Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Opt Express ; 29(18): 29165-29174, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34615032

ABSTRACT

Photodetector nonlinearity, the main limiting factor in terms of optical power in the detection chain, is corrected to improve the signal-to-noise ratio of a short-time measurement in dual-comb spectroscopy. An iterative correction algorithm minimizing out-of-band spectral artifacts based on nonlinearity correction methods used in classical Fourier-transform spectrometers is presented. The exactitude of the nonlinearity correction is validated using a low power linear measurement. Spectroscopic lines of H12CN are provided and the increase in absorption depth of 24% caused by the saturation of the detector is corrected yielding residuals limited by the measurement noise.

2.
Opt Lett ; 46(19): 4972-4975, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34598246

ABSTRACT

Frequency combs play a crucial supporting role for optical clocks by allowing coherent frequency division of their output signals into the electronic domain. This task requires stabilization of the comb's offset frequency and of an optical comb mode to the clock laser. However, the two actuators used to control these quantities often influence both degrees of freedom simultaneously. This non-orthogonality leads to artificial limits to the control bandwidth and unwanted noise in the comb. Here, we orthogonalize the two feedback loops with a linear combination of the measured signals in a field-programmable gate array. We demonstrate this idea using a fiber frequency comb stabilized to a clock laser at 259 THz, half the frequency of the 1S0→3P0 Yb transition. The decrease in coupling between the loops reduces the comb's optical phase noise by 20 dB. This approach could improve the performance of any comb stabilized to any optical frequency standard.

3.
Opt Lett ; 45(15): 4196-4199, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32735257

ABSTRACT

We present a simple yet powerful technique to measure and stabilize the relative frequency noise between two lasers emitting at vastly different wavelengths. The noise of each laser is extracted simultaneously by a frequency discriminator built around an unstabilized Mach-Zehnder fiber interferometer. Our protocol ensures that the instability of the interferometer is canceled and yields a direct measure of the relative noise between the lasers. As a demonstration, we measure the noise of a 895 nm diode laser against a reference laser located hundreds of nm away at 1561 nm. We also demonstrate the ability to stabilize the two lasers with a control bandwidth of 100 kHz using a Red Pitaya and reach a sensitivity of 1Hz2/Hz limited by detector noise. We independently verify the performance using a commercial frequency comb. This approach stands as a simple and cheap alternative to frequency combs to transport frequency stability across large spectral intervals or to characterize the noise of arbitrary color sources.

4.
Am J Hematol ; 95(11): 1235-1245, 2020 11.
Article in English | MEDLINE | ID: mdl-32681733

ABSTRACT

Polymerization of the sickle hemoglobin (HbS) is a key determinant of sickle cell disease (SCD), an inherited blood disorder. Fetal hemoglobin (HbF) is a major modulator of the disease severity by both decreasing HbS intracellular concentration and inhibiting its polymerization. However, heterocellular distribution of HbF is common in SCD. For HbS polymerization inhibition, the hypothesis of an "HbF per red blood cell (HbF/RBC) threshold" requires accurate measurement of HbF in individual RBC. To date, HbF detection methods are limited to a qualitative measurement of RBC populations containing HbF - the F cells, which are variable. We developed an accurate method for HbF quantification in individual RBC. A linear association between mean HbF content and mean RBC fluorescence by flow cytometry, using an anti-Human-HbF antibody, was obtained from non-SCD subjects presenting homogeneous HbF distribution. This correlation was then used to measure HbF/RBC. Hydroxyurea (HU) improves SCD clinical manifestations, mainly through its ability to induce HbF synthesis. The HbF distribution was analyzed in 14 SCD patients before and during HU treatment. A significant decrease in RBC population containing less than 2 pg of HbF/RBC was observed. Therefore, we tested associations for %RBC above different HbF/RBC thresholds and showed a decrease in the pathognomonic vaso-occlusive crisis incidence from the threshold of 4 pg. This quantity was also correlated with the level of sickle RBC after in vitro deoxygenation. This new method allows the comparison of HbF/RBC distributions and could be a useful tool to characterize baseline patients HbF distribution and therapeutic response to HbF inducers.


Subject(s)
Anemia, Sickle Cell , Erythrocytes, Abnormal/metabolism , Fetal Hemoglobin/metabolism , Flow Cytometry , Hydroxyurea/administration & dosage , Adult , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/drug therapy , Female , Humans , Male
5.
Appl Opt ; 59(7): B35-B38, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32225693

ABSTRACT

The phase information provided by the beat note between frequency combs and two continuous-wave lasers is used to extrapolate the phase evolution of comb modes found in a spectral region obtained via nonlinear broadening. This thereafter enables using interferogram self-correction to fully retrieve the coherence of a dual-comb beat note between two independent fiber lasers. This approach allows the $ f - 2f $f-2f self-referencing of both combs, which is a significant simplification. Broadband near-infrared methane spectroscopy has been conducted to demonstrate the simplified system's preserved performance.

6.
Disasters ; 44(4): 621-640, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31251412

ABSTRACT

Building on empirical material gathered in Haiti, this paper advances a new and innovative understanding of the internal brain drain phenomenon-the poaching of local skilled workers by international organisations (IOs) or international non-governmental organisations (INGOs)- by conceptualising it as an equilibrium. This equilibrium is composed of two sets of tensions: (i) those between the salary conditions in the public sector and those on offer to local personnel working for IOs and INGOs; and (ii) those inherent in the dual salary scale used by IOs and INGOs for local and international staff. These two sets of tensions contribute in their specific ways to international migration, and, as such, the internal brain drain has a bearing on external brain drain dynamics. In addition, the paper addresses the difficult policy choices facing development and humanitarian organisations, since every set of policies that impacts on one side of the equilibrium is bound to affect its other side.


Subject(s)
Internationality , Organizations/organization & administration , Personnel Selection , Altruism , Emigration and Immigration , Haiti , Humans , International Cooperation , Organizations/economics , Policy , Salaries and Fringe Benefits/statistics & numerical data
7.
Opt Express ; 27(23): 33737-33744, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31878435

ABSTRACT

A guided-wave chip laser operating in a single longitudinal mode at 2860 nm is presented. The cavity was set in the Littman-Metcalf configuration to achieve single-frequency operation with a side-mode suppression ratio above 33 dB. The chip laser's 2 MHz linewidth on a 10 ms scale was found to be limited by mechanical fluctuations, but its Lorentzian contribution was estimated to be lower than 1 Hz using a heterodyne technique. This demonstration incorporates a high coherence source with the simplicity provided by the compactness of chip lasers.

8.
Opt Lett ; 44(17): 4375-4378, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31465406

ABSTRACT

Absorption lines of methane in the 2ν3 band centered at 1650 nm were measured with a free-running mode-locked dual-comb laser based on a single erbium-doped glass chip. The laser's spectra were broadened up to 1670 nm using amplifiers and highly nonlinear fiber. A comb was used to interrogate the complex transmission spectrum of a methane-filled gas cell with an optical point spacing of 968 MHz and an interferogram (IGM) rate of 27 kHz to yield absorption lines of the R and Q branches. A 1.28 s sequence of IGMs was measured and phase-corrected using a self-sufficient correction algorithm seeded only by the IGMs. The associated transmission spectrum was then compared to HITRAN yielding residuals limited by photodetector nonlinearity.

9.
Opt Lett ; 44(17): 4415-4418, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31465415

ABSTRACT

An approach for dual-comb spectroscopy using electro-optic (EO) phase modulation is reported. Maximum-length pseudo-random binary sequences allow for energy-efficient and flexible comb generation. Self-correction of interferograms is shown to remove relative comb drifts and improve mutual coherence, even for EO combs derived from the same laser source. Methane spectroscopy is reported over a ∼10 GHz spectral range, limited by the modulators' bandwidth. The potential of a simple EO comb instrument is demonstrated to rapidly quantify atmospheric methane emissions with ppb precision over 1 km.

10.
Opt Lett ; 43(8): 1814-1817, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29652371

ABSTRACT

We characterize the frequency noise performance of a free-running dual-comb source based on an erbium-doped glass chip running two adjacent mode-locked waveguide lasers. This compact laser platform, contained only in a 1.2 L volume, rejects common-mode environmental noise by 20 dB thanks to the proximity of the two laser cavities. Furthermore, it displays a remarkably low mutual frequency noise floor around 10 Hz2/Hz, which is enabled by its large-mode-area waveguides and low Kerr nonlinearity. As a result, it reaches a free-running mutual coherence time of 1 s since mode-resolved dual-comb spectra are generated even on this time scale. This design greatly simplifies dual-comb interferometers by enabling mode-resolved measurements without any phase lock.

12.
Opt Express ; 25(7): 8168-8179, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28380932

ABSTRACT

We present a dual-comb spectrometer based on two passively mode-locked waveguide lasers integrated in a single Er-doped ZBLAN chip. This original design yields two free-running frequency combs having a high level of mutual stability. We developed in parallel a self-correction algorithm that compensates residual relative fluctuations and yields mode-resolved spectra without the help of any reference laser or control system. Fluctuations are extracted directly from the interferograms using the concept of ambiguity function, which leads to a significant simplification of the instrument that will greatly ease its widespread adoption and commercial deployment. Comparison with a correction algorithm relying on a single-frequency laser indicates discrepancies of only 50 attoseconds on optical timings. The capacities of this instrument are finally demonstrated with the acquisition of a high-resolution molecular spectrum covering 20 nm. This new chip-based multi-laser platform is ideal for the development of high-repetition-rate, compact and fieldable comb spectrometers in the near- and mid-infrared.

14.
Opt Express ; 24(24): 27177-27183, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27906292

ABSTRACT

We report mode-locked ~1550 nm output of transform-limited ~180 fs pulses from a large mode-area (diameter ~50 µm) guided-wave erbium fluorozirconate glass laser. The passively mode-locked oscillator generates pulses with 25 nm bandwidth at 156 MHz repetition rate and peak-power of 260 W. Scalability to higher repetition rate is demonstrated by transform-limited 410 fs pulse output at 1.3 GHz. To understand the origins of the broad spectral output, the laser cavity is simulated by using a numerical solution to the Ginzburg-Landau equation. This paper reports the widest bandwidth and shortest pulses achieved from an ultra-fast laser inscribed waveguide laser.

15.
Opt Lett ; 41(10): 2282-5, 2016 May 15.
Article in English | MEDLINE | ID: mdl-27176983

ABSTRACT

We present a straightforward and efficient method to reduce the mode spacing of a frequency comb based on binary pseudo-random phase modulation of its pulse train. As a proof of concept, we use such a densified comb to perform dual-comb spectroscopy of a long-delay Mach-Zehnder interferometer and a high-quality-factor microresonator with sub-MHz spectral sampling. Since this approach is based on binary phase modulation, it combines all the advantages of other densification techniques: simplicity, single-step implementation, and conservation of the initial comb's power.

16.
Opt Lett ; 41(6): 1277-80, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26977688

ABSTRACT

We demonstrate a simple interferometric technique to directly measure the complex optical transmittance over a large spectral range using a frequency-comb spectrometer based on a virtually imaged phased array. A Michelson interferometer encodes the phase deviations induced by a sample contained in one of its arms into an interferogram image. When combined with an additional image taken from each arm separately, along with a frequency-calibration image, this allows full reconstruction of the sample's optical transfer function. We demonstrate the technique with a vapor cell containing H13C14N, producing transmittance and phase spectra spanning 2.9 THz (∼23 nm) with ∼1 GHz resolution.

17.
Stem Cells ; 33(8): 2431-41, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25850942

ABSTRACT

While enucleation is a critical step in the terminal differentiation of human red blood cells, the molecular mechanisms underlying this unique process remain unclear. To investigate erythroblast enucleation, we studied the erythroid differentiation of human embryonic stem cells (hESCs), which provide a unique model for deeper understanding of the development and differentiation of multiple cell types. First, using a two-step protocol, we demonstrated that terminal erythroid differentiation from hESCs is directly dependent on the age of the embryoid bodies. Second, by choosing hESCs in two extreme conditions of erythroid culture, we obtained an original differentiation model which allows one to study the mechanisms underlying the enucleation of erythroid cells by analyzing the gene and miRNA (miR) expression profiles of cells from these two culture conditions. Third, using an integrated analysis of mRNA and miR expression profiles, we identified five miRs potentially involved in erythroblast enucleation. Finally, by selective knockdown of these five miRs we found miR-30a to be a regulator of erythroblast enucleation in hESCs.


Subject(s)
Cell Differentiation , Erythroblasts/metabolism , Gene Expression Regulation , Human Embryonic Stem Cells/metabolism , MicroRNAs/biosynthesis , RNA, Messenger/biosynthesis , Cells, Cultured , Erythroblasts/cytology , Human Embryonic Stem Cells/cytology , Humans
18.
Opt Express ; 23(21): 27806-18, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26480442

ABSTRACT

We present an original instrument designed to accomplish high-speed spectroscopy of individual optical lines based on a frequency comb generated by pseudo-random phase modulation of a continuous-wave (CW) laser. This approach delivers efficient usage of the laser power as well as independent control over the spectral point spacing, bandwidth and central wavelength of the comb. The comb is mixed with a local oscillator generated from the same CW laser frequency-shifted by an acousto-optic modulator, enabling a self-heterodyne detection scheme. The current configuration offers a calibrated spectrum every 1.12 µs. We demonstrate the capabilities of the spectrometer by producing averaged, as well as time-resolved, spectra of the D1 transition of cesium with a 9.8-MHz point spacing, a 50-kHz resolution and a span of more than 3 GHz. The spectra obtained after 1 ms of averaging are fitted with complex Voigt profiles that return parameters in good agreement with expected values.

19.
Opt Express ; 23(11): 13991-4001, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26072768

ABSTRACT

We have developed a frequency-comb spectrometer that records 35-nm (4 THz) spectra with 2-pm (250 MHz) spectral sampling and an absolute frequency accuracy of 2 kHz. We achieve a signal-to-noise ratio of ~400 in a measurement time of 8.2 s. The spectrometer is based on a commercial frequency comb decimated by a variable-length, low-finesse Fabry Pérot filter cavity to fully resolve the comb modes as imaged by a virtually imaged phased array (VIPA), diffraction grating and near-IR camera. By tuning the cavity length, spectra derived from all unique decimated combs are acquired and then interleaved to achieve frequency sampling at the comb repetition rate of 250 MHz. We have validated the performance of the spectrometer by comparison with a previous high-precision absorption measurement of H13C14N near 1543 nm. We find excellent agreement, with deviations from the expected line centers and widths of, at most, 1 pm (125 MHz) and 3 pm (360 MHz), respectively.


Subject(s)
Spectrum Analysis/instrumentation , Image Processing, Computer-Assisted
20.
Opt Express ; 22(23): 29152-60, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25402154

ABSTRACT

We demonstrate a generalized method for dual-comb interferometry that involves the use of two frequency combs with quasi-integer-ratio repetition rates. We use a 16.67 MHz comb to probe an 80-cm-long ring cavity and a 100 MHz comb to asynchronously sample its impulse response. The resulting signal can be seen as six time-multiplexed independent interferograms. We perform a deconvolution of the photodetector's impulse response to prevent any crosstalk between these multiplexed data sets. The measurement is then demultiplexed and corrected with referencing signals. We obtain a measurement with a spectral point spacing of 16.67 MHz and a spectral SNR of 55 dB by averaging 15,000 interferograms, corresponding to a measurement time of 500 s. Compared to conventional dual-comb spectroscopy, this generalized technique allows to either reduce the spectral point spacing or the acquisition time by changing the repetition rate of only one of the combs.


Subject(s)
Fiber Optic Technology , Interferometry/instrumentation , Signal Processing, Computer-Assisted , Spectrum Analysis/instrumentation , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL