Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Breast Cancer Res ; 26(1): 30, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38378689

ABSTRACT

INTRODUCTION: Overexpression of prostate-specific membrane antigen (PSMA) on the vasculature of triple-negative breast cancer (TNBC) presents a promising avenue for targeted endogenous radiotherapy with [177Lu]Lu-PSMA-I&T. This study aimed to assess and compare the therapeutic efficacy of a single dose with a fractionated dose of [177Lu]Lu-PSMA-I&T in an orthotopic model of TNBC. METHODS: Rj:NMRI-Foxn1nu/nu mice were used as recipients of MDA-MB-231 xenografts. The single dose group was treated with 1 × 60 ± 5 MBq dose of [177Lu]Lu-PSMA-I&T, while the fractionated dose group received 4 × a 15 ± 2 MBq dose of [177Lu]Lu-PSMA-I&T at 7 day intervals. The control group received 0.9% NaCl. Tumor progression was monitored using [18F]FDG-PET/CT. Ex vivo analysis encompassed immunostaining, TUNEL staining, H&E staining, microautoradiography, and autoradiography. RESULTS: Tumor volumes were significantly smaller in the single dose (p < 0.001) and fractionated dose (p < 0.001) groups. Tumor growth inhibition rates were 38% (single dose) and 30% (fractionated dose). Median survival was notably prolonged in the treated groups compared to the control groups (31d, 28d and 19d for single dose, fractionated dose and control, respectively). [177Lu]Lu-PSMA-I&T decreased the size of viable tumor areas. We further demonstrated, that [177Lu]Lu-PSMA-I&T binds specifically to the tumor-associated vasculature. CONCLUSION: This study highlights the potential of [177Lu]Lu-PSMA-I&T for endogenous radiotherapy of TNBC.


Subject(s)
Radioisotopes , Triple Negative Breast Neoplasms , Humans , Male , Animals , Mice , Radioisotopes/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Radiopharmaceuticals , Positron Emission Tomography Computed Tomography , Prostate/metabolism , Cell Line, Tumor , Dipeptides/therapeutic use
2.
Cell Mol Life Sci ; 77(24): 5223-5242, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32065241

ABSTRACT

Endocytosis of the amyloid precursor protein (APP) is critical for generation of ß-amyloid, aggregating in Alzheimer's disease. APP endocytosis depending on the intracellular NPTY motif is well investigated, whereas involvement of the YTSI (also termed BaSS) motif remains controversial. Here, we show that APP lacking the YTSI motif (ΔYTSI) displays reduced localization to early endosomes and decreased internalization rates, similar to APP ΔNPTY. Additionally, we show that the YTSI-binding protein, PAT1a interacts with the Rab5 activator RME-6, as shown by several independent assays. Interestingly, knockdown of RME-6 decreased APP endocytosis, whereas overexpression increased the same. Similarly, APP ΔNPTY endocytosis was affected by PAT1a and RME-6 overexpression, whereas APP ΔYTSI internalization remained unchanged. Moreover, we could show that RME-6 mediated increase of APP endocytosis can be diminished upon knocking down PAT1a. Together, our data identify RME-6 as a novel player in APP endocytosis, involving the YTSI-binding protein PAT1a.


Subject(s)
Alzheimer Disease/genetics , Amino Acid Motifs/genetics , Amyloid beta-Protein Precursor/genetics , rab5 GTP-Binding Proteins/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Animals , Carrier Proteins/genetics , Endocytosis/genetics , Endosomes/genetics , Humans , Mice , Protein Transport/genetics , Transport Vesicles/genetics
3.
J Vis Exp ; (212)2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39431771

ABSTRACT

Small animal Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) imaging techniques are crucial in preclinical cancer research, necessitating meticulous attention to radiotracer synthesis, quality assurance, and in vivo injection protocols. This study presents a comprehensive workflow tailored to enhance the robustness and reproducibility of small animal PET experiments. The synthesis process in the radiochemistry laboratory using 68Ga is detailed, highlighting stringent quality control and assurance protocols for each radiotracer production. Parameters such as concentration, molar activity, pH, and purity are rigorously monitored, aligning with standards applicable to human studies. This methodology introduces streamlined syringe preparation and a custom-designed 30G cannula for precise intravenous injections into mice. Monitoring of animal health during scanning, including temperature and heart rate, ensures their well-being throughout the procedure. Dosages for PET and SPECT scans are predetermined to balance data acquisition with minimizing radiation exposure to animals and researchers. Similarly, CT scans employ pre-programmed settings to limit radiation exposure, especially pertinent in long-term studies assessing treatment effects. By optimizing these steps, the workflow aims to standardize procedures, reduce variability, and enhance the quality of small animal PET/SPECT/CT imaging. This resource provides valuable insights for researchers seeking to improve the accuracy and reliability of preclinical investigations in molecular imaging, ultimately advancing the field.


Subject(s)
Gallium Radioisotopes , Positron-Emission Tomography , Quality Control , Animals , Mice , Positron-Emission Tomography/methods , Gallium Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis
4.
Cells ; 12(4)2023 02 08.
Article in English | MEDLINE | ID: mdl-36831218

ABSTRACT

Recent studies proving prostate-specific membrane antigen (PSMA) expression on triple-negative breast cancer (TNBC) cells and adjacent endothelial cells suggest PSMA as a promising target for therapy of until now not-targetable cancer entities. In this study, PSMA and its isoform expression were analyzed in different TNBC cells, breast cancer stem cells (BCSCs), and tumor-associated endothelial cells. PSMA expression was detected in 91% of the investigated TNBC cell lines. The PSMA splice isoforms were predominantly found in the BCSCs. Tumor-conditioned media from two TNBC cell lines, BT-20 (high full-length PSMA expression, PSMAΔ18 expression) and Hs578T (low full-length PSMA expression, no isoform expression), showed significant pro-angiogenic effect with induction of tube formation in endothelial cells. All TNBC cell lines induced PSMA expression in human umbilical vein endothelial cells (HUVEC). Significant uptake of radiolabeled ligand [68Ga]Ga-PSMA was detected in BCSC1 (4.2%), corresponding to the high PSMA expression. Moreover, hypoxic conditions increased the uptake of radiolabeled ligand [177Lu]Lu-PSMA in MDA-MB-231 (0.4% vs. 3.4%, under hypoxia and normoxia, respectively) and MCF-10A (0.3% vs. 3.0%, under normoxia and hypoxia, respectively) significantly (p < 0.001). [177Lu]Lu-PSMA-induced apoptosis rates were highest in BT-20 and MDA-MB-231 associated endothelial cells. Together, these findings demonstrate the potential of PSMA-targeted therapy in TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Male , Humans , Triple Negative Breast Neoplasms/metabolism , Endothelial Cells/metabolism , Ligands , Cell Line, Tumor , Hypoxia
5.
Acta Neuropathol Commun ; 11(1): 87, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37259128

ABSTRACT

The amyloid precursor protein (APP) is a key player in Alzheimer`s disease (AD) and the precursor of the Aß peptide, which is generated by consecutive cleavages of ß- and γ-secretases. Familial Alzheimer's disease (FAD) describes a hereditary subgroup of AD that represents a low percentage of AD cases with an early onset of the disease. Different APP FAD mutations are thought to have qualitatively different effects on its proteolytic conversion. However, few studies have explored the pathogenic and putative physiological differences in more detail. Here, we compared different FAD mutations, located at the ß- (Swedish), α- (Flemish, Arctic, Iowa) or γ-secretase (Iberian) cleavage sites. We examined heterologous expression of APP WT and FAD mutants in non-neuronal cells and their impact on presynaptic differentiation in contacting axons of co-cultured neurons. To decipher the underlying molecular mechanism, we tested the subcellular localization, the endocytosis rate and the proteolytic processing in detail by immunoprecipitation-mass spectrometry. Interestingly, we found that only the Iberian mutation showed altered synaptogenic function. Furthermore, the APP Iowa mutant shows significantly decreased α-secretase processing which is in line with our results that APP carrying the Iowa mutation was significantly increased in early endosomes. However, most interestingly, immunoprecipitation-mass spectrometry analysis revealed that the amino acid substitutions of APP FAD mutants have a decisive impact on their processing reflected in altered Aß profiles. Importantly, N-terminally truncated Aß peptides starting at position 5 were detected preferentially for APP Flemish, Arctic, and Iowa mutants containing amino acid substitutions around the α-secretase cleavage site. The strongest change in the ratio of Aß40/Aß42 was observed for the Iberian mutation while APP Swedish showed a substantial increase in Aß1-17 peptides. Together, our data indicate that familial AD mutations located at the α-, ß-, and γ-secretase cleavage sites show considerable differences in the underlying pathogenic mechanisms.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Humans , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , Mutation/genetics , Presenilin-1/genetics
6.
Cells ; 9(10)2020 10 21.
Article in English | MEDLINE | ID: mdl-33096754

ABSTRACT

Molecular imaging plays an increasingly important role in the diagnosis and treatment of different malignancies. Radiolabeled probes enable the visualization of the primary tumor as well as the metastases and have been also employed in targeted therapy and theranostic approaches. With breast cancer being the most common malignancy in women worldwide it is of special interest to develop novel targeted treatments. However, tumor microenvironment and escape mechanisms often limit their therapeutic potential. Addressing tumor stroma associated targets provides a promising option to inhibit tumor growth and angiogenesis and to disrupt tumor tissue architecture. This review describes recent developments on radiolabeled probes used in diagnosis and treatment of breast cancer especially in triple negative type with the focus on potential targets offered by the tumor microenvironment, like tumor associated macrophages, cancer associated fibroblasts, and endothelial cells.


Subject(s)
Breast Neoplasms/pathology , Radiopharmaceuticals/chemistry , Tumor Microenvironment , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Female , Humans , Models, Biological , Nuclear Medicine
SELECTION OF CITATIONS
SEARCH DETAIL