Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Immunity ; 45(4): 774-787, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27742544

ABSTRACT

The transcription factor Foxo3 plays a crucial role in myeloid cell function but its role in lymphoid cells remains poorly defined. Here, we have shown that Foxo3 expression was increased after T cell receptor engagement and played a specific role in the polarization of CD4+ T cells toward pathogenic T helper 1 (Th1) cells producing interferon-γ (IFN-γ) and granulocyte monocyte colony stimulating factor (GM-CSF). Consequently, Foxo3-deficient mice exhibited reduced susceptibility to experimental autoimmune encephalomyelitis. At the molecular level, we identified Eomes as a direct target gene for Foxo3 in CD4+ T cells and we have shown that lentiviral-based overexpression of Eomes in Foxo3-deficient CD4+ T cells restored both IFN-γ and GM-CSF production. Thus, the Foxo3-Eomes pathway is central to achieve the complete specialized gene program required for pathogenic Th1 cell differentiation and development of neuroinflammation.


Subject(s)
Cell Differentiation/physiology , Forkhead Box Protein O3/metabolism , Interleukin-1/metabolism , T-Box Domain Proteins/metabolism , Th1 Cells/metabolism , Th1 Cells/pathology , Transcription Factors/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Cell Differentiation/immunology , Cell Line , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Forkhead Box Protein O3/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , HEK293 Cells , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-1/immunology , Male , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Box Domain Proteins/immunology , Th1 Cells/immunology
3.
Immunity ; 42(2): 239-251, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25692700

ABSTRACT

T follicular helper (Tfh) cells are essential in the induction of high-affinity, class-switched antibodies. The differentiation of Tfh cells is a multi-step process that depends upon the co-receptor ICOS and the activation of phosphoinositide-3 kinase leading to the expression of key Tfh cell genes. We report that ICOS signaling inactivates the transcription factor FOXO1, and a Foxo1 genetic deletion allowed for generation of Tfh cells with reduced dependence on ICOS ligand. Conversely, enforced nuclear localization of FOXO1 inhibited Tfh cell development even though ICOS was overexpressed. FOXO1 regulated Tfh cell differentiation through a broad program of gene expression exemplified by its negative regulation of Bcl6. Final differentiation to germinal center Tfh cells (GC-Tfh) was instead FOXO1 dependent as the Foxo1(-/-) GC-Tfh cell population was substantially reduced. We propose that ICOS signaling transiently inactivates FOXO1 to initiate a Tfh cell contingency that is completed in a FOXO1-dependent manner.


Subject(s)
Cell Differentiation/immunology , DNA-Binding Proteins/biosynthesis , Forkhead Transcription Factors/genetics , Inducible T-Cell Co-Stimulator Protein/immunology , T-Lymphocytes, Helper-Inducer/cytology , Animals , Enzyme Activation , Forkhead Box Protein O1 , Forkhead Transcription Factors/immunology , Gene Expression Regulation , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-bcl-6 , Signal Transduction , T-Lymphocytes, Helper-Inducer/immunology
4.
PLoS Biol ; 19(12): e3001478, 2021 12.
Article in English | MEDLINE | ID: mdl-34941868

ABSTRACT

Highly efficient gene conversion systems have the potential to facilitate the study of complex genetic traits using laboratory mice and, if implemented as a "gene drive," to limit loss of biodiversity and disease transmission caused by wild rodent populations. We previously showed that such a system of gene conversion from heterozygous to homozygous after a sequence targeted CRISPR/Cas9 double-strand DNA break (DSB) is feasible in the female mouse germline. In the male germline, however, all DSBs were instead repaired by end joining (EJ) mechanisms to form an "insertion/deletion" (indel) mutation. These observations suggested that timing Cas9 expression to coincide with meiosis I is critical to favor conditions when homologous chromosomes are aligned and interchromosomal homology-directed repair (HDR) mechanisms predominate. Here, using a Cas9 knock-in allele at the Spo11 locus, we show that meiotic expression of Cas9 does indeed mediate gene conversion in the male as well as in the female germline. However, the low frequency of both HDR and indel mutation in both male and female germlines suggests that Cas9 may be expressed from the Spo11 locus at levels too low for efficient DSB formation. We suggest that more robust Cas9 expression initiated during early meiosis I may improve the efficiency of gene conversion and further increase the rate of "super-mendelian" inheritance from both male and female mice.


Subject(s)
CRISPR-Associated Protein 9/metabolism , Gene Conversion/genetics , Gene Editing/methods , Animals , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , DNA Breaks, Double-Stranded , DNA Repair/genetics , Female , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Genetic Engineering/methods , Germ Cells/metabolism , Male , Meiosis/genetics , Mice , RNA, Guide, Kinetoplastida/genetics , Recombinational DNA Repair/genetics
5.
J Immunol ; 209(6): 1118-1127, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35948398

ABSTRACT

In response to an intracellular infectious agent, the immune system produces a specific cellular response as well as a T cell-dependent Ab response. Precursor T cells differentiate into effector T cells, including Th1 cells, and T follicular helper (TFH) cells. The latter cooperate with B cells to form germinal centers and induce the formation of Ab-forming plasmacytes. One major focal point for control of T cell differentiation is the transcription factor BCL6. In this study, we demonstrated that the Bcl6 gene is regulated by FOXO1-binding, cis-acting sequences located in a highly conserved region of the first Bcl6 intron. In both mouse and human T cells, deletion of the tandem FOXO1 binding sites increased the expression of BCL6 and enhanced the proportion of TFH cells. These results reveal a fundamental control point for cellular versus humoral immunity.


Subject(s)
Proto-Oncogene Proteins c-bcl-6 , T Follicular Helper Cells , T-Lymphocytes, Helper-Inducer , Animals , Germinal Center , Humans , Introns/genetics , Mice , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Transcription Factors/metabolism
6.
Immunity ; 41(6): 934-46, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25526308

ABSTRACT

Gradations in extracellular regulated kinase (ERK) signaling have been implicated in essentially every developmental checkpoint or differentiation process encountered by lymphocytes. Yet, despite intensive effort, the molecular basis by which differences in ERK activation specify alternative cell fates remains poorly understood. We report here that differential ERK signaling controls lymphoid-fate specification through an alternative mode of action. While ERK phosphorylates most substrates, such as RSK, by targeting them through its D-domain, this well-studied mode of ERK action was dispensable for development of γδ T cells. Instead, development of γδ T cells was dependent upon an alternative mode of action mediated by the DEF-binding pocket (DBP) of ERK. This domain enabled ERK to bind a distinct and select set of proteins required for specification of the γδ fate. These data provide the first in vivo demonstration for the role of DBP-mediated interactions in orchestrating alternate ERK-dependent developmental outcomes.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/immunology , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cells, Cultured , Enzyme Activation/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Mice , Mice, Knockout , Mice, Mutant Strains , Mice, Transgenic , Protein Binding , Protein Interaction Domains and Motifs/genetics , Protein Stability , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Signal Transduction/genetics , Substrate Specificity/genetics
7.
Proc Natl Acad Sci U S A ; 117(41): 25667-25678, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32978300

ABSTRACT

Memory CD8 T cells provide durable protection against diverse intracellular pathogens and can be broadly segregated into distinct circulating and tissue-resident populations. Paradigmatic studies have demonstrated that circulating memory cells can be further divided into effector memory (Tem) and central memory (Tcm) populations based on discrete functional characteristics. Following resolution of infection, we identified a persisting antigen-specific CD8 T cell population that was terminally fated with potent effector function but maintained memory T cell qualities and conferred robust protection against reinfection. Notably, this terminally differentiated effector memory CD8 T cell population (terminal-Tem) was conflated within the conventional Tem population, prompting redefinition of the classical characteristics of Tem cells. Murine terminal-Tem were transcriptionally, functionally, and developmentally unique compared to Tem cells. Through mass cytometry and single-cell RNA sequencing (RNA-seq) analyses of human peripheral blood from healthy individuals, we also identified an analogous terminal-Tem population of CD8 T cells that was transcriptionally distinct from Tem and Tcm Key findings from this study show that parsing of terminal-Tem from conventionally defined Tem challenge the reported characteristics of Tem biology, including enhanced presence in lymphoid tissues, robust IL-2 production, and recall potential, greater than expected homeostatic fitness, refined transcription factor dependencies, and a distinct molecular phenotype. Classification of terminal-Tem and clarification of Tem biology hold broad implications for understanding the molecular regulation of memory cell states and harnessing immunological memory to improve immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Immunologic Memory/immunology , T-Lymphocyte Subsets/immunology , Animals , Cell Lineage/immunology , Cells, Cultured , Humans , Mice
8.
Nat Immunol ; 10(10): 1057-63, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19701188

ABSTRACT

A screen for increased longevity in Caenorhabditis elegans has identified a transcription factor that programs cells for resistance to oxidative stress, DNA repair and cell cycle control. The mammalian orthologs of this factor are referred to as 'Foxo' for 'Forkhead box', with the second 'o' in the name denoting a subfamily of four members related by sequence. This family of factors is regulated by growth factors, oxidative stress or nutrient deprivation. Thus, it might readily control the inflammatory conflagration associated with infection-driven lymphocyte proliferation. Surprisingly, the first insights into Foxo-mediated immune regulation have instead revealed direct control of highly specialized genes of the adaptive immune system.


Subject(s)
Forkhead Transcription Factors/immunology , Gene Expression Regulation/immunology , Homeostasis/immunology , Immunity , Animals , Forkhead Transcription Factors/genetics , Humans
9.
Nat Immunol ; 10(2): 176-84, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19136962

ABSTRACT

Foxo transcription factors have a conserved role in the adaptation of cells and organisms to nutrient and growth factor availability. Here we show that Foxo1 has a crucial, nonredundant role in T cells. In naive T cells, Foxo1 controlled the expression of the adhesion molecule L-selectin, the chemokine receptor CCR7 and the transcription factor Klf2, and its deletion was sufficient to alter lymphocyte trafficking. Furthermore, Foxo1 deficiency resulted in a severe defect in interleukin 7 receptor alpha-chain (IL-7Ralpha) expression associated with its ability to bind an Il7r enhancer. Finally, growth factor withdrawal induced a Foxo1-dependent increase in Sell, Klf2 and Il7r expression. These data suggest that Foxo1 regulates the homeostasis and life span of naive T cells by sensing growth factor availability and regulating homing and survival signals.


Subject(s)
Chemotaxis, Leukocyte/immunology , Forkhead Transcription Factors/metabolism , L-Selectin/biosynthesis , Receptors, CCR7/biosynthesis , Receptors, Interleukin-7/biosynthesis , T-Lymphocytes/metabolism , Animals , Blotting, Western , Cell Differentiation/immunology , Cell Survival , Flow Cytometry , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Gene Expression , Gene Expression Regulation/immunology , Homeostasis/immunology , Immunoprecipitation , L-Selectin/immunology , Lymphocyte Activation/immunology , Mice , Mice, Transgenic , RNA, Messenger/analysis , Receptors, CCR7/immunology , Receptors, Interleukin-7/immunology , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/cytology , T-Lymphocytes/immunology
10.
Nat Immunol ; 10(5): 504-13, 2009 May.
Article in English | MEDLINE | ID: mdl-19363483

ABSTRACT

Foxo transcription factors regulate cell cycle progression, cell survival and DNA-repair pathways. Here we demonstrate that deficiency in Foxo3 resulted in greater expansion of T cell populations after viral infection. This exaggerated expansion was not T cell intrinsic. Instead, it was caused by the enhanced capacity of Foxo3-deficient dendritic cells to sustain T cell viability by producing more interleukin 6. Stimulation of dendritic cells mediated by the coinhibitory molecule CTLA-4 induced nuclear localization of Foxo3, which in turn inhibited the production of interleukin 6 and tumor necrosis factor. Thus, Foxo3 acts to constrain the production of key inflammatory cytokines by dendritic cells and to control T cell survival.


Subject(s)
Dendritic Cells/immunology , Forkhead Transcription Factors/immunology , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , Animals , Antigen Presentation/immunology , Antigens, CD/immunology , Antigens, CD/metabolism , Arenaviridae Infections/immunology , Blotting, Western , CTLA-4 Antigen , Dendritic Cells/metabolism , Flow Cytometry , Forkhead Box Protein O3 , Forkhead Transcription Factors/metabolism , Interleukin-6/immunology , Interleukin-6/metabolism , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Congenic , Mice, Transgenic , Protein Transport/immunology , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
11.
Trends Immunol ; 38(12): 888-903, 2017 12.
Article in English | MEDLINE | ID: mdl-28882454

ABSTRACT

As we describe the immune system in ever more exquisite detail, we might find that no matter how successful, this approach will not be sufficient to understand the spread of infectious agents, their susceptibility to vaccine therapy, and human disease resistance. Compared with the strict reductionism practiced as a means of characterizing most biological processes, I propose that the progression and outcome of disease-causing host-parasite interactions will be more clearly understood through a focus on disease ecology.


Subject(s)
Coinfection/immunology , Host-Pathogen Interactions/immunology , Immunity , Infections/immunology , Models, Immunological , Zoonoses/immunology , Animals , Biological Evolution , Disease Transmission, Infectious , Humans , Virulence , Virulence Factors
12.
J Immunol ; 200(4): 1335-1346, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29311359

ABSTRACT

Caspase-8 (CASP8) is known as an executioner of apoptosis, but more recent studies have shown that it participates in the regulation of necroptosis and innate immunity. In this study, we show that CASP8 negatively regulates retinoic acid-inducible gene I (RIG-I) signaling such that, in its absence, stimulation of the RIG-I pathway in dendritic cells (DCs) produced modestly enhanced activation of IFN regulatory factor 3 with correspondingly greater amounts of proinflammatory cytokines. In addition, mice lacking DC-specific CASP8 (dcCasp8-/- mice) develop age-dependent symptoms of autoimmune disease characterized by hyperactive DCs and T cells, spleen and liver immunopathology, and the appearance of Th1-polarized CD4+ T cells. Such mice infected with chronic lymphocytic choriomeningitis virus, an RNA virus detected by RIG-I, mounted an enhanced lymphocytic choriomeningitis virus-specific immune response as measured by increased proportions of Ag-specific CD4+ T cells and multicytokine-producing CD4+ and CD8+ T cells. These results show that CASP8 subtly modulates DC maturation, which controls the spontaneous appearance of autoimmune T cells while simultaneously attenuating the acquired immune system and its potential to control a persistent viral infection.


Subject(s)
Autoimmunity/immunology , Caspase 8/immunology , Dendritic Cells/immunology , Virus Diseases/immunology , Animals , Lymphocyte Activation/immunology , Lymphocytic Choriomeningitis/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction/immunology , T-Lymphocytes/immunology
13.
Proc Natl Acad Sci U S A ; 114(42): E8865-E8874, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28973925

ABSTRACT

The factors and steps controlling postinfection CD8+ T cell terminal effector versus memory differentiation are incompletely understood. Whereas we found that naive TCF7 (alias "Tcf-1") expression is FOXO1 independent, early postinfection we report bimodal, FOXO1-dependent expression of the memory-essential transcription factor TCF7 in pathogen-specific CD8+ T cells. We determined the early postinfection TCF7high population is marked by low TIM3 expression and bears memory signature hallmarks before the appearance of established memory precursor marker CD127 (IL-7R). These cells exhibit diminished TBET, GZMB, mTOR signaling, and cell cycle progression. Day 5 postinfection, TCF7high cells express higher memory-associated BCL2 and EOMES, as well as increased accumulation potential and capacity to differentiate into memory phenotype cells. TCF7 retroviral transduction opposes GZMB expression and the formation of KLRG1pos phenotype cells, demonstrating an active role for TCF7 in extinguishing the effector program and forestalling terminal differentiation. Past the peak of the cellular immune response, we report a gradient of FOXO1 and TCF7 expression, which functions to oppose TBET and orchestrate a continuum of effector-to-memory phenotypes.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Forkhead Box Protein O1/metabolism , Immunologic Memory/physiology , Animals , Arenaviridae Infections/immunology , Arenaviridae Infections/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cell Differentiation , Forkhead Box Protein O1/genetics , Granzymes/genetics , Granzymes/metabolism , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Interleukin-7 Receptor alpha Subunit/immunology , Interleukin-7 Receptor alpha Subunit/metabolism , Lectins, C-Type , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Receptors, Immunologic/metabolism
14.
Immunity ; 33(6): 890-904, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21167754

ABSTRACT

Foxo transcription factors integrate extrinsic signals to regulate cell division, differentiation and survival, and specific functions of lymphoid and myeloid cells. Here, we showed the absence of Foxo1 severely curtailed the development of Foxp3(+) regulatory T (Treg) cells and those that developed were nonfunctional in vivo. The loss of function included diminished CTLA-4 receptor expression as the Ctla4 gene was a direct target of Foxo1. T cell-specific loss of Foxo1 resulted in exocrine pancreatitis, hind limb paralysis, multiorgan lymphocyte infiltration, anti-nuclear antibodies and expanded germinal centers. Foxo-mediated control over Treg cell specification was further revealed by the inability of TGF-ß cytokine to suppress T-bet transcription factor in the absence of Foxo1, resulting in IFN-γ secretion. In addition, the absence of Foxo3 exacerbated the effects of the loss of Foxo1. Thus, Foxo transcription factors guide the contingencies of T cell differentiation and the specific functions of effector cell populations.


Subject(s)
Antigens, CD/biosynthesis , Forkhead Transcription Factors/metabolism , T-Box Domain Proteins/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Antigens, CD/genetics , Autoimmunity/genetics , CTLA-4 Antigen , Cell Differentiation , Cell Lineage , Cells, Cultured , Forkhead Box Protein O1 , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Gene Expression Regulation/immunology , Immune Tolerance/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th1-Th2 Balance , Transforming Growth Factor beta/immunology , Transforming Growth Factor beta/metabolism
15.
Immunity ; 28(3): 297-9, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18342002

ABSTRACT

In this issue of Immunity, He et al. (2008) establish the logic and circuitry that determine CD4-CD8 lineage specification. It all comes down to an eighty base pair silencer switch.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation/immunology , Cell Lineage/immunology , Thymus Gland/cytology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Humans , Thymus Gland/immunology
16.
Nature ; 477(7364): 335-9, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21921917

ABSTRACT

Dysfunction of the intestinal epithelium is believed to result in the excessive translocation of commensal bacteria into the bowel wall that drives chronic mucosal inflammation in Crohn's disease, an incurable inflammatory bowel disease in humans characterized by inflammation of the terminal ileum. In healthy individuals, the intestinal epithelium maintains a physical barrier, established by the tight contact of cells. Moreover, specialized epithelial cells such as Paneth cells and goblet cells provide innate immune defence functions by secreting mucus and antimicrobial peptides, which hamper access and survival of bacteria adjacent to the epithelium. Epithelial cell death is a hallmark of intestinal inflammation and has been discussed as a possible pathogenic mechanism driving Crohn's disease in humans. However, the regulation of epithelial cell death and its role in intestinal homeostasis remain poorly understood. Here we demonstrate a critical role for caspase-8 in regulating necroptosis of intestinal epithelial cells (IECs) and terminal ileitis. Mice with a conditional deletion of caspase-8 in the intestinal epithelium (Casp8(ΔIEC)) spontaneously developed inflammatory lesions in the terminal ileum and were highly susceptible to colitis. Casp8(ΔIEC) mice lacked Paneth cells and showed reduced numbers of goblet cells, indicating dysregulated antimicrobial immune cell functions of the intestinal epithelium. Casp8(ΔIEC) mice showed increased cell death in the Paneth cell area of small intestinal crypts. Epithelial cell death was induced by tumour necrosis factor (TNF)-α, was associated with increased expression of receptor-interacting protein 3 (Rip3; also known as Ripk3) and could be inhibited on blockade of necroptosis. Lastly, we identified high levels of RIP3 in human Paneth cells and increased necroptosis in the terminal ileum of patients with Crohn's disease, suggesting a potential role of necroptosis in the pathogenesis of this disease. Together, our data demonstrate a critical function of caspase-8 in regulating intestinal homeostasis and in protecting IECs from TNF-α-induced necroptotic cell death.


Subject(s)
Apoptosis , Caspase 8/metabolism , Crohn Disease/metabolism , Crohn Disease/pathology , Tumor Necrosis Factor-alpha/metabolism , Animals , Caspase 8/genetics , Colitis/enzymology , Colitis/immunology , Colitis/metabolism , Colitis/pathology , Crohn Disease/enzymology , Crohn Disease/immunology , Gene Deletion , Goblet Cells/pathology , Humans , In Vitro Techniques , Mice , Necrosis , Paneth Cells/enzymology , Paneth Cells/immunology , Paneth Cells/metabolism , Paneth Cells/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
17.
Proc Natl Acad Sci U S A ; 111(46): 16466-71, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25362052

ABSTRACT

Signaling from the T-cell receptor (TCR) conditions T-cell differentiation and activation, requiring exquisite sensitivity and discrimination. Using mass cytometry, a high-dimensional technique that can probe multiple signaling nodes at the single-cell level, we interrogate TCR signaling dynamics in control C57BL/6 and autoimmunity-prone nonobese diabetic (NOD) mice, which show ineffective ERK activation after TCR triggering. By quantitating signals at multiple steps along the signaling cascade and parsing the phosphorylation level of each node as a function of its predecessors, we show that a small impairment in initial pCD3ζ activation resonates farther down the signaling cascade and results in larger defects in activation of the ERK1/2-S6 and IκBα modules. This nonlinear property of TCR signaling networks, which magnifies small initial differences during signal propagation, also applies in cells from B6 mice activated at different levels of intensity. Impairment in pCD3ζ and pSLP76 is not a feedback consequence of a primary deficiency in ERK activation because no proximal signaling defect was observed in Erk2 KO T cells. These defects, which were manifest at all stages of T-cell differentiation from early thymic pre-T cells to memory T cells, may condition the imbalanced immunoregulation and tolerance in NOD T cells. More generally, this amplification of small initial differences in signal intensity may explain how T cells discriminate between closely related ligands and adopt strongly delineated cell fates.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/physiology , Immunologic Deficiency Syndromes/immunology , MAP Kinase Signaling System/physiology , Mass Spectrometry/methods , Receptors, Antigen, T-Cell/physiology , Single-Cell Analysis/methods , Animals , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Disease Models, Animal , Enzyme Activation , Genetic Variation , I-kappa B Proteins/metabolism , Immune Tolerance , Immunity, Cellular , Immunologic Memory , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymphopoiesis , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mitogen-Activated Protein Kinase 1/deficiency , NF-KappaB Inhibitor alpha , Phosphorylation , Protein Processing, Post-Translational , Receptors, Antigen, T-Cell/analysis , Self Tolerance , Thymus Gland/cytology , Thymus Gland/immunology
18.
J Immunol ; 192(12): 5548-60, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24808358

ABSTRACT

Caspase-8, an executioner enzyme in the death receptor pathway, was shown to initiate apoptosis and suppress necroptosis. In this study, we identify a novel, cell death-independent role for caspase-8 in dendritic cells (DCs): DC-specific expression of caspase-8 prevents the onset of systemic autoimmunity. Failure to express caspase-8 has no effect on the lifespan of DCs but instead leads to an enhanced intrinsic activation and, subsequently, more mature and autoreactive lymphocytes. Uncontrolled TLR activation in a RIPK1-dependent manner is responsible for the enhanced functionality of caspase-8-deficient DCs, because deletion of the TLR-signaling mediator, MyD88, ameliorates systemic autoimmunity induced by caspase-8 deficiency. Taken together, these data demonstrate that caspase-8 functions in a cell type-specific manner and acts uniquely in DCs to maintain tolerance.


Subject(s)
Caspase 8/immunology , Dendritic Cells/immunology , Immune Tolerance/physiology , Myeloid Differentiation Factor 88/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Signal Transduction/immunology , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Caspase 8/genetics , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
19.
J Immunol ; 189(2): 721-31, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22675204

ABSTRACT

Effective immune responses depend upon appropriate T cell differentiation in accord with the nature of an infectious agent, and the contingency of differentiation depends minimally on TCR, coreceptor, and cytokine signals. In this reverse genetic study, we show that the MAPK Erk2 is not essential for T cell proliferation in the presence of optimum costimulation. Instead, it has opposite effects on T-bet and Gata3 expression and, hence, on Th1 and Th2 differentiation. Alternatively, in the presence of TGF-ß, the Erk pathway suppresses a large program of gene expression, effectively limiting the differentiation of Foxp3(+) regulatory T cells. In the latter case, the mechanisms involved include suppression of Gata3 and Foxp3, induction of Tbx21, phosphorylation of Smad2,3, and possibly suppression of Socs2, a positive inducer of Stat5 signaling. Consequently, loss of Erk2 severely impeded Th1 differentiation while enhancing the development of Foxp3(+)-induced T regulatory cells. Selected profiles of gene expression under multiple conditions of T cell activation illustrate the opposing consequences of Erk pathway signaling.


Subject(s)
CD4-Positive T-Lymphocytes/enzymology , CD4-Positive T-Lymphocytes/immunology , Cell Polarity/immunology , Mitogen-Activated Protein Kinase 1/physiology , T-Lymphocyte Subsets/enzymology , T-Lymphocyte Subsets/immunology , Animals , CD4-Positive T-Lymphocytes/virology , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Polarity/genetics , Cell Proliferation , Cells, Cultured , Forkhead Transcription Factors/biosynthesis , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Knockout , Mice, Transgenic , Mitogen-Activated Protein Kinase 1/deficiency , Mitogen-Activated Protein Kinase 1/genetics , T-Lymphocyte Subsets/virology , T-Lymphocytes, Regulatory/enzymology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/virology , Th1 Cells/enzymology , Th1 Cells/immunology , Th1 Cells/virology , Up-Regulation/genetics , Up-Regulation/immunology
20.
Immunol Rev ; 236: 41-53, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20636807

ABSTRACT

Programmed cell death (PCD) occurs widely in species from every kingdom of life. It has been shown to be an integral aspect of development in multicellular organisms, and it is an essential component of the immune response to infectious agents. An analysis of the phylogenetic origin of PCD now shows that it evolved independently several times, and it is fundamental to basic cellular physiology. Undoubtedly, PCD pervades all life at every scale of analysis. These considerations provide a backdrop for understanding the complexity of intertwined, but independent, cell death programs that operate within the immune system. In particular, the contributions of apoptosis, autophagy, and necrosis in the resolution of an immune response are considered.


Subject(s)
Apoptosis/immunology , Autophagy/immunology , Immunity/immunology , Signal Transduction/immunology , Animals , Caspase 8/metabolism , Cell Survival/immunology , Humans , Necrosis/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL