ABSTRACT
Prostate cancer (CaP) remains the second leading cause of cancer deaths in western men. CaP mortality results from diverse molecular mechanisms that mediate resistance to the standard of care treatments for metastatic disease. Recently, alternative splicing has been recognized as a hallmark of CaP aggressiveness. Alternative splicing events cause treatment resistance and aggressive CaP behavior and are determinants of the emergence of the two major types of late-stage treatment-resistant CaP, namely castration-resistant CaP (CRPC) and neuroendocrine CaP (NEPC). Here, we review recent multi-omics data that are uncovering the complicated landscape of alternative splicing events during CaP progression and the impact that different gene transcript isoforms can have on CaP cell biology and behavior. We discuss renewed insights in the molecular machinery by which alternative splicing occurs and contributes to the failure of systemic CaP therapies. The potential for alternative splicing events to serve as diagnostic markers and/or therapeutic targets is explored. We conclude by considering current challenges and promises associated with splicing-modulating therapies, and their potential for clinical translation into CaP patient care.
Subject(s)
Alternative Splicing , Disease Progression , Drug Resistance, Neoplasm , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Humans , Alternative Splicing/genetics , Male , Drug Resistance, Neoplasm/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Gene Expression Regulation, Neoplastic , AnimalsABSTRACT
Citron kinase (CITK) is an AGC-family serine/threonine kinase that regulates cytokinesis. Despite knockdown experiments implicating CITK as an anticancer target, no selective CITK inhibitors exist. We transformed a previously reported kinase inhibitor with weak off-target CITK activity into a first-in-class CITK chemical probe, C3TD879. C3TD879 is a Type I kinase inhibitor which potently inhibits CITK catalytic activity (biochemical IC50 = 12 nM), binds directly to full-length human CITK in cells (NanoBRET Kd < 10 nM), and demonstrates favorable DMPK properties for in vivo evaluation. We engineered exquisite selectivity for CITK (>17-fold versus 373 other human kinases), making C3TD879 the first chemical probe suitable for interrogating the complex biology of CITK. Our small-molecule CITK inhibitors could not phenocopy the effects of CITK knockdown in cell proliferation, cell cycle progression, or cytokinesis assays, providing preliminary evidence that the structural roles of CITK may be more important than its kinase activity.
Subject(s)
Cytokinesis , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Cell Division , Cytokinesis/physiology , Phosphorylation , Cell ProliferationABSTRACT
Progression of prostate cancer (CaP) relies on androgen receptor (AR) signaling, but AR-dependent events that underlie the lethal phenotype remain unknown. Recently, an indirect mechanism of androgen action in which effects of AR on CaP cells are mediated by Serum Response Factor (SRF) has been identified. This is the first mode of androgen action to be associated with aggressive CaP and disease recurrence. The manner in which androgen-responsive SRF activity controls aggressive CaP cell behavior is unknown. Here, the contribution of two representative SRF effector genes that are underexpressed, calponin 2 (CNN2), or overexpressed, sidekick-homolog 1 (SDK1), in clinical CaP specimens is studied. AR- and SRF- dependency of CNN2 and SDK1 expression was verified using synthetic and natural androgens, antiandrogens, and small interfering RNAs targeting AR or SRF, and evaluating the kinetics of androgen induction and SRF binding to endogenously and exogenously expressed regulatory gene regions in AR-positive CaP model systems that mimic the transition from androgen-stimulated to castration-recurrent disease. Small interfering RNA-mediated deregulation of CNN2 or SDK1 expression did not affect CaP cell proliferation or apoptosis but had marked effects on CaP cell morphology and actin cytoskeleton organization. Loss of CNN2 induced cellular protrusions and increased CaP cell migration, whereas silencing of SDK1 led to cell rounding and blunted CaP cell migration. Changes in cell migration did not involve epithelial-mesenchymal transition but correlated with altered ß1-integrin expression. Taken together, individual androgen-responsive SRF target genes affect CaP cell behavior by modulating cell migration, which may have implications for therapeutic intervention downstream of AR and SRF.
Subject(s)
Androgens/genetics , Cell Movement/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Serum Response Factor/genetics , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Androgens/metabolism , Apoptosis/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Growth Processes/genetics , Cell Line, Tumor , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Humans , Integrin beta1/genetics , Integrin beta1/metabolism , Male , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Orchiectomy , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Serum Response Factor/metabolismABSTRACT
BACKGROUND: Epidemiological studies indicate that calcium channel blocker (CCB) use is inversely related to prostate cancer (PCa) incidence. The association between CCB use and PCa aggressiveness at the time of radical prostatectomy (RP) and outcome after RP was examined. METHODS: Medication use, PCa aggressiveness and post-RP outcome were retrieved from a prospectively populated database that contains clinical and outcome for RP patients at Roswell Park Cancer Institute (RPCI) from 1993 to 2010. The database was queried for anti-hypertensive medication use at diagnosis for patients with ≥1 year follow-up. Recurrence was defined using NCCN guidelines. Chi-Square tests assessed the relationship between CCB use and PCa aggressiveness. Cox regression models compared the distribution of progression-free survival (PFS) and overall survival (OS) with adjustment for covariates. Results for association between CCB usage and PCa aggressiveness were validated using data from the population-based North Carolina-Louisiana Prostate Cancer Project (PCaP). RESULTS: 48%, 37%, and 15% of RPCI's RP patients (n = 875) had low, intermediate, and high aggressive PCa, respectively. 104 (11%) had a history of CCB use. Patients taking CCBs were more likely to be older, have a higher BMI and use additional anti-hypertensive medications. Diagnostic PSA levels, PCa aggressiveness, and margin status were similar for CCB users and non-users. PFS and OS did not differ between the two groups. Tumor aggressiveness was associated with PFS. CCB use in the PCaP study population was not associated with PCa aggressiveness. CONCLUSIONS: CCB use is not associated with PCa aggressiveness at diagnosis, PFS or OS.
Subject(s)
Antihypertensive Agents/administration & dosage , Calcium Channel Blockers/administration & dosage , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Disease-Free Survival , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Proportional Hazards Models , Prospective Studies , Prostatectomy , Prostatic Neoplasms/mortality , Retrospective Studies , United States/epidemiologyABSTRACT
Prostate cancer (CaP) remains the second leading cause of cancer-related mortality in American men. Systemic treatments for metastatic CaP, which causes the majority of deaths, include androgen deprivation therapy and chemotherapy. These treatments induce remissions but do not cure CaP. Novel and functionally diverse therapeutic targets that control the cell biology that drives aggressive CaP progression are needed to overcome treatment resistance. Because signal transduction that mediates CaP cell behavior is tightly regulated by phosphorylation, kinases have attracted interest as alternative targets for CaP treatments. Here, we examine emerging evidence from recent NextGen sequencing and (phospho) proteomics analyses on clinical CaP specimens that were obtained during lethal disease progression to determine the role of deregulated kinase action in CaP growth, treatment resistance, and recurrence. We provide an overview of kinases that are impacted by gene amplification, gene deletion or somatic mutations during the progression from localized treatment-naïve CaP to metastatic castration-resistant CaP or neuroendocrine CaP, and the potential impact of such alterations on aggressive CaP behavior and treatment efficacy. Furthermore, we review knowledge on alterations in the phosphoproteome that occur during the progression to treatment-resistant CaP, the molecular mechanisms in the control of these changes, and the signal transduction associated with them. Finally, we discuss kinase inhibitors under evaluation in CaP clinical trials and the potential, challenges, and limitations to moving knowledge on the CaP kinome forward to new therapeutic strategies.
Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Phosphorylation , Androgen Antagonists/therapeutic use , Signal Transduction , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/metabolismABSTRACT
Prostate cancer remains the second leading cause of cancer death in men in Western cultures. A deeper understanding of the mechanisms by which prostate cancer cells divide to support tumor growth could help devise strategies to overcome treatment resistance and improve survival. Here, we identified that the mitotic AGC family protein kinase citron kinase (CIT) is a pivotal regulator of prostate cancer growth that mediates prostate cancer cell interphase progression. Increased CIT expression correlated with prostate cancer growth induction and aggressive prostate cancer progression, and CIT was overexpressed in prostate cancer compared with benign prostate tissue. CIT overexpression was controlled by an E2F2-Skp2-p27 signaling axis and conferred resistance to androgen-targeted treatment strategies. The effects of CIT relied entirely on its kinase activity. Conversely, CIT silencing inhibited the growth of cell lines and xenografts representing different stages of prostate cancer progression and treatment resistance but did not affect benign epithelial prostate cells or nonprostatic normal cells, indicating a potential therapeutic window for CIT inhibition. CIT kinase activity was identified as druggable and was potently inhibited by the multikinase inhibitor OTS-167, which decreased the proliferation of treatment-resistant prostate cancer cells and patient-derived organoids. Isolation of the in vivo CIT substrates identified proteins involved in diverse cellular functions ranging from proliferation to alternative splicing events that are enriched in treatment-resistant prostate cancer. These findings provide insights into the regulation of aggressive prostate cancer cell behavior by CIT and identify CIT as a functionally diverse and druggable driver of prostate cancer progression. SIGNIFICANCE: The poorly characterized protein kinase citron kinase is a therapeutic target in prostate cancer that drives tumor growth by regulating diverse substrates, which control several hallmarks of aggressive prostate cancer progression. See related commentary by Mishra et al., p. 4008.
Subject(s)
Prostate , Prostatic Neoplasms , Protein Kinases , Humans , Male , Cell Line, Tumor , Cell Proliferation , Prostate/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Kinases/metabolism , Signal TransductionABSTRACT
Emerging transcriptomics-based classifiers show promise as biomarkers to guide clinical decision-making in prostate cancer, but require further research, optimization, and validation.
Subject(s)
Prostatic Neoplasms , Transcriptome , Biomarkers, Tumor/genetics , Clinical Decision-Making , Humans , Male , Prognosis , Prostatic Neoplasms/genetics , Transcriptome/geneticsABSTRACT
The androgen receptor (AR) is a member of the ligand-activated nuclear receptor family of transcription factors. AR's transactivation activity is turned on by the binding of androgens, the male sex steroid hormones. AR is critical for the development and maintenance of the male phenotype but has been recognized to also play an important role in human diseases. Most notably, AR is a major driver of prostate cancer (CaP) progression, which remains the second leading cause of cancer deaths in American men. Androgen deprivation therapies (ADTs) that interfere with interactions between AR and its activating androgen ligands have been the mainstay for treatment of metastatic CaP. Although ADTs are effective and induce remissions, eventually they fail, while the growth of the majority of ADT-resistant CaPs remains under AR's control. Alternative approaches to inhibit AR activity and bypass resistance to ADT are being sought, such as preventing the interaction between AR and its cofactors and coregulators that is needed to execute AR-dependent transcription. For such strategies to be efficient, the 3D conformation of AR complexes needs to be well-understood and AR-regulator interaction sites resolved. Here, we review current insights into these 3D structures and the protein interaction sites in AR transcriptional complexes. We focus on methods and technological approaches used to identify AR interactors and discuss challenges and limitations that need to be overcome for efficient therapeutic AR complex disruption.
Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Androgen Antagonists/therapeutic use , Androgens/metabolism , Humans , Male , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Signal Transduction/geneticsABSTRACT
Androgens, acting through the androgen receptor (AR), are responsible for the development of the male phenotype during embryogenesis, the achievement of sexual maturation at puberty, and the maintenance of male reproductive function and behavior in adulthood. In addition, androgens affect a wide variety of nonreproductive tissues. Moreover, aberrant androgen action plays a critical role in multiple pathologies, including prostate cancer and androgen insensitivity syndromes. The formation of a productive AR transcriptional complex requires the functional and structural interaction of the AR with its coregulators. In the last decade, an overwhelming and ever increasing number of proteins have been proposed to possess AR coactivating or corepressing characteristics. Intriguingly, a vast diversity of functions has been ascribed to these proteins, indicating that a multitude of cellular functions and signals converge on the AR to regulate its function. The current review aims to provide an overview of the AR coregulator proteins identified to date and to propose a classification of these AR coregulator proteins according to the function(s) ascribed to them. Taken together, this approach will increase our understanding of the cellular pathways that converge on the AR to ensure an appropriate transcriptional response to androgens.
Subject(s)
Androgens/metabolism , Receptors, Androgen/metabolism , Transcription Factors/metabolism , Androgens/physiology , Gene Expression Regulation , Humans , Male , Receptors, Androgen/drug effects , Receptors, Androgen/geneticsABSTRACT
Inhibiting the activity of the ligand-activated transcription factor androgen receptor (AR) is the default first-line treatment for metastatic prostate cancer (CaP). Androgen deprivation therapy (ADT) induces remissions, however, their duration varies widely among patients. The reason for this heterogeneity is not known. A better understanding of its molecular basis may improve treatment plans and patient survival. AR's transcriptional activity is regulated in a context-dependent manner and relies on an interplay between its associated transcriptional regulators, DNA recognition motifs, and ligands. Alterations in one or more of these factors induce shifts in the AR cistrome and transcriptional output. Significant variability in AR activity is seen in both castration-sensitive (CS) and castration-resistant CaP (CRPC). Several AR transcriptional regulators undergo somatic alterations that impact their function in clinical CaPs. Some alterations occur in a significant fraction of cases, resulting in CaP subtypes, while others affect only a few percent of CaPs. Evidence is emerging that these alterations may impact the response to CaP treatments such as ADT, radiation therapy, and chemotherapy. Here, we review the contribution of recurring somatic alterations on AR cistrome and transcriptional output and the efficacy of CaP treatments and explore strategies to use these insights to improve treatment plans and outcomes for CaP patients.
ABSTRACT
The recent genomic characterization of patient specimens has started to reveal the landscape of somatic alterations in clinical prostate cancer (CaP) and its association with disease progression and treatment resistance. The extent to which such alterations impact hallmarks of cancer is still unclear. Here, we interrogate genomic data from thousands of clinical CaP specimens that reflect progression from treatment-naïve, to castration-recurrent, and in some cases, neuroendocrine CaP for alterations in cell cycle-associated and -regulated genes, which are central to cancer initiation and progression. We evaluate gene signatures previously curated to evaluate G1-S and G2-M phase transitions or to represent the cell cycle-dependent proteome. The resulting CaP (stage)-specific overview confirmed the presence of well-known driver alterations impacting, for instance, the genes encoding p53 and MYC, and uncovered novel previously unrecognized mutations that affect others such as the PKMYT1 and MTBP genes. The cancer dependency and drugability of representative genomically altered cell cycle determinants were verified also. Taken together, these analyses on hundreds of often less-characterized cell cycle regulators expand considerably the scope of genomic alterations associated with CaP cell proliferation and cell cycle and isolate such regulatory proteins as putative drivers of CaP treatment resistance and entirely novel therapeutic targets for CaP therapy.
Subject(s)
Prostatic Neoplasms , Cell Cycle/genetics , Humans , Male , Membrane Proteins , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Protein Serine-Threonine Kinases , Protein-Tyrosine KinasesABSTRACT
Prostate cancer (CaP) remains the second leading cause of cancer deaths in Western men. These deaths occur because metastatic CaP acquires resistance to available treatments. The novel and functionally diverse treatment options that have been introduced in the clinic over the past decade each eventually induce resistance for which the molecular basis is diverse. Both initiation and progression of CaP have been associated with enhanced cell proliferation and cell cycle dysregulation. A better understanding of the specific pro-proliferative molecular shifts that control cell division and proliferation during CaP progression may ultimately overcome treatment resistance. Here, we examine literature for support of this possibility. We start by reviewing recently renewed insights in prostate cell types and their proliferative and oncogenic potential. We then provide an overview of the basic knowledge on the molecular machinery in charge of cell cycle progression and its regulation by well-recognized drivers of CaP progression such as androgen receptor and retinoblastoma protein. In this respect, we pay particular attention to interactions and reciprocal interplay between cell cycle regulators and androgen receptor. Somatic alterations that impact the cell cycle-associated and -regulated genes encoding p53, PTEN and MYC during progression from treatment-naïve, to castration-recurrent, and in some cases, neuroendocrine CaP are discussed. We considered also non-genomic events that impact cell cycle determinants, including transcriptional, epigenetic and micro-environmental switches that occur during CaP progression. Finally, we evaluate the therapeutic potential of cell cycle regulators and address challenges and limitations in the approaches modulating their action for CaP treatment.
Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Cell Cycle , Cell Division , Disease Progression , Humans , Male , Prostate/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolismABSTRACT
BACKGROUND: Deregulated androgen receptor (AR) action is critical for prostate cancer (PCa) progression. Aberrant expression of AR-associated coregulators contributes to AR activity in PCa. The mechanisms underlying coregulator expression in PCa are under intense investigation as they may lead to alternative means of targeting AR activity in PCa cells. We have recently shown that over 30% of coregulator expression in the PCa cell line LNCaP is subject to androgen regulation. METHODS: Using multiple PCa cell lines as well as xenograft models, non-malignant prostate epithelial cell lines and androgen-responsive tissues derived from a male Wistar rat model system, we explored the effect of androgen stimulation and androgen deprivation on the expression of the core coactivators SRC1, SRC2, SRC3, CBP, and p300. RESULTS: Androgen stimulation of model systems representing PCa led to a decrease in the expression of SRC1, SRC2, SRC3, CBP, and p300, whereas androgen deprivation induced the expression of these coactivators. In contrast, expression of these coregulators remained largely unaffected following changes in the androgenic milieu in AR-positive models representing non-malignant prostate cells and tissues. CONCLUSIONS: Our data indicate differences in the regulation of coregulator expression between neoplastic and normal prostate cells. These findings emphasize the important potential of targeting the mechanisms regulating coregulator expression for therapeutic intervention in PCa.
Subject(s)
Nuclear Receptor Coactivators/genetics , Prostate/metabolism , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , p300-CBP Transcription Factors/genetics , Animals , Blotting, Western , Cell Fractionation , Cell Line, Tumor , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cells, Cultured , Male , Nuclear Receptor Coactivators/metabolism , Prostatic Neoplasms/metabolism , Rats , Rats, Wistar , Receptors, Androgen/metabolism , Reverse Transcriptase Polymerase Chain Reaction , p300-CBP Transcription Factors/metabolismABSTRACT
Aberrant coregulator expression that occurs during prostate cancer (PCa) progression correlates with poor prognosis and aggressive disease. This has been attributed to the ability to regulate androgen receptor-mediated transcription. We have shown previously that the androgenic milieu regulates the expression of the coactivators p300 and FHL2, with severe consequences for PCa cell proliferation and androgen receptor transcriptional activity. To determine the extent of androgen dependency of coregulator genes, we designed a cDNA-mediated annealing, selection, extension, and ligation RNA profiling array that probes the expression of 186 coregulators. Using this assay, we demonstrated androgen control over approximately 30% of coregulator genes in PCa cells. For a subset of 15 functionally diverse coregulators, androgen regulation was confirmed using real-time RT-PCR and immunoblotting. The extent, dose dependency, and kinetics by which androgens affect coregulator expression differed widely, indicating diverse molecular mechanisms underlying these effects. Moreover, differences in coregulator expression were observed between isogenic androgen-dependent and castration-recurrent PCa cells. Small interfering RNA-mediated changes in coregulator expression had profound effects on cell proliferation, which were most pronounced in castration-recurrent cells. Taken together, our integrated approach combining expression profiling, characterization of androgen-dependent coregulator expression, and validation of the importance of altered coregulator expression for cell proliferation identified several potential novel therapeutic targets for PCa treatment.
Subject(s)
Androgens/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Oligonucleotide Array Sequence Analysis/methods , Prostatic Neoplasms/metabolism , Transcription Factors , Cell Line, Tumor , Cell Proliferation , Humans , Male , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolismABSTRACT
Prostate cancer (PCa) progression relies on androgen receptor (AR) action. Preventing AR's ligand-activation is the frontline treatment for metastatic PCa. Androgen deprivation therapy (ADT) that inhibits AR ligand-binding initially induces remission but eventually fails, mainly because of adaptive PCa responses that restore AR action. The vast majority of castration-resistant PCa (CRPC) continues to rely on AR activity. Novel therapeutic strategies are being explored that involve targeting other critical AR domains such as those that mediate its constitutively active transactivation function, its DNA binding ability, or its interaction with co-operating transcriptional regulators. Considerable molecular and clinical variability has been found in AR's interaction with its ligands, DNA binding motifs, and its associated coregulators and transcription factors. Here, we review evidence that each of these levels of AR regulation can individually and differentially impact transcription by AR. In addition, we examine emerging insights suggesting that each can also impact the other, and that all three may collaborate to induce gene-specific AR target gene expression, likely via AR allosteric effects. For the purpose of this review, we refer to the modulating influence of these differential and/or interdependent contributions of ligands, cognate DNA-binding motifs and critical regulatory protein interactions on AR's transcriptional output, which may influence the efficiency of the novel PCa therapeutic approaches under consideration, as co-regulation of AR activity.
ABSTRACT
Prostate cancer (CaP) is the second leading cause of cancer-related deaths in Western men. Because androgens drive CaP by activating the androgen receptor (AR), blocking AR's ligand activation, known as androgen deprivation therapy (ADT), is the default treatment for metastatic CaP. Despite an initial remission, CaP eventually develops resistance to ADT and progresses to castration-recurrent CaP (CRPC). CRPC continues to rely on aberrantly activated AR that is no longer inhibited effectively by available therapeutics. Interference with signaling pathways downstream of activated AR that mediate aggressive CRPC behavior may lead to alternative CaP treatments. Developing such therapeutic strategies requires a thorough mechanistic understanding of the most clinically relevant and druggable AR-dependent signaling events. Recent proteomics analyses of CRPC clinical specimens indicate a shift in the phosphoproteome during CaP progression. Kinases and phosphatases represent druggable entities, for which clinically tested inhibitors are available, some of which are incorporated already in treatment plans for other human malignancies. Here, we reviewed the AR-associated transcriptome and translational regulon, and AR interactome involved in CaP phosphorylation events. Novel and for the most part mutually exclusive AR-dependent transcriptional and post-transcriptional control over kinase and phosphatase expression was found, with yet other phospho-regulators interacting with AR. The multiple mechanisms by which AR can shape and fine-tune the CaP phosphoproteome were reflected in diverse aspects of CaP biology such as cell cycle progression and cell migration. Furthermore, we examined the potential, limitations and challenges of interfering with AR-mediated phosphorylation events as alternative strategy to block AR function during CaP progression.
Subject(s)
Phosphorylation/genetics , Proteome/metabolism , Receptors, Androgen/metabolism , Cell Line, Tumor , Humans , MaleABSTRACT
BACKGROUND: Metastatic prostate cancer (CaP) treatments are evolving rapidly but without evidence-based biomarkers to predict responses, and to maximize remissions and survival. OBJECTIVE: To determine the activity of androgen receptor (AR), the target for default first-line systemic treatment, in localized treatment-naïve CaP and its association with clinical risk factors, molecular markers, CaP subtypes, and predictors of treatment response. DESIGN SETTING AND PARTICIPANTS: We examined 452 bona fide AR target genes in clinical-grade expression profiles from 6532 such CaPs collected between 2013 and 2017 by US physicians ordering the Decipher RP test. Results were validated in three independent smaller cohorts (n = 73, 90, and 127) and clinical CaP AR ChIP-Seq data. Association with CaP differentiation and progression was analyzed in independent datasets. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Unsupervised clustering of CaPs based on AR target gene expression was aligned with clinical variables, differentiation scores, molecular subtypes, and predictors of response to hormonal therapy, radiotherapy, and chemotherapy. AR target gene sets were analyzed via Gene Set Enrichment Analysis for differentiation and treatment resistance, Ingenuity Pathway Analysis for associated biology, and Cistrome for genomic AR binding site (ARBS) composition. RESULTS AND LIMITATIONS: Expression of eight AR target gene subsignatures gave rise to five CaP clusters, which were preferentially associated with CaP molecular subtypes, differentiation, and predictors of treatment response rather than with clinical variables. Subsignatures differed in contribution to CaP progression, luminal/basal differentiation, CaP biology, and ARBS composition. Validation in prospective trials and optimized quantitation are needed for clinical implementation. CONCLUSIONS: Measurement of AR activity patterns in treatment-naïve CaP may serve as a first branch of an evidence-based decision tree to optimize personalized treatment plans. PATIENT SUMMARY: Treatment options for metastatic prostate cancer are increasing without information needed to choose the right treatment for the right patient. We found variation in the behavior of the target for the default first-line therapy before treatment, which may help optimize treatment plans.
ABSTRACT
Urothelial carcinoma (UC) of the bladder is approximately three times more common in men than women. While the etiology for this gender difference in incidence remains unknown, a role for androgen receptor (AR) signaling has been suggested. The mechanisms by which AR activity is regulated in UC cells, however, are largely elusive. Here, we explore the significance of coregulators that are critical for the formation of a functional AR transcriptional complex, in UC cells. Using two AR-positive UC cell lines, TCC-SUP and UMUC3, we demonstrate the expression of the coactivators NCOA1, NCOA2, NCOA3, CREBBP, and EP300 in UC cells. small interfering RNA-mediated knockdown of the AR or any of these coactivators markedly impacted cell viability and abrogated androgen-dependent cell proliferation. Noteworthy, contrary to AR-positive prostate cancer cells, expression of these AR-associated coactivators was not androgen regulated in UC cells. To assess the clinical relevance of coactivator expression, we performed immunohistochemistry on paraffin-embedded sections from 55 patients with UC of the bladder. We found that while 24 out of 55 (44%) of tumors expressed the AR, each of the coactivators was expressed by 85-100% of the bladder cancers. Moreover, we noted a significant downregulation of NCOA1 expression in tumors versus adjacent, non-tumor bladder urothelium, with a mean of 68% (range 0-100) of tumor cells demonstrating NCOA1 staining versus a mean of 81% (range 0-90) of non-tumor cells (P=0.03). Taken together, our data suggest an important role for AR-associated coactivators in UC and point toward differences in the regulation of AR activity between bladder and prostate cancer cells.
Subject(s)
Histone Acetyltransferases/genetics , Nuclear Receptor Coactivator 2/genetics , Receptors, Androgen/metabolism , Trans-Activators/genetics , Transcription Factors/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/physiopathology , Androgens/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Cell Line, Tumor , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism , Female , Gene Expression Regulation, Neoplastic , Histone Acetyltransferases/metabolism , Humans , Immunohistochemistry , Male , Nuclear Receptor Coactivator 1 , Nuclear Receptor Coactivator 2/metabolism , Nuclear Receptor Coactivator 3 , RNA, Small Interfering , Signal Transduction/physiology , Trans-Activators/metabolism , Transcription Factors/metabolism , Urinary Bladder Neoplasms/metabolism , Urothelium/physiologyABSTRACT
Standard therapy for nonorgan confined prostate cancer aims to block the production or action of androgens. Although initially successful, antiandrogen therapy eventually fails and androgen depletion independent (ADI) disease emerges. Remarkably, ADI prostate cancers still rely on a functional androgen receptor (AR). Aberrant expression of coregulatory proteins required for the formation of productive AR transcriptional complexes is critical for ADI AR activation. Previously, we have shown that the transcriptional coactivator p300 is required for ADI activation of the AR and is up-regulated in prostate cancer, in which its expression is associated with cell proliferation and predicts aggressive tumor features. The mechanism responsible for the deregulated expression of p300, however, remains elusive. Here, we show that p300 expression in prostate cancer cells is subject to androgen regulation. In several prostate cancer model systems, addition of synthetic and natural androgens led to decreased expression of p300 in a time-dependent and dose-dependent manner. Experiments using AR antagonists or small interfering RNA targeting the AR revealed that down-regulation of p300 depends entirely on the presence of a functional AR. It is noteworthy that androgens down-regulated p300 protein expression while leaving messenger levels unaltered. Conversely, both short-term and long-term androgen deprivation resulted in marked up-regulation of p300 expression. The androgen deprivation-induced increase in p300 expression was not affected by the addition of cytokines or growth factors or by cotreatment with antiandrogens. Moreover, increased p300 expression upon androgen starvation is crucial for prostate cancer cell proliferation, as loss of p300 expression severely reduces expression of cyclins governing G(1)-S and G(2)-M cell cycle transition and decreases 5-bromo-2'-deoxyuridine incorporation.
Subject(s)
Androgens/deficiency , E1A-Associated p300 Protein/biosynthesis , Prostatic Neoplasms/metabolism , Cell Growth Processes/physiology , Cell Line, Tumor , Down-Regulation , E1A-Associated p300 Protein/genetics , Humans , Male , Neoplasms, Hormone-Dependent/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Androgen/biosynthesis , Up-RegulationABSTRACT
Sustained reliance on androgen receptor (AR) after failure of AR-targeting androgen deprivation therapy (ADT) prevents effective treatment of castration-recurrent (CR) prostate cancer (CaP). Interfering with the molecular machinery by which AR drives CaP progression may be an alternative therapeutic strategy but its feasibility remains to be tested. Here, we explore targeting the mechanism by which AR, via RhoA, conveys androgen-responsiveness to serum response factor (SRF), which controls aggressive CaP behavior and is maintained in CR-CaP. Following a siRNA screen and candidate gene approach, RNA-Seq studies confirmed that the RhoA effector Protein Kinase N1 (PKN1) transduces androgen-responsiveness to SRF. Androgen treatment induced SRF-PKN1 interaction, and PKN1 knockdown or overexpression severely impaired or stimulated, respectively, androgen regulation of SRF target genes. PKN1 overexpression occurred during clinical CR-CaP progression, and hastened CaP growth and shortened CR-CaP survival in orthotopic CaP xenografts. PKN1's effects on SRF relied on its kinase domain. The multikinase inhibitor lestaurtinib inhibited PKN1 action and preferentially affected androgen regulation of SRF over direct AR target genes. In a CR-CaP patient-derived xenograft, expression of SRF target genes was maintained while AR target gene expression declined and proliferative gene expression increased. PKN1 inhibition decreased viability of CaP cells before and after ADT. In patient-derived CaP explants, lestaurtinib increased AR target gene expression but did not significantly alter SRF target gene or proliferative gene expression. These results provide proof-of-principle for selective forms of ADT that preferentially target different fractions of AR's transcriptional output to inhibit CaP growth.