Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Proc Natl Acad Sci U S A ; 114(33): E6912-E6921, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28760953

ABSTRACT

It has been proposed that CD6, an important regulator of T cells, functions by interacting with its currently identified ligand, CD166, but studies performed during the treatment of autoimmune conditions suggest that the CD6-CD166 interaction might not account for important functions of CD6 in autoimmune diseases. The antigen recognized by mAb 3A11 has been proposed as a new CD6 ligand distinct from CD166, yet the identity of it is hitherto unknown. We have identified this CD6 ligand as CD318, a cell surface protein previously found to be present on various epithelial cells and many tumor cells. We found that, like CD6 knockout (KO) mice, CD318 KO mice are also protected in experimental autoimmune encephalomyelitis. In humans, we found that CD318 is highly expressed in synovial tissues and participates in CD6-dependent adhesion of T cells to synovial fibroblasts. In addition, soluble CD318 is chemoattractive to T cells and levels of soluble CD318 are selectively and significantly elevated in the synovial fluid from patients with rheumatoid arthritis and juvenile inflammatory arthritis. These results establish CD318 as a ligand of CD6 and a potential target for the diagnosis and treatment of autoimmune diseases such as multiple sclerosis and inflammatory arthritis.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Neoplasm/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Membrane Glycoproteins/immunology , A549 Cells , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Cell Adhesion Molecules/immunology , Cell Adhesion Molecules/metabolism , Cell Line , Cell Line, Tumor , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Humans , Ligands , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , Synovial Membrane/immunology , Synovial Membrane/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
2.
J Lipid Res ; 55(11): 2296-308, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25240046

ABSTRACT

Macrophages play crucial roles in the formation of atherosclerotic lesions. Akt, a serine/threonine protein kinase B, is vital for cell proliferation, migration, and survival. Macrophages express three Akt isoforms, Akt1, Akt2, and Akt3, but the roles of Akt1 and Akt2 in atherosclerosis in vivo remain unclear. To dissect the impact of macrophage Akt1 and Akt2 on early atherosclerosis, we generated mice with hematopoietic deficiency of Akt1 or Akt2. After 8 weeks on Western diet, Ldlr(-/-) mice reconstituted with Akt1(-/-) fetal liver cells (Akt1(-/-)→Ldlr(-/-)) had similar atherosclerotic lesion areas compared with control mice transplanted with WT cells (WT→Ldlr(-/-)). In contrast, Akt2(-/-)→Ldlr(-/-) mice had dramatically reduced atherosclerotic lesions compared with WT→Ldlr(-/-) mice of both genders. Similarly, in the setting of advanced atherosclerotic lesions, Akt2(-/-)→Ldlr(-/-) mice had smaller aortic lesions compared with WT→Ldlr(-/-) and Akt1(-/-)→Ldlr(-/-) mice. Importantly, Akt2(-/-)→Ldlr(-/-) mice had reduced numbers of proinflammatory blood monocytes expressing Ly-6C(hi) and chemokine C-C motif receptor 2. Peritoneal macrophages isolated from Akt2(-/-) mice were skewed toward an M2 phenotype and showed decreased expression of proinflammatory genes and reduced cell migration. Our data demonstrate that loss of Akt2 suppresses the ability of macrophages to undergo M1 polarization reducing both early and advanced atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , Macrophages/metabolism , Proto-Oncogene Proteins c-akt/deficiency , Proto-Oncogene Proteins c-akt/genetics , Receptors, LDL/deficiency , Animals , Antigens, Ly/genetics , Atherosclerosis/enzymology , Atherosclerosis/genetics , Atherosclerosis/immunology , Cell Movement , Female , Gene Expression Regulation , Gene Knockout Techniques , Hematopoiesis , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Phenotype , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, LDL/genetics
3.
Cancers (Basel) ; 16(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39001383

ABSTRACT

Activating mutations in the RAS/MAPK pathway are observed in relapsed neuroblastoma. Preclinical studies indicate that these tumors have an increased sensitivity to inhibitors of the RAS/MAPK pathway, such as MEK inhibitors. MEK inhibitors do not induce durable responses as single agents, indicating a need to identify synergistic combinations of targeted agents to provide therapeutic benefit. We previously showed preclinical therapeutic synergy between a MEK inhibitor, trametinib, and a monoclonal antibody specific for IGF1R, ganitumab in RAS-mutated rhabdomyosarcoma. Neuroblastoma cells, like rhabdomyosarcoma cells, are sensitive to the inhibition of the RAS/MAPK and IGF1R/AKT/mTOR pathways. We hypothesized that the combination of trametinib and ganitumab would be effective in RAS-mutated neuroblastoma. In this study, trametinib and ganitumab synergistically suppressed neuroblastoma cell proliferation and induced apoptosis in cell culture. We also observed a delay in tumor initiation and prolongation of survival in heterotopic and orthotopic xenograft models treated with trametinib and ganitumab. However, the growth of both primary and metastatic tumors was observed in animals receiving the combination of trametinib and ganitumab. Therefore, more preclinical work is necessary before testing this combination in patients with relapsed or refractory RAS-mutated neuroblastoma.

4.
Clin Cancer Res ; 29(2): 472-487, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36322002

ABSTRACT

PURPOSE: PAX-fusion negative rhabdomyosarcoma (FN RMS) is driven by alterations in the RAS/MAP kinase pathway and is partially responsive to MEK inhibition. Overexpression of IGF1R and its ligands is also observed in FN RMS. Preclinical and clinical studies have suggested that IGF1R is itself an important target in FN RMS. Our previous studies revealed preclinical efficacy of the MEK1/2 inhibitor, trametinib, and an IGF1R inhibitor, BMS-754807, but this combination was not pursued clinically due to intolerability in preclinical murine models. Here, we sought to identify a combination of an MEK1/2 inhibitor and IGF1R inhibitor, which would be tolerated in murine models and effective in both cell line and patient-derived xenograft models of RAS-mutant FN RMS. EXPERIMENTAL DESIGN: Using proliferation and apoptosis assays, we studied the factorial effects of trametinib and ganitumab (AMG 479), a mAb with specificity for human and murine IGF1R, in a panel of RAS-mutant FN RMS cell lines. The molecular mechanism of the observed synergy was determined using conventional and capillary immunoassays. The efficacy and tolerability of trametinib/ganitumab was assessed using a panel of RAS-mutated cell-line and patient-derived RMS xenograft models. RESULTS: Treatment with trametinib and ganitumab resulted in synergistic cellular growth inhibition in all cell lines tested and inhibition of tumor growth in four of six models of RAS-mutant RMS. The combination had little effect on body weight and did not produce thrombocytopenia, neutropenia, or hyperinsulinemia in tumor-bearing SCID beige mice. Mechanistically, ganitumab treatment prevented the phosphorylation of AKT induced by MEK inhibition alone. Therapeutic response to the combination was observed in models without a mutation in the PI3K/PTEN axis. CONCLUSIONS: We demonstrate that combined trametinib and ganitumab is effective in a genomically diverse panel of RAS-mutated FN RMS preclinical models. Our data also show that the trametinib/ganitumab combination likely has a favorable tolerability profile. These data support testing this combination in a phase I/II clinical trial for pediatric patients with relapsed or refractory RAS-mutated FN RMS.


Subject(s)
Rhabdomyosarcoma , Humans , Animals , Mice , Child , Cell Line, Tumor , Mice, SCID , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Protein Kinase Inhibitors/pharmacology , Mitogen-Activated Protein Kinase Kinases
5.
Dis Model Mech ; 15(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-35178568

ABSTRACT

The RASopathies are a group of disorders caused by a germline mutation in one of the genes encoding a component of the RAS/MAPK pathway. These disorders, including neurofibromatosis type 1, Noonan syndrome, cardiofaciocutaneous syndrome, Costello syndrome and Legius syndrome, among others, have overlapping clinical features due to RAS/MAPK dysfunction. Although several of the RASopathies are very rare, collectively, these disorders are relatively common. In this Review, we discuss the pathogenesis of the RASopathy-associated genetic variants and the knowledge gained about RAS/MAPK signaling that resulted from studying RASopathies. We also describe the cell and animal models of the RASopathies and explore emerging RASopathy genes. Preclinical and clinical experiences with targeted agents as therapeutics for RASopathies are also discussed. Finally, we review how the recently developed drugs targeting RAS/MAPK-driven malignancies, such as inhibitors of RAS activation, direct RAS inhibitors and RAS/MAPK pathway inhibitors, might be leveraged for patients with RASopathies.


Subject(s)
Costello Syndrome , Neurofibromatosis 1 , Noonan Syndrome , Animals , Costello Syndrome/genetics , Failure to Thrive/genetics , Humans , Neurofibromatosis 1/genetics , Noonan Syndrome/genetics , ras Proteins/genetics
6.
Sci Rep ; 8(1): 3208, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29453336

ABSTRACT

While many adhesion receptors are known to influence tumor progression, the mechanisms by which they dynamically regulate cell-cell adhesion remain elusive. We previously identified Activated Leukocyte Cell Adhesion Molecule (ALCAM) as a clinically relevant driver of metastasis and hypothesized that a tunable mechanism of ectodomain shedding regulates its contribution to dissemination. To test this hypothesis, we examined an under-explored ALCAM splice variant (ALCAM-Iso2) and demonstrated that loss of the membrane-proximal region of ALCAM (exon 13) increased metastasis four-fold. Mechanistic studies identified a novel MMP14-dependent membrane distal cleavage site in ALCAM-Iso2, which mediated a ten-fold increase in shedding, thereby decreasing cellular cohesion. Importantly, the loss of cohesion is not limited to the cell capable of shedding because the released extracellular domain diminished cohesion of non-shedding cells through disruption of ALCAM-ALCAM interactions. ALCAM-Iso2-dominated expression in bladder cancer tissue, compared to normal bladder, further emphasizes that ALCAM alternative splicing may contribute to clinical disease progression. The requirement for both the loss of exon 13 and the gain of metalloprotease activity suggests that ALCAM shedding and concomitant regulation of tumor cell adhesion is a locally tunable process.


Subject(s)
Activated-Leukocyte Cell Adhesion Molecule/genetics , Alternative Splicing , Cell Adhesion/genetics , Proteolysis , Animals , Cell Line, Tumor , Chick Embryo , Chorioallantoic Membrane , Disease Progression , Humans , Matrix Metalloproteinase 14 , Neoplasm Metastasis/genetics , Urinary Bladder Neoplasms/etiology , Urinary Bladder Neoplasms/genetics
7.
Cell Rep ; 24(4): 962-972, 2018 07 24.
Article in English | MEDLINE | ID: mdl-30044991

ABSTRACT

The epithelial-mesenchymal transition (EMT) endows carcinoma cells with traits needed to complete many of the steps leading to metastasis formation, but its contributions specifically to the late step of extravasation remain understudied. We find that breast cancer cells that have undergone an EMT extravasate more efficiently from blood vessels both in vitro and in vivo. Analysis of gene expression changes associated with the EMT program led to the identification of an EMT-induced cell-surface protein, podocalyxin (PODXL), as a key mediator of extravasation in mesenchymal breast and pancreatic carcinoma cells. PODXL promotes extravasation through direct interaction of its intracellular domain with the cytoskeletal linker protein ezrin. Ezrin proceeds to establish dorsal cortical polarity, enabling the transition of cancer cells from a non-polarized, rounded cell morphology to an invasive extravasation-competent shape. Hence, the EMT program can directly enhance the efficiency of extravasation and subsequent metastasis formation through a PODXL-ezrin signaling axis.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cytoskeletal Proteins/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Sialoglycoproteins/metabolism , Animals , Breast Neoplasms/blood supply , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Female , Heterografts , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Male , Mice , Mice, Inbred NOD , Mice, SCID , Pancreatic Neoplasms/blood supply , Sialoglycoproteins/genetics , Signal Transduction
8.
Cancer Res ; 74(1): 173-87, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24220242

ABSTRACT

Normal physiology relies on the organization of transmembrane proteins by molecular scaffolds, such as tetraspanins. Oncogenesis frequently involves changes in their organization or expression. The tetraspanin CD151 is thought to contribute to cancer progression through direct interaction with the laminin-binding integrins α3ß1 and α6ß1. However, this interaction cannot explain the ability of CD151 to control migration in the absence of these integrins or on non-laminin substrates. We demonstrate that CD151 can regulate tumor cell migration without direct integrin binding and that integrin-free CD151 (CD151(free)) correlates clinically with tumor progression and metastasis. Clustering CD151(free) through its integrin-binding domain promotes accumulation in areas of cell-cell contact, leading to enhanced adhesion and inhibition of tumor cell motility in vitro and in vivo. CD151(free) clustering is a strong regulator of motility even in the absence of α3 expression but requires PKCα, suggesting that CD151 can control migration independent of its integrin associations. The histologic detection of CD151(free) in prostate cancer correlates with poor patient outcome. When CD151(free) is present, patients are more likely to recur after radical prostatectomy and progression to metastatic disease is accelerated. Multivariable analysis identifies CD151(free) as an independent predictor of survival. Moreover, the detection of CD151(free) can stratify survival among patients with elevated prostate-specific antigen levels. Cumulatively, these studies demonstrate that a subpopulation of CD151 exists on the surface of tumor cells that can regulate migration independent of its integrin partner. The clinical correlation of CD151(free) with prostate cancer progression suggests that it may contribute to the disease and predict cancer progression.


Subject(s)
Cell Movement/physiology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Tetraspanin 24/metabolism , Tetraspanins/metabolism , Animals , Cell Communication/physiology , Cell Line, Tumor , Chick Embryo , Cohort Studies , Disease Progression , Humans , Immunohistochemistry , Integrin alpha3/metabolism , Male , Mice , NIH 3T3 Cells , Platelet Aggregation , Prostatic Neoplasms/genetics , Protein Binding , Protein Structure, Tertiary , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Retrospective Studies , Tetraspanin 24/biosynthesis , Tetraspanin 24/genetics , Tetraspanins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL