction rate and purification factor of lipase reached 76.8% and 10.14, respectively. SDS-PAGE showed that molecular weight of the pure protein was 42.7 kDa and TLC exhibited sn-1,3 selectivity of this lipase. LC-MS/MS analysis revealed that the lipase had 297 amino acid residues and was likely to glycosylate. Through the study of different parameters, it demonstrated that the new and simple combination of reverse micelle extraction using CTAB as surfactant and n-hexanol as cosolvent for forward extraction and adding ethanol for backward extraction and acetone precipitation is a promising method to get almost an electrophoretically pure sn-1,3 lipase.

7.
J Food Sci Technol ; 56(4): 1744-1756, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30996410

ABSTRACT

In order to prolong the shelf life of Chinese traditional dry-cured meat products, a pulsed ultraviolet light (PL-UV) irradiation method was adopted to treat meat products according to the following parameters: pulse energy of 8 J, 300 pulses, and an effective exposure distance of 10 cm; the UV light irradiation power of 6 W, an effective exposure distance of 11 cm, and an exposure period of 5 min. After a pulsed ultraviolet irradiation, total bacterial count in dry-cured meat decreased from 6.89 to 4.53 lg (CFU/g). The number of Micrococcus and Staphylococcus in samples decreased from 6.49 to 4.10 lg (CFU/g) and the number of molds and yeasts decreased from 5.45 to 4.28 lg (CFU/g). The number of Lactic acid bacteria increased from 3.97 to 4.55 lg (CFU/g) and Escherichia coli was not detected. Total colonies, target bacteria, peroxide value, thiobarbituric acid-reactive substances, water activity, T 2 relaxation time, pH, color difference, total volatile basic nitrogen, and the sensory evaluations of dry-cured meat products after PL-UV treatments were determined in a 30-d storage experiment. The shelf life of dry-cured meat treated with PL-UV irradiation at 20 °C was predicted to reach to 294 d by applying of shelf life testing method accelerated. The quality and safety of dry-cured meat treated with PL-UV irradiation was better than that of untreated samples.

8.
Appl Microbiol Biotechnol ; 102(1): 225-235, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29082418

ABSTRACT

We previously screened a whole-cell lipase EC 3.1.1.3 from the novel strain Aspergillus niger GZUF36, which exhibited 1,3-selectivity in the synthesis of 1,3-diacylglycerol via glycerolysis. However, the mechanism of lipase selectively in catalyzing the sn-1,3 position remains ambiguous. This work was performed to investigate the 1,3-selective mechanism of lipase using glycerolysis to synthesize 1,3-diacylglycerol (1,3-DG) as a model reaction by changing solvent(s) and water activity (aw), and addition of salt hydrate pair. The measured diacylglycerol yield was also used to examine lipase activity. Results indicated that not only organic solvent and aw have strong effect on the sn-1,3 selectivity, but also ions of salt hydrate pair also affected selectivity. Lipase conformation was altered by hydrophobic interactions of the solvent, aw, or ions of salt hydrate, resulting in distinct sn-1,3 selectivity of the lipase. The salt hydrate pair changed the lipase conformation and selectivity not only by aw but also by static interactions, which was rarely reported. These parameters also affected lipase activity. The lipase displayed the highest selectivity (about 88%) and activity in solvents of t-butanol and n-hexane (1:29, v/v) at aw 0.43. The results demonstrated that the sn-1,3 selectivity and activity of the lipase from A. niger GZUF36 may be improved by control of some crucial factors. This work laid a foundation for the application of lipase in the synthesis of 1,3-DG and other structural and functional lipids.


Subject(s)
Aspergillus niger/enzymology , Lipase/drug effects , Lipase/metabolism , Sodium Chloride/pharmacology , Solvents/pharmacology , Aspergillus niger/drug effects , Aspergillus niger/metabolism , Catalysis , Diglycerides/biosynthesis , Diglycerides/metabolism , Esterification , Hydrophobic and Hydrophilic Interactions , Lipase/chemistry , Lipase/isolation & purification , Molecular Conformation , Sodium Chloride/chemistry , Solvents/chemistry , Water/chemistry , Water/metabolism
9.
Meat Sci ; 217: 109594, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39002357

ABSTRACT

Niuganba (NGB) is a traditional fermented beef product. Protease activity typically significantly affects the quality of NGB. Some natural food extracts may markedly influence NGB's protease activity and performance. This study aims to investigate the effect of Zanthoxylum bungeanum extract (ZBE) on the quality and cathepsin L activity of NGB. Following ZBE treatment, the myofibril fragmentation index (MFI), the content of TCA-soluble peptides, surface hydrophobicity, disulfide bond content, and cathepsin L activity of NGB significantly decrease. The content of free thiol groups and ß-sheet significantly increases. Scanning electron microscopy (SEM) reveals that the arrangement of muscle fibers in the cross-section of NGB is more compact after ZBE treatment. The research results indicate that ZBE effectively inhibits cathepsin L activity, alleviates the degradation of myofibrillar proteins, improves the physicochemical characteristics of NGB, and enhances its structural stability.


Subject(s)
Cathepsin L , Plant Extracts , Zanthoxylum , Zanthoxylum/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Cattle , Myofibrils , Meat Products/analysis , Red Meat/analysis , Microscopy, Electron, Scanning , Hydrophobic and Hydrophilic Interactions
10.
Food Sci Nutr ; 12(3): 2081-2092, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38455167

ABSTRACT

Chinese cooking is the primary treatment method for table food in China. The process is complex and large-scale, which is important to the macroeconomy and national nutrition and health. First, this article puts forward the concept of thermal accumulation for Chinese cooking by taking pork tenderloin fried at different oil temperatures, explaining changes in moisture content, hardness, and color with different thermal accumulation conditions, and measuring kinetic parameters. The variations of L* and b* obtained by the experimental results belong to the first-order reaction kinetic model, while the changes in water content and shear force belong to the zero-order reaction kinetic model. Simultaneously, the superheat value is used as a thermal accumulation indicator, combined with sensory evaluation to determine that the Z value of the human sensory overheating of pork tenderloin is 99°C, and O s,max (Z = 99°C, the reference temperature is 110°C) is 5.86 min.

11.
Food Chem ; 448: 139118, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38552459

ABSTRACT

Carbonyl compounds are vital constituents that contribute to the flavor profile of alcoholic beverages. We examined 3-nitrophenylhydrazine as a derivatizing reagent for the measurement of 34 carbonyl compounds using UPLC-MS/MS. Adding formic acid and sodium acetate to the mobile phase significantly enhanced the detection limit of carbonyl compounds. The technique exhibited a notable extraction efficiency, yielding recovery percentages ranging from 83.6% to 117.1%, coupled with exceptional sensitivity, as evidenced by detection limits spanning from 0.07 µg/L to 4.80 µg/L. The relative standard deviation was <6.9%, indicating the precision and reliability of the analytical methodology. The method was verified by analyzing carbonyl compounds from red-fleshed kiwifruit wine. Furthermore, sensory assessment revealed that the amalgamation of tartaric acid, malic acid, and citric acid contributes to sour taste perception at sub-threshold concentrations through an additive interaction with supra-threshold non-volatile organic acids such as lactic acid and acetic acid.

12.
Food Chem ; 460(Pt 3): 140676, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39126943

ABSTRACT

Alcoholic beverages have developed unique flavors over millennia, with sourness playing a vital role in their sensory perception and quality. Organic acids, as crucial flavor compounds, significantly impact flavor. This paper reviews the sensory attribute of sour flavor and key organic acids in alcoholic beverages. Regarding sour flavor, research methods include both static and dynamic sensory approaches and summarize the interaction of sour flavor with aroma, taste, and mouthfeel. In addition, this review focuses on identifying key organic acids, including sample extraction, chromatography, olfactometry/taste, and mass spectrometry. The key organic acids in alcoholic beverages, such as wine, Baijiu, beer, and Huangjiu, and their primary regulatory methods are discussed. Finally, future avenues for the exploration of sour flavor and organic acids by coupling machine learning, database, sensory interactions and electroencephalography are suggested. This systematic review aims to enhance understanding and serve as a reference for further in-depth studies on alcoholic beverages.


Subject(s)
Alcoholic Beverages , Taste , Acids/analysis , Alcoholic Beverages/analysis , Mass Spectrometry , Odorants/analysis
13.
Int J Biol Macromol ; 271(Pt 2): 132664, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801853

ABSTRACT

Curcumin is a natural lipophilic polyphenol that exhibits significant various biological properties such as antioxidant and anti-inflammatory properties following oral administration. However, its uses have shown limitations concerning aqueous solubility, bioavailability and biodegradability that could be improved by prolamin-based nanoparticle. In this study, curcumin was encapsulated into prolamin from sorghum (SOP) and wheat (WHP) and distilled spirit spent grain (DSSGP), which was obtained after microbial proteolysis of the former two cereal grains. All the three prolamins showed clear variation of protein profiles and microstructure as confirmed by electrophoresis analysis, disulfide bond determination and Fourier-transform infrared spectroscopy (FTIR). For curcumin-loaded nanospheres (NPs) fabrication, three prolamin-based NPs shared features of spherical shape, uniform particle size, and smooth surface. The average size ranged from 122 to 193 nm depending on the prolamin variety and curcumin loading. In the experiments in vitro, curcumin showed significantly improved UV/thermal stability. Furthermore, DSSGP was more resistant to enzymatic digestion in vitro, hence achieving the controlled release of curcumin in gastrointestinal tract. Collectively, the results indicated the improved bioavailability and biodegradability of curcumin encapsulated by DSSGP, which would be an innovative potential encapsulant for effective protection and targeted delivery of hydrophobic compounds.


Subject(s)
Curcumin , Prolamins , Curcumin/chemistry , Curcumin/pharmacology , Prolamins/chemistry , Hydrolysis , Edible Grain/chemistry , Alkalies/chemistry , Particle Size , Sorghum/chemistry , Triticum/chemistry , Nanoparticles/chemistry
14.
Food Chem X ; 22: 101332, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38586225

ABSTRACT

Coix seed (CS) has high nutritional value, but the deep processing of CS is relatively limited. Sprouting can significantly improve nutritional value, laying the foundation for efficient consumption or further processing. The optimal conditions for the germination of CS are a soaking temperature of 36 °C for 10 h and a germination temperature of 29 °C for 24 h. Under these conditions, the final germination rate of CS reached 90%. Additionally, the content of γ-aminobutyric acid was 21.205 mg/100 g; soluble protein, free amino acids, γ-aminobutyric acid, and other essential substances increased in CS. Especially after germination, the γ-aminobutyric acid (GABA) content increased by 7.8 times compared with the GABA content of ungerminated CS. Therefore, the nutritional value and flavor of germinated CS are better than those of ungerminated ones, which establishs a solid foundation for its application in developing various products such as compound health drinks, coix yogurt, and others.

15.
Food Chem ; 402: 134488, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36303370

ABSTRACT

Lactobacillus plantarum NR1-7, Bifidobacteriµm animalis subsp. lactis BZ11 and Candida utilis RY were selected as specific starter cultures to ferment Hong Suan Tang (HST), a traditional hot and sour soup of southwest China made from tomatoes and red peppers. The fermentation conditions were optimized with response surface methodology (RSM). The changes in the physicochemical index, flavor quality, organic acids, and bioactive substances were evaluated. The results showed that the mixed starter fermented HST was quickly acidified, promoting product maturity and significantly reducing the nitrite content, which shortened the fermentation time and improved product safety. Moreover, lactic acid concentration was significantly increased, about 3 times higher than the control group. Sixteen compounds were confirmed to be the critical aroma-active compounds present in the HST. Furthermore, mixed inoculation improved the content of bioactive substances by lowering their degradation. This research sets the basis for the standardized production of HST products.


Subject(s)
Bifidobacterium animalis , Lactobacillus plantarum , Fermentation , Lactobacillus plantarum/metabolism , Food Microbiology , Candida
16.
Foods ; 12(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37685222

ABSTRACT

In the present work, the optimization of extraction, emulsifying properties, and biological activities of polysaccharides from Lentinula edodes Sing (LES) were studied. The results showed LES polysaccharides extracted by hot water or ultrasonication are a group of ß-glucan. Among all the samples, the one extracted by hot water showed the best emulsifying capacity. In addition, the results demonstrated that LES polysaccharide had strong scavenging activities in vitro on DPPH and ABTS radicals, which reached the highest level for the one extracted by 90 min ultrasonication (p < 0.05). Overall, Lentinula edodes Sing polysaccharides (LESPs) may have potential applications as emulsifying agents in food industries.

17.
Int J Biol Macromol ; 245: 125533, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37355062

ABSTRACT

Recombinant INANE1 (rINANE1), a recombinant intracellular GDSL-type esterase from Aspergillus niger GZUF36, has high acetate substrate specificity. Here, rINANE1 was successfully immobilized on polydopamine (PDA)-modified magnetic ferric oxide nanoparticles (Fe3O4NPs) by adsorption-precipitation-cross-linking to obtain cross-linked enzyme aggregate (CLEA)-rINANE1-Fe3O4@PDA. Fe3O4, Fe3O4@PDA, and CLEA-rINANE1-Fe3O4@PDA were characterized by scanning electron microscopy, X-ray diffraction, vibrating-sample magnetometry, Fourier transform infrared (FTIR) spectroscopy, and zeta potential analysis. Upon immobilization, CLEA-rINANE1-Fe3O4@PDA, with a protein loading of 72.72 ± 1.01 mg/g, reached optimal activity recovery of 104.40 % ± 1.14 %. FTIR analysis showed that immobilization increased the relative content of ß-folding in rINANE1 by 12.25 % and reduced irregular curl by 4.16 %, rendering the structure more orderly. Specifically, under an alkaline condition (pH 10), CLEA-rINANE1-Fe3O4@PDA performed over 100 % of initial activity. The optimum temperature increased by 5 °C, and over 55 % of the initial activity was observed after 12 h at 55 °C. CLEA-rINANE1-Fe3O4@PDA showed over 40 % of its relative activity, whereas free rINANE1 showed <10 % in acetonitrile. In addition, the relative activity of CLEA-rINANE1-Fe3O4@PDA was retained at about 80 % after eight cycles and maintained at 109 % after 45 days. The PDA-modified magnetic ferrite nanoparticles exhibited excellent stability and recyclability, providing a new avenue for developing industrial biocatalysts.


Subject(s)
Enzymes, Immobilized , Magnetite Nanoparticles , Enzymes, Immobilized/chemistry , Enzyme Stability , Esterases/metabolism , Aspergillus niger/metabolism , Adsorption , Magnetic Phenomena , Hydrogen-Ion Concentration , Temperature , Magnetite Nanoparticles/chemistry
18.
Food Chem X ; 20: 100896, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144793

ABSTRACT

A producing-fibrinolytic enzyme strain was isolated with high yield. The strain was identified as Bacillus amyloliquefaciens. B. amyloliquefaciens GUTU06 fibrinolytic enzyme was purified by acetone precipitation and reverse micelle. Acetone precipitation condition and reverse micelle condition were examined. Results showed that the total reverse micelle extraction efficiency was 64.49 % ± 1.6 %. The purification fold of the entire process reached 13.38. The optimum pH of purified enzyme is 5, and the optimum temperature is 45 °C. Fe3+ and K+ can enhance the fibrinolytic activity of the enzyme. Compared to commercial fibrinolytic enzymes such as urokinase and lumbrukinase, GUTU06 fibrinolytic enzymes have a lower pH optimal range and higher temperature stability. The molecular weight of the enzyme was approximately 28 kDa. Reverse micelle extraction with cetyl trimethylammonium bromide as a surfactant combined with acetone precipitation is suitable for separating and purifying fibrinolytic enzymes and a promising technique for obtaining active proteins.

19.
Food Chem X ; 20: 100969, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144807

ABSTRACT

Trametes versicolor can produce aromatic flavor in growth and development, widely used in food fermentation. This study used a One-Factor-at-a-Time (OFAT) test and response surface analysis to study the optimum fermentation parameters of Rosa roxburghii tratt and coix seed yogurt by Trametes versicolor. The best fermentation process is as follows: skim milk powder 17 %, sucrose content 4 %, Rosa roxburghii tratt and coix seed liquid 36 %, fermentation temperature 39 °C, inoculum 2 %, strain ratio 2:1:1(LB12: BLH1: Q-1), fermentation time 9.5 h. Under this fermentation process, the sensory score was 82.11, the contents of vitamin C, GABA, and total live bacteria in this yogurt were 13.89, 2.58, and 1.02 times higher than in common yogurt. Correlation analyses showed a significant contribution of the leavening agent to the GABA content of yogurt. This study provides a foundation for producing Rosa roxburghii tratt and coix seed yogurt with high sensory and nutritional value.

20.
Food Chem X ; 20: 101041, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144823

ABSTRACT

A new Rosa roxburghii Tratt (RRT) and coix seed (CS) beverage rich in multi-active ingredients was developed. Edible mushrooms and L. plantarum were selected for fermentation in stages. Some physicochemical properties, γ-aminobutyric acid (GABA), polysaccharides and sensory were studied during the T. versicolor and L. plantarum fermentation. T. versicolor increased the free amino acid through enzymatic protein digestion in the early growth stage and used these amino acids to synthesize its bacteriophage protein. T. versicolor and L. plantarum increased the polysaccharide and GABA of the fermentation broth. Vitamin C was retained as much as possible, with a slight loss occurring mainly in the aerobic fermentation stage of T. versicolor. Its less loss in exchange was for a higher value of T. versicolor polysaccharide, protein enhancement, and bitterness reduction. This study provides a reference for the deep processing of Guizhou's unique agricultural products and edible mushroom fermented beverage.

SELECTION OF CITATIONS
SEARCH DETAIL