Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Genet Genomics ; 299(1): 44, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625590

ABSTRACT

Megacystis-microcolon-hypoperistalsis-syndrome (MMIHS) is a rare and early-onset congenital disease characterized by massive abdominal distension due to a large non-obstructive bladder, a microcolon and decreased or absent intestinal peristalsis. While in most cases inheritance is autosomal dominant and associated with heterozygous variant in ACTG2 gene, an autosomal recessive transmission has also been described including pathogenic bialellic loss-of-function variants in MYH11. We report here a novel family with visceral myopathy related to MYH11 gene, confirmed by whole genome sequencing (WGS). WGS was performed in two siblings with unusual presentation of MMIHS and their two healthy parents. The 38 years-old brother had severe bladder dysfunction and intestinal obstruction, whereas the 30 years-old sister suffered from end-stage kidney disease with neurogenic bladder and recurrent sigmoid volvulus. WGS was completed by retrospective digestive pathological analyses. Compound heterozygous variants of MYH11 gene were identified, associating a deletion of 1.2 Mb encompassing MYH11 inherited from the father and an in-frame variant c.2578_2580del, p.Glu860del inherited from the mother. Pathology analyses of the colon and the rectum revealed structural changes which significance of which is discussed. Cardiac and vascular assessment of the mother was normal. This is the second report of a visceral myopathy corresponding to late-onset form of MMIHS related to compound heterozygosity in MYH11; with complete gene deletion and a hypomorphic allele in trans. The hypomorphic allele harbored by the mother raised the question of the risk of aortic disease in adults. This case shows the interest of WGS in deciphering complex phenotypes, allowing adapted diagnosis and genetic counselling.


Subject(s)
Abnormalities, Multiple , Colon , Duodenum , Fetal Diseases , Intestinal Obstruction , Intestinal Pseudo-Obstruction , Urinary Bladder , Adult , Humans , Male , Colon/abnormalities , Duodenum/abnormalities , Intestinal Pseudo-Obstruction/genetics , Myosin Heavy Chains/genetics , Retrospective Studies , Urinary Bladder/abnormalities , Female
2.
Clin Genet ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940299

ABSTRACT

HDR syndrome is a rare disease characterized by hypoparathyroidism, deafness, and renal dysplasia. An autosomal dominant disease caused by heterozygous pathogenic GATA3 variants, the penetrance of each associated condition is variable. Literature reviews have provided some answers, but many questions remain, in particular what the relationship is between genotype and phenotype. The current study examines 28 patients with HDR syndrome combined with an exhaustive review of the literature. Some conditions such as hearing loss are almost always present, while others described as rare initially, do not seem to be so rare after all (genital malformations and basal ganglia calcifications). By modeling pathogenic GATA3 variants found in HDR syndrome, we found that missense variations appear to always be located in the same area (close to the two Zinc Finger domain). We describe new pathogenic GATA3 variants, of which some seem to always be associated with certain conditions. Many audiograms were studied to establish a typical audiometric profile associated with a phenotype in HDR. As mentioned in the literature, hearing function should always be assessed as early as possible and follow up of patients with HDR syndrome should include monitoring of parathyroid function and vesicoureteral reflux in order to prevent complications.

3.
Pediatr Nephrol ; 39(2): 505-511, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37656311

ABSTRACT

BACKGROUND: The management of posterior urethral valve (PUV) in neonates requires close monitoring in the intensive care unit because of the risk of post-obstructive diuresis (POD). Our aim was to describe the incidence and factors associated with POD in newborns treated for PUV. METHODS: Retrospective analysis of the medical records of all neonates who underwent surgical intervention for PUV in our neonatal intensive care unit between January 2014 and April 2021. RESULTS: Of the 40 patients included, 15 (37.5%) had POD defined by urine output > 6 ml.kg-1.h-1 during the first 24 h following urinary tract obstruction relief. At prenatal ultrasound examinations, oligohydramnios was more common in the group with POD than in the group without (53.3% vs. 8%, p = 0.002). Preterm birth was more frequent in neonates with POD (66.7% vs. 8%; p < 0.001). Median serum creatinine (212 [137-246] vs. 95 [77-125] µmol.l-1; p < 0.001) and urea (8.5 [5.2-12.2] vs. 4.1 [3.5-4.7] mmol.l-1; p < 0.001) concentrations on the day of obstruction relief were significantly higher in the group with POD than in the group without. After adjustment for prematurity, logistic regression models confirmed correlation between the occurrence of POD and the severity of the consequences of urethral obstruction (i.e., oligohydramnios and serum creatinine levels; ß = 2.90 [0.88; 5.36], p = 0.013 and ß = 0.014 [0.003; 0.031], p = 0.034, respectively). CONCLUSIONS: In neonates, POD is common after the relief of PUV-related obstruction. Our findings may help to identify patients at highest risk. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Oligohydramnios , Premature Birth , Urethral Obstruction , Urinary Tract , Pregnancy , Female , Humans , Infant, Newborn , Retrospective Studies , Creatinine , Urethral Obstruction/etiology , Urethral Obstruction/surgery , Diuresis , Urethra/surgery
4.
J Med Genet ; 60(10): 993-998, 2023 10.
Article in English | MEDLINE | ID: mdl-37080586

ABSTRACT

BACKGROUND: Early-onset isolated systemic hypertension is a rare condition of unknown genetic origin. Renovascular, renal parenchymal diseases or aortic coarctation are the most common causes of secondary systemic hypertension in younger children and neonates. We investigated the genetic bases of early-onset isolated systemic hypertension. METHODS: Whole-exome sequencing (WES) was followed by variant filtering and Sanger sequencing for validation and familial segregation of selected variants in a large consanguineous family. mRNA expression was performed to evaluate the impact of the predicted pathogenic variant on gene expression. WES or Sanger sequencing was performed in additional unrelated affected individuals. RESULTS: In one consanguineous family with four children presenting with isolated neonatal-onset systemic hypertension, we identified homozygous stop-gain variant in the NPR1 gene (NM_000906.4:c.1159C>T (p.Arg387Ter)) in the affected individuals. This variant leads to a dramatic reduction of NPR1 RNA levels. NPR1 gene analysis of additional families allowed the identification of another family with two affected children carrying homozygous frameshift variant in NPR1 (NM_000906.4:c.175del (p.Val59TrpfsTer8)). CONCLUSION: We show for the first time that biallelic loss of function of NPR1 is responsible for isolated neonatal-onset systemic hypertension in humans, which represents a new autosomal recessive genetic cause of infantile systemic hypertension or cardiogenic shock. This is consistent with studies reporting early-onset systemic hypertension and sudden death in Npr1-deficient mice. NPR1 gene analysis should be therefore investigated in infants with early-onset systemic hypertension with or without cardiogenic shock of unknown origin.


Subject(s)
Hypertension , Infant, Newborn, Diseases , Animals , Humans , Infant, Newborn , Mice , Consanguinity , Frameshift Mutation , Homozygote , Hypertension/genetics , Shock, Cardiogenic
5.
Kidney Int ; 104(2): 367-377, 2023 08.
Article in English | MEDLINE | ID: mdl-37230224

ABSTRACT

X-linked Alport syndrome (XLAS) is an inherited kidney disease caused exclusively by pathogenic variants in the COL4A5 gene. In 10-20% of cases, DNA sequencing of COL4A5 exons or flanking regions cannot identify molecular causes. Here, our objective was to use a transcriptomic approach to identify causative events in a group of 19 patients with XLAS without identified mutation by Alport gene panel sequencing. Bulk RNAseq and/or targeted RNAseq using a capture panel of kidney genes was performed. Alternative splicing events were compared to those of 15 controls by a developed bioinformatic score. When using targeted RNAseq, COL4A5 coverage was found to be 23-fold higher than with bulk RNASeq and revealed 30 significant alternative splicing events in 17 of the 19 patients. After computational scoring, a pathogenic transcript was found in all patients. A causative variant affecting COL4A5 splicing and absent in the general population was identified in all cases. Altogether, we developed a simple and robust method for identification of aberrant transcripts due to pathogenic deep-intronic COL4A5 variants. Thus, these variants, potentially targetable by specific antisense oligonucleotide therapies, were found in a high percentage of patients with XLAS in whom pathogenic variants were missed by conventional DNA sequencing.


Subject(s)
Nephritis, Hereditary , Humans , Nephritis, Hereditary/diagnosis , Nephritis, Hereditary/genetics , Nephritis, Hereditary/pathology , Collagen Type IV/genetics , Collagen Type IV/metabolism , Mutation , Exons , RNA Splicing
6.
Kidney Int ; 104(2): 378-387, 2023 08.
Article in English | MEDLINE | ID: mdl-37230223

ABSTRACT

Nephronophthisis (NPH) is an autosomal-recessive ciliopathy representing one of the most frequent causes of kidney failure in childhood characterized by a broad clinical and genetic heterogeneity. Applied to one of the worldwide largest cohorts of patients with NPH, genetic analysis encompassing targeted and whole exome sequencing identified disease-causing variants in 600 patients from 496 families with a detection rate of 71%. Of 788 pathogenic variants, 40 known ciliopathy genes were identified. However, the majority of patients (53%) bore biallelic pathogenic variants in NPHP1. NPH-causing gene alterations affected all ciliary modules defined by structural and/or functional subdomains. Seventy six percent of these patients had progressed to kidney failure, of which 18% had an infantile form (under five years) and harbored variants affecting the Inversin compartment or intraflagellar transport complex A. Forty eight percent of patients showed a juvenile (5-15 years) and 34% a late-onset disease (over 15 years), the latter mostly carrying variants belonging to the Transition Zone module. Furthermore, while more than 85% of patients with an infantile form presented with extra-kidney manifestations, it only concerned half of juvenile and late onset cases. Eye involvement represented a predominant feature, followed by cerebellar hypoplasia and other brain abnormalities, liver and skeletal defects. The phenotypic variability was in a large part associated with mutation types, genes and corresponding ciliary modules with hypomorphic variants in ciliary genes playing a role in early steps of ciliogenesis associated with juvenile-to-late onset NPH forms. Thus, our data confirm a considerable proportion of late-onset NPH suggesting an underdiagnosis in adult chronic kidney disease.


Subject(s)
Ciliopathies , Kidney Diseases, Cystic , Kidney Failure, Chronic , Polycystic Kidney Diseases , Adult , Humans , Kidney Failure, Chronic/diagnosis , Polycystic Kidney Diseases/complications , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Mutation , Ciliopathies/genetics
7.
Clin Genet ; 103(1): 114-118, 2023 01.
Article in English | MEDLINE | ID: mdl-36089563

ABSTRACT

Integrin Subunit Alpha 8 gene (ITGA8) encodes an integrin chain that is known to be critical in the early stage of the kidney development. Bi-allelic pathogenic variants in ITGA8 are associated with bilateral renal agenesis, as well as anomalies involving urogenital system. Here, we report two unrelated patients presenting with slowly progressing chronic kidney disease associated with bilateral renal hypodysplasia carrying homozygous loss of function variants in the ITGA8 gene. These results broaden the clinical and genotypic spectrum of ITGA8 defects, revealing the high and unexpected degree of phenotypic heterogeneity of this autosomal recessive disease. Our study emphasizes the usefulness of Next-Generation Sequencing in unraveling the genetic cause of chronic kidney disease of unknown etiology, and raises the question of genetic modifiers involved in the variation of the phenotypes associated with autosomal recessive ITGA8 pathogenic variants.


Subject(s)
Integrin alpha Chains , Kidney Diseases , Humans , Integrin alpha Chains/genetics , Kidney Diseases/genetics
8.
Clin Genet ; 103(6): 693-698, 2023 06.
Article in English | MEDLINE | ID: mdl-36705481

ABSTRACT

Whole-genome sequencing (WGS) now allows identification of multiple variants in non-coding regions. The large number of variants identified by WGS however complicates their interpretation. Through identification of the first deep intronic variant in NPHS2, which encodes podocin, a protein implicated in autosomal recessive steroid resistant nephrotic syndrome (SRNS), we compare herein three different tools including a newly developed targeted NGS-based RNA-sequencing to explore the splicing effect of intronic variations. WGS identified two different variants in NPHS2 eventually involved in the disease. Through RT-PCR, exon-trapping Minigene assay and targeted RNA sequencing, we were able to identify the splicing defect in NPHS2 mRNA from patient kidney tissue. Only targeted RNA-seq simultaneously analyzed the effect of multiple variants and offered the opportunity to quantify consequences on splicing. Identifying deep intronic variants and their role in disease is of utmost importance. Alternative splicing can be predicted by in silico tools but always requires confirmation through functional testing with RNA analysis from the implicated tissue remaining the gold standard. When several variants with potential effects on splicing are identified by WGS, a targeted RNA sequencing panel could be of great value.


Subject(s)
Nephrotic Syndrome , Humans , Mutation , Whole Genome Sequencing , Nephrotic Syndrome/genetics , RNA, Messenger/genetics
9.
Hum Mutat ; 43(3): 347-361, 2022 03.
Article in English | MEDLINE | ID: mdl-35005812

ABSTRACT

We report the screening of a large panel of genes in a series of 100 fetuses (98 families) affected with severe renal defects. Causative variants were identified in 22% of cases, greatly improving genetic counseling. The percentage of variants explaining the phenotype was different according to the type of phenotype. The highest diagnostic yield was found in cases affected with the ciliopathy-like phenotype (11/15 families and, in addition, a single heterozygous or a homozygous Class 3 variant in PKHD1 in three unrelated cases with autosomal recessive polycystic kidney disease). The lowest diagnostic yield was observed in cases with congenital anomalies of the kidney and urinary tract (9/78 families and, in addition, Class 3 variants in GREB1L in three unrelated cases with bilateral renal agenesis). Inheritance was autosomal recessive in nine genes (PKHD1, NPHP3, CEP290, TMEM67, DNAJB11, FRAS1, ACE, AGT, and AGTR1), and autosomal dominant in six genes (PKD1, PKD2, PAX2, EYA1, BICC1, and MYOCD). Finally, we developed an original approach of next-generation sequencing targeted RNA sequencing using the custom capture panel used for the sequencing of DNA, to validate one MYOCD heterozygous splicing variant identified in two male siblings with megabladder and inherited from their healthy mother.


Subject(s)
Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Antigens, Neoplasm , Cell Cycle Proteins/genetics , Cytoskeletal Proteins/genetics , Female , Fetus/abnormalities , High-Throughput Nucleotide Sequencing , Homozygote , Humans , Kidney/abnormalities , Kidney Diseases/congenital , Kidney Diseases/diagnosis , Kidney Diseases/genetics , Male , Mutation , Polycystic Kidney, Autosomal Dominant/genetics
10.
Nephrol Dial Transplant ; 37(2): 239-254, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34264297

ABSTRACT

The overall diagnostic yield of massively parallel sequencing-based tests in patients with chronic kidney disease (CKD) is 30% for paediatric cases and 6-30% for adult cases. These figures should encourage nephrologists to frequently use genetic testing as a diagnostic means for their patients. However, in reality, several barriers appear to hinder the implementation of massively parallel sequencing-based diagnostics in routine clinical practice. In this article we aim to support the nephrologist to overcome these barriers. After a detailed discussion of the general items that are important to genetic testing in nephrology, namely genetic testing modalities and their indications, clinical information needed for high-quality interpretation of genetic tests, the clinical benefit of genetic testing and genetic counselling, we describe each of these items more specifically for the different groups of genetic kidney diseases and for CKD of unknown origin.


Subject(s)
Nephrology , Renal Insufficiency, Chronic , Adult , Child , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Kidney , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics
11.
Nephrol Dial Transplant ; 37(12): 2351-2362, 2022 11 23.
Article in English | MEDLINE | ID: mdl-35772019

ABSTRACT

Kidney dysplasia is one of the most frequent causes of chronic kidney failure in children. While dysplasia is a histological diagnosis, the term 'kidney dysplasia' is frequently used in daily clinical life without histopathological confirmation. Clinical parameters of kidney dysplasia have not been clearly defined, leading to imprecise communication amongst healthcare professionals and patients. This lack of consensus hampers precise disease understanding and the development of specific therapies. Based on a structured literature search, we here suggest a common basis for clinical, imaging, genetic, pathological and basic science aspects of non-obstructive kidney dysplasia associated with functional kidney impairment. We propose to accept hallmark sonographic findings as surrogate parameters defining a clinical diagnosis of dysplastic kidneys. We suggest differentiated clinical follow-up plans for children with kidney dysplasia and summarize established monogenic causes for non-obstructive kidney dysplasia. Finally, we point out and discuss research gaps in the field.


Subject(s)
Kidney Diseases , Renal Insufficiency , Urogenital Abnormalities , Child , Humans , Kidney/pathology , Kidney Diseases/pathology , Renal Insufficiency/pathology
12.
Kidney Int ; 99(2): 405-409, 2021 02.
Article in English | MEDLINE | ID: mdl-33129895

ABSTRACT

DNAJB11 (DnaJ Heat Shock Protein Family (Hsp40) Member B11) heterozygous loss of function variations have been reported in autosomal dominant cystic kidney disease with extensive fibrosis, associated with maturation and trafficking defect involving both the autosomal dominant polycystic kidney disease protein polycystin-1 and the autosomal dominant tubulointerstitial kidney disease protein uromodulin. Here we show that biallelic pathogenic variations in DNAJB11 lead to a severe fetal disease including enlarged cystic kidneys, dilation and proliferation of pancreatic duct cells, and liver ductal plate malformation, an association known as Ivemark II syndrome. Cysts of the kidney were developed exclusively from uromodulin negative tubular segments. In addition, tubular cells from the affected kidneys had elongated primary cilia, a finding previously reported in ciliopathies. Thus, our data show that the recessive disease associated with DNAJB11 variations is a ciliopathy rather than a disease of the autosomal dominant tubulointerstitial kidney disease spectrum, and prompt screening of DNAJB11 in fetal hyperechogenic/cystic kidneys.


Subject(s)
Abnormalities, Multiple , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , HSP40 Heat-Shock Proteins , Humans , Kidney/abnormalities , Kidney/diagnostic imaging , Liver/abnormalities , Pancreas/abnormalities , Polycystic Kidney, Autosomal Dominant/complications , Polycystic Kidney, Autosomal Dominant/genetics
13.
Kidney Int ; 99(1): 48-58, 2021 01.
Article in English | MEDLINE | ID: mdl-32918941

ABSTRACT

Cystinuria (OMIM 220100) is an autosomal recessive hereditary disorder in which high urinary cystine excretion leads to the formation of cystine stones because of the low solubility of cystine at normal urinary pH. We developed clinical practice recommendation for diagnosis, surgical and medical treatment, and follow-up of patients with cystinuria. Elaboration of these clinical practice recommendations spanned from June 2018 to December 2019 with a consensus conference in January 2019. Selected topic areas were chosen by the co-chairs of the conference. Working groups focusing on specific topics were formed. Group members performed systematic literature review using MEDLINE, drafted the statements, and discussed them. They included geneticists, medical biochemists, pediatric and adult nephrologists, pediatric and adult urologists experts in cystinuria, and the Metabolic Nephropathy Joint Working Group of the European Reference Network for Rare Kidney Diseases (ERKNet) and eUROGEN members. Overall 20 statements were produced to provide guidance on diagnosis, genetic analysis, imaging techniques, surgical treatment (indication and modalities), conservative treatment (hydration, dietetic, alkalinization, and cystine-binding drugs), follow-up, self-monitoring, complications (renal failure and hypertension), and impact on quality of life. Because of the rarity of the disease and the poor level of evidence in the literature, these statements could not be graded. This clinical practice recommendation provides guidance on all aspects of the management of both adults and children with cystinuria, including diagnosis, surgery, and medical treatment.


Subject(s)
Cystinuria , Adult , Child , Consensus , Cystine , Cystinuria/diagnosis , Cystinuria/epidemiology , Cystinuria/genetics , Humans , Kidney , Quality of Life
14.
Pediatr Nephrol ; 36(8): 2361-2369, 2021 08.
Article in English | MEDLINE | ID: mdl-33580824

ABSTRACT

BACKGROUND: Co-occurrence of polycystic kidney disease and hyperinsulinemic hypoglycemia has been reported in children in a few families associated with a variant in the promotor of the PMM2 gene, at position -167 upstream of the coding sequence. PMM2 encodes phosphomannomutase 2, a key enzyme in N-glycosylation. While biallelic coding PMM2 mutations are involved in congenital disorder of glycosylation CDG1A, that particular variant in the promoter of the gene, either in the homozygous state or associated with a mutation in the coding exons of the gene, is thought to restrict the N-glycosylation defect to the kidney and the pancreas. METHODS: Targeted exome sequencing of a panel of genes involved in monogenic kidney diseases. RESULTS: We identified a PMM2 variant at position -167 associated with a pathogenic PMM2 variant in the coding exons in 3 families, comprising 6 cases affected with a cystic kidney disease. The spectrum of phenotypes was very broad, from extremely enlarged fetal cystic kidneys in the context of a COACH-like syndrome, to isolated cystic kidney disease with small kidneys, slowly progressing toward kidney failure in adulthood. Hypoglycemia was reported only in one case. CONCLUSION: These data show that the PMM2 promotor variation, in trans of a PMM2 coding mutation, is associated with a wide spectrum of kidney phenotypes, and is not always associated with extra-renal symptoms. When present, extra-renal defects may include COACH-like syndrome. These data prompt screening of PMM2 in unresolved cases of fetal hyperechogenic/cystic kidneys as well as in cystic kidney disease in children and adults. Graphical Abstract.


Subject(s)
Polycystic Kidney Diseases , Congenital Hyperinsulinism , Humans , Mutation , Phenotype , Phosphotransferases (Phosphomutases) , Promoter Regions, Genetic , Syndrome
15.
Pediatr Nephrol ; 36(5): 1165-1173, 2021 05.
Article in English | MEDLINE | ID: mdl-33165639

ABSTRACT

BACKGROUND: Autosomal recessive polycystic kidney disease (ARPKD) is a rare ciliopathy characterized by congenital hepatic fibrosis and cystic kidney disease. Lack of data about long-term follow-up makes it difficult to discuss timing and type of organ transplantation. Our objectives were to evaluate long-term evolution and indications for transplantation, from birth to adulthood. METHODS: Neonatal survivors and patients diagnosed in postnatal period with ARPKD between 1985 January and 2017 December from 3 French pediatric centers were retrospectively enrolled in the study. RESULTS: Fifty patients with mean follow-up 12.5 ± 1 years were enrolled. ARPKD was diagnosed before birth in 24%, and at mean age 1.8 years in others. Thirty-three patients were < 1 year of age at first symptoms, which were mostly kidney-related. These most often presented high blood pressure during follow-up. Portal hypertension was diagnosed in 29 patients (58%), 4 of them with bleeding from esophageal varices. Eight patients presented cholangitis (> 3 episodes in three children). Liver function was normal in all patients. Nine children received a kidney transplant without liver complications. A 20-year-old patient received a combined liver-kidney transplant (CLKT) for recurrent cholangitis, and a 15-year-old boy an isolated liver transplant for uncontrollable variceal bleeding despite portosystemic shunt. CONCLUSIONS: Long-term outcome in patients with ARPKD is heterogeneous, and in this cohort did not depend on age at diagnosis except for blood pressure. Few patients required liver transplantation. Indications for liver or combined liver-kidney transplantation were limited to recurrent cholangitis or uncontrollable portal hypertension. Liver complications after kidney transplantation were not significant.


Subject(s)
Cholangitis , Esophageal and Gastric Varices , Hypertension, Portal , Polycystic Kidney, Autosomal Recessive , Adolescent , Child , Child, Preschool , Cholangitis/etiology , Esophageal and Gastric Varices/etiology , Humans , Hypertension, Portal/etiology , Infant , Infant, Newborn , Kidney/surgery , Male , Polycystic Kidney, Autosomal Recessive/complications , Polycystic Kidney, Autosomal Recessive/diagnosis , Retrospective Studies , Young Adult
16.
Am J Hum Genet ; 101(5): 803-814, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29100091

ABSTRACT

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute a major cause of chronic kidney disease in children and 20% of prenatally detected anomalies. CAKUT encompass a spectrum of developmental kidney defects, including renal agenesis, hypoplasia, and cystic and non-cystic dysplasia. More than 50 genes have been reported as mutated in CAKUT-affected case subjects. However, the pathophysiological mechanisms leading to bilateral kidney agenesis (BKA) remain largely elusive. Whole-exome or targeted exome sequencing of 183 unrelated familial and/or severe CAKUT-affected case subjects, including 54 fetuses with BKA, led to the identification of 16 heterozygous variants in GREB1L (growth regulation by estrogen in breast cancer 1-like), a gene reported as a target of retinoic acid signaling. Four loss-of-function and 12 damaging missense variants, 14 being absent from GnomAD, were identified. Twelve of them were present in familial or simplex BKA-affected case subjects. Female BKA-affected fetuses also displayed uterus agenesis. We demonstrated a significant association between GREB1L variants and BKA. By in situ hybridization, we showed expression of Greb1l in the nephrogenic zone in developing mouse kidney. We generated a Greb1l knock-out mouse model by CRISPR-Cas9. Analysis at E13.5 revealed lack of kidneys and genital tract anomalies in male and female Greb1l-/- embryos and a slight decrease in ureteric bud branching in Greb1l+/- embryos. We showed that Greb1l invalidation in mIMCD3 cells affected tubulomorphogenesis in 3D-collagen culture, a phenotype rescued by expression of the wild-type human protein. This demonstrates that GREB1L plays a major role in early metanephros and genital development in mice and humans.


Subject(s)
Congenital Abnormalities/genetics , Kidney Diseases/congenital , Kidney/abnormalities , Mutation/genetics , Neoplasm Proteins/genetics , Proteins/genetics , Animals , Child , Exome/genetics , Female , Fetus/abnormalities , Heterozygote , Humans , Kidney Diseases/genetics , Male , Membrane Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Urinary Tract/abnormalities , Urogenital Abnormalities/genetics
17.
N Engl J Med ; 376(8): 742-754, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28121514

ABSTRACT

BACKGROUND: The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. METHODS: We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. RESULTS: We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10-14). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. CONCLUSIONS: We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.).


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Chromosome Deletion , DiGeorge Syndrome/genetics , Haploinsufficiency , Kidney/abnormalities , Nuclear Proteins/genetics , Urinary Tract/abnormalities , Adolescent , Animals , Child , Chromosomes, Human, Pair 22 , Exome , Female , Heterozygote , Humans , Infant , Infant, Newborn , Male , Mice , Models, Animal , Sequence Analysis, DNA , Young Adult , Zebrafish
18.
Blood ; 132(5): 469-483, 2018 08 02.
Article in English | MEDLINE | ID: mdl-29891534

ABSTRACT

Chuvash polycythemia is an autosomal recessive form of erythrocytosis associated with a homozygous p.Arg200Trp mutation in the von Hippel-Lindau (VHL) gene. Since this discovery, additional VHL mutations have been identified in patients with congenital erythrocytosis, in a homozygous or compound-heterozygous state. VHL is a major tumor suppressor gene, mutations in which were first described in patients presenting with VHL disease, which is characterized by the development of highly vascularized tumors. Here, we identify a new VHL cryptic exon (termed E1') deep in intron 1 that is naturally expressed in many tissues. More importantly, we identify mutations in E1' in 7 families with erythrocytosis (1 homozygous case and 6 compound-heterozygous cases with a mutation in E1' in addition to a mutation in VHL coding sequences) and in 1 large family with typical VHL disease but without any alteration in the other VHL exons. In this study, we show that the mutations induced a dysregulation of VHL splicing with excessive retention of E1' and were associated with a downregulation of VHL protein expression. In addition, we demonstrate a pathogenic role for synonymous mutations in VHL exon 2 that altered splicing through E2-skipping in 5 families with erythrocytosis or VHL disease. In all the studied cases, the mutations differentially affected splicing, correlating with phenotype severity. This study demonstrates that cryptic exon retention and exon skipping are new VHL alterations and reveals a novel complex splicing regulation of the VHL gene. These findings open new avenues for diagnosis and research regarding the VHL-related hypoxia-signaling pathway.


Subject(s)
Exons , Genetic Predisposition to Disease , Mutation , Polycythemia/genetics , RNA Splicing , Von Hippel-Lindau Tumor Suppressor Protein/genetics , von Hippel-Lindau Disease/genetics , Adolescent , Adult , Child , Female , Heterozygote , Humans , Male , Middle Aged , Pedigree , Polycythemia/classification , Polycythemia/pathology , Young Adult , von Hippel-Lindau Disease/pathology
19.
Pediatr Nephrol ; 35(6): 1125-1128, 2020 06.
Article in English | MEDLINE | ID: mdl-32198635

ABSTRACT

BACKGROUND: Bi-allelic loss of function variations in genes encoding proteins of the renin-angiotensin system (AGT, ACE, REN, AGTR1) are associated with autosomal recessive renal tubular dysgenesis, a severe disease characterized by the absence of differentiated proximal tubules leading to fetal anuria and neonatal end-stage renal disease. CASE-DIAGNOSIS/TREATMENT: We identified bi-allelic loss of function mutations in ACE, the gene encoding angiotensin-converting enzyme, in 3 unrelated cases displaying progressive chronic renal failure, whose DNAs had been sent for suspicion of juvenile hyperuricemic nephropathy, nephronophthisis, and cystic renal disease, respectively. In all cases, patients were affected with anemia whose severity was unexpected regarding the level of renal failure and with important polyuro-polydipsia. CONCLUSIONS: Bi-allelic loss of function mutation of ACE can have atypical and sometimes late presentation with chronic renal failure, anemia (out of proportion with the level of renal failure), and polyuro-polydipsia. These data illustrate the usefulness of next generation sequencing and "agnostic" approaches to elucidate cases with chronic kidney disease of unknown etiology and to broaden the spectrum of phenotypes of monogenic renal diseases. It also raises the question of genetic modifiers involved in the variation of the phenotypes associated with these mutations.


Subject(s)
Kidney Tubules, Proximal/abnormalities , Renin-Angiotensin System/genetics , Urogenital Abnormalities/diagnosis , Adolescent , Child, Preschool , Female , Humans , Infant, Newborn , Male , Mutation , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics , Urogenital Abnormalities/genetics
20.
Pediatr Nephrol ; 35(6): 1033-1040, 2020 06.
Article in English | MEDLINE | ID: mdl-32040628

ABSTRACT

BACKGROUND: While typical ultrasound patterns of ciliopathy-related cystic kidney diseases have been described in children, ultrasound findings can overlap between different diseases and atypical patterns exist. In this study, we assessed the presence of the "salt and pepper" pattern in different renal ciliopathies and looked for additional ultrasound features. METHODS: This single-center, retrospective study included all patients with a molecular-proven diagnosis of renal ciliopathy, referred to our center between 2007 and 2017. Images from the first and follow-up ultrasound exams were reviewed. Basic ultrasound features were grouped into patterns and compared to genetic diagnoses. The "salt and pepper" aspect was described as enlarged kidneys with heterogeneous, increased parenchymal echogenicity. RESULTS: A total of 41 children with 5 different renal ciliopathies were included (61% male; median age, 6 years [range, 3 days to 17 years]). The "salt and pepper" pattern was present in 14/15 patients with an autosomal recessive polycystic kidney disease (ARPKD). A similar pattern was found in 1/4 patients with an autosomal dominant polycystic kidney disease and in 1/11 patients with HNF1B mutation. Additional signs found were areas of cortical sparing, comet-tail artifacts, and color comet-tail artifacts. CONCLUSION: Although the "salt and pepper" ultrasound pattern is predominantly found in ARPKD, it may be detected in other ciliopathies. The color comet-tail artifact is an interesting sign when suspecting a renal ciliopathy in case of enlarged hyperechoic kidneys with no detectable microcysts on B-mode grayscale ultrasound.


Subject(s)
Polycystic Kidney, Autosomal Dominant/pathology , Adolescent , Child , Child, Preschool , Databases, Factual , Female , Humans , Infant , Infant, Newborn , Male , Mutation , Polycystic Kidney, Autosomal Dominant/diagnostic imaging , Polycystic Kidney, Autosomal Dominant/genetics , Retrospective Studies , Ultrasonography, Doppler, Color
SELECTION OF CITATIONS
SEARCH DETAIL