Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Med Chem ; 108: 117787, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38838580

ABSTRACT

19 derivatives of 1-benzyl-3-arylpyrazole-5-carboxamides (H1-H19) and 5 derivatives of 1-benzyl-5-arylpyrazole-3-carboxamides (J1-J5) have been designed and synthesized as potential negative allosteric modulators (NAMs) for the ß2-adrenergic receptor (ß2AR). The new pyrazole derivatives were screened on the classic G-protein dependent signaling pathway at ß2AR. The majority of 1-benzyl-3-aryl-pyrazole-5-carboxamide derivatives show more potent allosteric antagonistic activity against ß2AR than Cmpd-15, the first reported ß2AR NAM. However, the 1-benzyl-5-arylpyrazole-3-carboxamide derivatives exhibit very poor or even no allosteric antagonistic activity for ß2AR. Furthermore, the active pyrazole derivatives have relative better drug-like profiles than Cmpd-15. Taken together, we discovered a series of derivatives of 1-benzyl-3-arylpyrazole-5-carboxamides as a novel scaffold of ß2AR NAM.


Subject(s)
Receptors, Adrenergic, beta-2 , Receptors, Adrenergic, beta-2/metabolism , Receptors, Adrenergic, beta-2/chemistry , Allosteric Regulation/drug effects , Humans , Structure-Activity Relationship , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Molecular Structure , Adrenergic beta-2 Receptor Antagonists/pharmacology , Adrenergic beta-2 Receptor Antagonists/chemistry , Adrenergic beta-2 Receptor Antagonists/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL