Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Cell ; 186(16): 3443-3459.e24, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37480851

ABSTRACT

Cells contain numerous abundant molecular machines assembled from multiple subunits. Imbalances in subunit production and failed assembly generate orphan subunits that are eliminated by poorly defined pathways. Here, we determined how orphan subunits of the cytosolic chaperonin CCT are recognized. Several unassembled CCT subunits recruited the E3 ubiquitin ligase HERC2 using ZNRD2 as an adaptor. Both factors were necessary for orphan CCT subunit degradation in cells, sufficient for CCT subunit ubiquitination with purified factors, and necessary for optimal cell fitness. Domain mapping and structure prediction defined the molecular features of a minimal HERC2-ZNRD2-CCT module. The structural model, whose key elements were validated in cells using point mutants, shows why ZNRD2 selectively recognizes multiple orphaned CCT subunits without engaging assembled CCT. Our findings reveal how failures during CCT assembly are monitored and provide a paradigm for the molecular recognition of orphan subunits, the largest source of quality control substrates in cells.


Subject(s)
Chaperonin Containing TCP-1 , Ubiquitin-Protein Ligases , Chaperonin Containing TCP-1/chemistry , Ubiquitin-Protein Ligases/genetics , Humans
2.
Annu Rev Biochem ; 91: 651-678, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35287476

ABSTRACT

The endoplasmic reticulum (ER) is the site of membrane protein insertion, folding, and assembly in eukaryotes. Over the past few years, a combination of genetic and biochemical studies have implicated an abundant factor termed the ER membrane protein complex (EMC) in several aspects of membrane protein biogenesis. This large nine-protein complex is built around a deeply conserved core formed by the EMC3-EMC6 subcomplex. EMC3 belongs to the universally conserved Oxa1 superfamily of membrane protein transporters, whereas EMC6 is an ancient, widely conserved obligate partner. EMC has an established role in the insertion of transmembrane domains (TMDs) and less understood roles during the later steps of membrane protein folding and assembly. Several recent structures suggest hypotheses about the mechanism(s) of TMD insertion by EMC, with various biochemical and proteomics studies beginning to reveal the range of EMC's membrane protein substrates.


Subject(s)
Endoplasmic Reticulum , Membrane Proteins , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Protein Biosynthesis , Protein Domains , Protein Folding
3.
Nat Rev Mol Cell Biol ; 23(2): 107-124, 2022 02.
Article in English | MEDLINE | ID: mdl-34556847

ABSTRACT

Roughly one quarter of all genes code for integral membrane proteins that are inserted into the plasma membrane of prokaryotes or the endoplasmic reticulum membrane of eukaryotes. Multiple pathways are used for the targeting and insertion of membrane proteins on the basis of their topological and biophysical characteristics. Multipass membrane proteins span the membrane multiple times and face the additional challenges of intramembrane folding. In many cases, integral membrane proteins require assembly with other proteins to form multi-subunit membrane protein complexes. Recent biochemical and structural analyses have provided considerable clarity regarding the molecular basis of membrane protein targeting and insertion, with tantalizing new insights into the poorly understood processes of multipass membrane protein biogenesis and multi-subunit protein complex assembly.


Subject(s)
Membrane Proteins/metabolism , Protein Biosynthesis , Animals , Endoplasmic Reticulum/metabolism , Humans , Membrane Proteins/chemistry , Models, Molecular , Signal Recognition Particle/metabolism , Substrate Specificity
4.
Cell ; 175(6): 1507-1519.e16, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30415835

ABSTRACT

Mammals encode ∼5,000 integral membrane proteins that need to be inserted in a defined topology at the endoplasmic reticulum (ER) membrane by mechanisms that are incompletely understood. Here, we found that efficient biogenesis of ß1-adrenergic receptor (ß1AR) and other G protein-coupled receptors (GPCRs) requires the conserved ER membrane protein complex (EMC). Reconstitution studies of ß1AR biogenesis narrowed the EMC requirement to the co-translational insertion of the first transmembrane domain (TMD). Without EMC, a proportion of TMD1 inserted in an inverted orientation or failed altogether. Purified EMC and SRP receptor were sufficient for correctly oriented TMD1 insertion, while the Sec61 translocon was necessary for insertion of the next TMD. Enforcing TMD1 topology with an N-terminal signal peptide bypassed the EMC requirement for insertion in vitro and restored efficient biogenesis of multiple GPCRs in EMC-knockout cells. Thus, EMC inserts TMDs co-translationally and cooperates with the Sec61 translocon to ensure accurate topogenesis of many membrane proteins.


Subject(s)
Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Peptide/metabolism , SEC Translocation Channels/metabolism , Animals , Cell Line, Tumor , Endoplasmic Reticulum/genetics , Female , Humans , Protein Domains , Protein Transport/physiology , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Peptide/genetics , SEC Translocation Channels/genetics , Turkeys
5.
Mol Cell ; 84(10): 1821-1823, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759622

ABSTRACT

In this issue, Ji et al.1 show how a multipass membrane protein that initially inserts into the endoplasmic reticulum in a mostly inverted topology is post-translationally dislocated, re-inserted, and folded with the help of ATP13A1, a P-type ATPase.


Subject(s)
Endoplasmic Reticulum , Membrane Proteins , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/chemistry , Endoplasmic Reticulum/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Protein Folding , Humans
6.
Cell ; 167(5): 1229-1240.e15, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27863242

ABSTRACT

In eukaryotes, accurate protein synthesis relies on a family of translational GTPases that pair with specific decoding factors to decipher the mRNA code on ribosomes. We present structures of the mammalian ribosome engaged with decoding factor⋅GTPase complexes representing intermediates of translation elongation (aminoacyl-tRNA⋅eEF1A), termination (eRF1⋅eRF3), and ribosome rescue (Pelota⋅Hbs1l). Comparative analyses reveal that each decoding factor exploits the plasticity of the ribosomal decoding center to differentially remodel ribosomal proteins and rRNA. This leads to varying degrees of large-scale ribosome movements and implies distinct mechanisms for communicating information from the decoding center to each GTPase. Additional structural snapshots of the translation termination pathway reveal the conformational changes that choreograph the accommodation of decoding factors into the peptidyl transferase center. Our results provide a structural framework for how different states of the mammalian ribosome are selectively recognized by the appropriate decoding factor⋅GTPase complex to ensure translational fidelity.


Subject(s)
Protein Biosynthesis , RNA, Messenger/chemistry , Ribosomes/chemistry , Animals , Cryoelectron Microscopy , Endonucleases , Humans , Microfilament Proteins/metabolism , Models, Chemical , Models, Molecular , Nuclear Proteins , Peptide Elongation Factors/metabolism , Ribosomes/ultrastructure
7.
Mol Cell ; 83(16): 2840-2855, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37595554

ABSTRACT

Cells tightly regulate mRNA processing, localization, and stability to ensure accurate gene expression in diverse cellular states and conditions. Most of these regulatory steps have traditionally been thought to occur before translation by the action of RNA-binding proteins. Several recent discoveries highlight multiple co-translational mechanisms that modulate mRNA translation, localization, processing, and stability. These mechanisms operate by recognition of the nascent protein, which is necessarily coupled to its encoding mRNA during translation. Hence, the distinctive sequence or structure of a particular nascent chain can recruit recognition factors with privileged access to the corresponding mRNA in an otherwise crowded cellular environment. Here, we draw on both well-established and recent examples to provide a conceptual framework for how cells exploit nascent protein recognition to direct mRNA fate. These mechanisms allow cells to dynamically and specifically regulate their transcriptomes in response to changes in cellular states to maintain protein homeostasis.


Subject(s)
Peptides , Proteostasis , Peptides/genetics , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , Transcriptome
8.
Mol Cell ; 83(6): 961-973.e7, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36764302

ABSTRACT

Most membrane proteins use their first transmembrane domain, known as a signal anchor (SA), for co-translational targeting to the endoplasmic reticulum (ER) via the signal recognition particle (SRP). The SA then inserts into the membrane using either the Sec61 translocation channel or the ER membrane protein complex (EMC) insertase. How EMC and Sec61 collaborate to ensure SA insertion in the correct topology is not understood. Using site-specific crosslinking, we detect a pre-insertion SA intermediate adjacent to EMC. This intermediate forms after SA release from SRP but before ribosome transfer to Sec61. The polypeptide's N-terminal tail samples a cytosolic vestibule bordered by EMC3, from where it can translocate across the membrane concomitant with SA insertion. The ribosome then docks on Sec61, which has an opportunity to insert those SAs skipped by EMC. These results suggest that EMC acts between SRP and Sec61 to triage SAs for insertion during membrane protein biogenesis.


Subject(s)
Membrane Proteins , Triage , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Transport , Endoplasmic Reticulum/metabolism , SEC Translocation Channels/genetics , SEC Translocation Channels/metabolism , Signal Recognition Particle/genetics , Signal Recognition Particle/metabolism
9.
Mol Cell ; 83(13): 2290-2302.e13, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37295431

ABSTRACT

Microtubules play crucial roles in cellular architecture, intracellular transport, and mitosis. The availability of free tubulin subunits affects polymerization dynamics and microtubule function. When cells sense excess free tubulin, they trigger degradation of the encoding mRNAs, which requires recognition of the nascent polypeptide by the tubulin-specific ribosome-binding factor TTC5. How TTC5 initiates the decay of tubulin mRNAs is unknown. Here, our biochemical and structural analysis reveals that TTC5 recruits the poorly studied protein SCAPER to the ribosome. SCAPER, in turn, engages the CCR4-NOT deadenylase complex through its CNOT11 subunit to trigger tubulin mRNA decay. SCAPER mutants that cause intellectual disability and retinitis pigmentosa in humans are impaired in CCR4-NOT recruitment, tubulin mRNA degradation, and microtubule-dependent chromosome segregation. Our findings demonstrate how recognition of a nascent polypeptide on the ribosome is physically linked to mRNA decay factors via a relay of protein-protein interactions, providing a paradigm for specificity in cytoplasmic gene regulation.


Subject(s)
Ribosomes , Tubulin , Humans , Tubulin/genetics , Tubulin/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Microtubules/metabolism , Homeostasis , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA Stability , Carrier Proteins/metabolism , Transcription Factors/metabolism
11.
Mol Cell ; 82(8): 1390-1397, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35452608

ABSTRACT

We asked experts from different fields-from genome maintenance and proteostasis to organelle degradation via ubiquitin and autophagy-"What does quality control mean to you?" Despite their diverse backgrounds, they converge on and discuss the importance of continuous quality control at all levels, context, communication, timing, decisions on whether to repair or remove, and the significance of dysregulated quality control in disease.


Subject(s)
Autophagy , Ubiquitin , Proteostasis , Ubiquitin/genetics , Ubiquitin/metabolism
12.
Cell ; 158(3): 522-33, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25083867

ABSTRACT

Proteins destined for the cell surface are first assessed in the endoplasmic reticulum (ER) for proper folding before release into the secretory pathway. This ensures that defective proteins are normally prevented from entering the extracellular environment, where they could be disruptive. Here, we report that, when ER folding capacity is saturated during stress, misfolded glycosylphosphatidylinositol-anchored proteins dissociate from resident ER chaperones, engage export receptors, and quantitatively leave the ER via vesicular transport to the Golgi. Clearance from the ER commences within minutes of acute ER stress, before the transcriptional component of the unfolded protein response is activated. These aberrant proteins then access the cell surface transiently before destruction in lysosomes. Inhibiting this stress-induced pathway by depleting the ER-export receptors leads to aggregation of the ER-retained misfolded protein. Thus, this rapid response alleviates the elevated burden of misfolded proteins in the ER at the onset of ER stress, promoting protein homeostasis in the ER.


Subject(s)
Endoplasmic Reticulum Stress , Lysosomes/metabolism , Secretory Pathway , Animals , Cell Line , Humans , Mice , Prions/metabolism , Protein Folding , Rats , Unfolded Protein Response
13.
Cell ; 157(7): 1632-43, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24930395

ABSTRACT

Cotranslational protein translocation is a universally conserved process for secretory and membrane protein biosynthesis. Nascent polypeptides emerging from a translating ribosome are either transported across or inserted into the membrane via the ribosome-bound Sec61 channel. Here, we report structures of a mammalian ribosome-Sec61 complex in both idle and translating states, determined to 3.4 and 3.9 Å resolution. The data sets permit building of a near-complete atomic model of the mammalian ribosome, visualization of A/P and P/E hybrid-state tRNAs, and analysis of a nascent polypeptide in the exit tunnel. Unprecedented chemical detail is observed for both the ribosome-Sec61 interaction and the conformational state of Sec61 upon ribosome binding. Comparison of the maps from idle and translating complexes suggests how conformational changes to the Sec61 channel could facilitate translocation of a secreted polypeptide. The high-resolution structure of the mammalian ribosome-Sec61 complex provides a valuable reference for future functional and structural studies.


Subject(s)
Membrane Proteins/chemistry , Protein Biosynthesis , Ribosomes/chemistry , Animals , Crystallography, X-Ray , Membrane Proteins/metabolism , Models, Molecular , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Ribosomes/metabolism , SEC Translocation Channels , Swine
14.
Mol Cell ; 81(13): 2808-2822.e10, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34111399

ABSTRACT

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic DNA and induces interferon-stimulated genes (ISGs) to activate the innate immune system. Here, we report the unexpected discovery that cGAS also senses dysfunctional protein production. Purified ribosomes interact directly with cGAS and stimulate its DNA-dependent activity in vitro. Disruption of the ribosome-associated protein quality control (RQC) pathway, which detects and resolves ribosome collision during translation, results in cGAS-dependent ISG expression and causes re-localization of cGAS from the nucleus to the cytosol. Indeed, cGAS preferentially binds collided ribosomes in vitro, and orthogonal perturbations that result in elevated levels of collided ribosomes and RQC activation cause sub-cellular re-localization of cGAS and ribosome binding in vivo as well. Thus, translation stress potently increases DNA-dependent cGAS activation. These findings have implications for the inflammatory response to viral infection and tumorigenesis, both of which substantially reprogram cellular protein synthesis.


Subject(s)
Cell Nucleus , Nucleotidyltransferases , Protein Biosynthesis , Ribosomes , Signal Transduction , Stress, Physiological , Active Transport, Cell Nucleus , Cell Nucleus/chemistry , Cell Nucleus/genetics , Cell Nucleus/metabolism , HEK293 Cells , Humans , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Ribosomes/chemistry , Ribosomes/genetics , Ribosomes/metabolism
15.
Cell ; 154(3): 609-22, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23890821

ABSTRACT

Newly synthesized membrane proteins are queried by ubiquitin ligase complexes and triaged between degradative and nondegradative fates. The mechanisms that convert modest differences in substrate-ligase interactions into decisive outcomes of ubiquitination are not well understood. Here, we reconstitute membrane protein recognition and ubiquitination in liposomes using purified components from a viral-mediated degradation pathway. We find that substrate-ligase interactions in the membrane directly influence processivity of ubiquitin attachment to modulate polyubiquitination. Unexpectedly, differential processivity alone could not explain the differential fates in cultured cells of degraded and nondegraded clients. Both computational and experimental analyses identified continuous deubiquitination as a prerequisite for maximal substrate discrimination. Deubiquitinases reduce polyubiquitin dwell times preferentially on clients that dissociate more rapidly from the ligase. This explains how small differences in substrate-ligase interaction can be amplified into larger differences in net degradation. These results provide a conceptual framework for substrate discrimination during membrane protein quality control.


Subject(s)
Endopeptidases/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , CD4 Antigens/chemistry , CD4 Antigens/metabolism , HEK293 Cells , HeLa Cells , Human Immunodeficiency Virus Proteins/metabolism , Humans , Liposomes/chemistry , Liposomes/metabolism , Membrane Proteins/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Viral Regulatory and Accessory Proteins/metabolism
16.
Nature ; 611(7934): 167-172, 2022 11.
Article in English | MEDLINE | ID: mdl-36261522

ABSTRACT

Most membrane proteins are synthesized on endoplasmic reticulum (ER)-bound ribosomes docked at the translocon, a heterogeneous ensemble of transmembrane factors operating on the nascent chain1,2. How the translocon coordinates the actions of these factors to accommodate its different substrates is not well understood. Here we define the composition, function and assembly of a translocon specialized for multipass membrane protein biogenesis3. This 'multipass translocon' is distinguished by three components that selectively bind the ribosome-Sec61 complex during multipass protein synthesis: the GET- and EMC-like (GEL), protein associated with translocon (PAT) and back of Sec61 (BOS) complexes. Analysis of insertion intermediates reveals how features of the nascent chain trigger multipass translocon assembly. Reconstitution studies demonstrate a role for multipass translocon components in protein topogenesis, and cells lacking these components show reduced multipass protein stability. These results establish the mechanism by which nascent multipass proteins selectively recruit the multipass translocon to facilitate their biogenesis. More broadly, they define the ER translocon as a dynamic assembly whose subunit composition adjusts co-translationally to accommodate the biosynthetic needs of its diverse range of substrates.


Subject(s)
Membrane Proteins , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Protein Transport , Ribosomes/metabolism , SEC Translocation Channels/metabolism , Substrate Specificity , Protein Stability
17.
Nature ; 611(7934): 161-166, 2022 11.
Article in English | MEDLINE | ID: mdl-36261528

ABSTRACT

Multipass membrane proteins play numerous roles in biology and include receptors, transporters, ion channels and enzymes1,2. How multipass proteins are co-translationally inserted and folded at the endoplasmic reticulum is not well understood2. The prevailing model posits that each transmembrane domain (TMD) of a multipass protein successively passes into the lipid bilayer through a front-side lateral gate of the Sec61 protein translocation channel3-9. The PAT complex, an intramembrane chaperone comprising Asterix and CCDC47, engages early TMDs of multipass proteins to promote their biogenesis by an unknown mechanism10. Here, biochemical and structural analysis of intermediates during multipass protein biogenesis showed that the nascent chain is not engaged with Sec61, which is occluded and latched closed by CCDC47. Instead, Asterix binds to and redirects the substrate to a location behind Sec61, where the PAT complex contributes to a multipass translocon surrounding a semi-enclosed, lipid-filled cavity11. Detection of multiple TMDs in this cavity after their emergence from the ribosome suggests that multipass proteins insert and fold behind Sec61. Accordingly, biogenesis of several multipass proteins was unimpeded by inhibitors of the Sec61 lateral gate. These findings elucidate the mechanism of an intramembrane chaperone and suggest a new framework for multipass membrane protein biogenesis at the endoplasmic reticulum.


Subject(s)
Endoplasmic Reticulum , Membrane Proteins , Molecular Chaperones , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Molecular Chaperones/metabolism , Protein Transport , SEC Translocation Channels/chemistry , Lipid Bilayers/metabolism , Ribosomes , Carrier Proteins
18.
Mol Cell ; 79(4): 603-614.e8, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32579943

ABSTRACT

Translating ribosomes that slow excessively incur collisions with trailing ribosomes. Persistent collisions are detected by ZNF598, a ubiquitin ligase that ubiquitinates sites on the ribosomal 40S subunit to initiate pathways of mRNA and protein quality control. The collided ribosome complex must be disassembled to initiate downstream quality control, but the mechanistic basis of disassembly is unclear. Here, we reconstitute the disassembly of a collided polysome in a mammalian cell-free system. The widely conserved ASC-1 complex (ASCC) containing the ASCC3 helicase disassembles the leading ribosome in an ATP-dependent reaction. Disassembly, but not ribosome association, requires 40S ubiquitination by ZNF598, but not GTP-dependent factors, including the Pelo-Hbs1L ribosome rescue complex. Trailing ribosomes can elongate once the roadblock has been removed and only become targets if they subsequently stall and incur collisions. These findings define the specific role of ASCC during ribosome-associated quality control and identify the molecular target of its activity.


Subject(s)
Amino Acid Transport System y+/metabolism , Multiprotein Complexes/metabolism , Protein Biosynthesis , Ribosomes/metabolism , Amino Acid Transport System y+/genetics , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell-Free System , DNA Helicases/genetics , DNA Helicases/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Multiprotein Complexes/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Peptide Termination Factors/genetics , Peptide Termination Factors/metabolism , Polyribosomes/genetics , Polyribosomes/metabolism , Rabbits , Ribosome Subunits/genetics , Ribosome Subunits/metabolism , Ribosomes/genetics , Ubiquitination
19.
Cell ; 146(1): 13-5, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21729778

ABSTRACT

The transmembrane domains in a membrane protein must be recognized and correctly oriented before their insertion into the lipid bilayer. Devaraneni et al. (2011) generate snapshots at different stages of membrane protein biogenesis, revealing a dynamic set of steps that imply an unexpectedly flexible membrane insertion machinery.

20.
Cell ; 147(7): 1576-88, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22196732

ABSTRACT

Metazoans secrete an extensive array of small proteins essential for intercellular communication, defense, and physiologic regulation. Their synthesis takes mere seconds, leaving minimal time for recognition by the machinery for cotranslational protein translocation into the ER. The pathway taken by these substrates to enter the ER is not known. Here, we show that both in vivo and in vitro, small secretory proteins can enter the ER posttranslationally via a transient cytosolic intermediate. This intermediate contained calmodulin selectively bound to the signal peptides of small secretory proteins. Calmodulin maintained the translocation competence of small-protein precursors, precluded their aggregation and degradation, and minimized their inappropriate interactions with other cytosolic polypeptide-binding proteins. Acute inhibition of calmodulin specifically impaired small-protein translocation in vitro and in cells. These findings establish a mammalian posttranslational pathway for small-protein secretion and identify an unexpected role for calmodulin in chaperoning these precursors safely through the cytosol.


Subject(s)
Calmodulin/metabolism , Proteins/metabolism , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Endoplasmic Reticulum/metabolism , HEK293 Cells , HeLa Cells , Humans , Metabolic Networks and Pathways , Prolactin/chemistry , Prolactin/metabolism , Protein Processing, Post-Translational , Protein Sorting Signals , Protein Transport , Proteins/chemistry , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL