ABSTRACT
Spontaneous intracranial hypotension may result in debilitating postural headaches and severe neurological symptoms due to secondary cerebellar sagging. The most common cause is the cerebrospinal fluid (CSF) leak within the spinal canal. Although previously reported in only a few cases, also paraspinal lymphatic malformations causing vertebral bone destruction may occasionally result in CSF leak to these pathological formations. Here, we present a case of a 9-year-old girl with generalized lymphatic anomaly (GLA) presenting with severe postural headache. Radiological imaging revealed a typical feature of cerebellar sagging. Myelography localized the CSF leakage into vertebral bodies of C7 and Th1, which both were partly involved in pathological paravertebral masses of known lymphatic anomaly, and from there along the right C8 nerve root sleeve into the anomaly. As the C8-nerve root could not be ligated due to the risk of significant neurological injury, we attempted image-guided targeted percutaneous epidural placement of a blood patch directly into the foramen at the affected level. The procedure resulted in obliteration of the fistula and regression of cerebellar sagging, with significant relief of symptoms. Although it is an extremely rare coincidence, patients with paraspinal lymphatic malformations may develop intraspinal CSF leak into these pathological formations. The present case report suggests that besides a direct surgical obliteration of the fistula and sacrificing the nerve root, a targeted percutaneous epidural blood patch may be a possible alternative in the case of a functionally important nerve root.
Subject(s)
Fistula , Intracranial Hypotension , Child , Female , Humans , Blood Patch, Epidural/methods , Cerebrospinal Fluid Leak/surgery , Fistula/complications , Intracranial Hypotension/complications , Magnetic Resonance Imaging , Myelography/methodsABSTRACT
PURPOSE: GATA2 deficiency is a rare primary immunodeficiency that has become increasingly recognized due to improved molecular diagnostics and clinical awareness. The only cure for GATA2 deficiency is allogeneic hematopoietic stem cell transplantation (allo-HSCT). The inconsistency of genotype-phenotype correlations makes the decision regarding "who and when" to transplant challenging. Despite considerable morbidity and mortality, the reported proportion of patients with GATA2 deficiency that has undergone allo-HSCT is low (~ 35%). The purpose of this study was to explore if detailed clinical, genetic, and bone marrow characteristics could predict end-point outcome, i.e., death and allo-HSCT. METHODS: All medical genetics departments in Norway were contacted to identify GATA2 deficient individuals. Clinical information, genetic variants, treatment, and outcome were subsequently retrieved from the patients' medical records. RESULTS: Between 2013 and 2020, we identified 10 index cases or probands, four additional symptomatic patients, and no asymptomatic patients with germline GATA2 variants. These patients had a diverse clinical phenotype dominated by cytopenia (13/14), myeloid neoplasia (10/14), warts (8/14), and hearing loss (7/14). No valid genotype-phenotype correlations were found in our data set, and the phenotypes varied also within families. We found that 11/14 patients (79%), with known GATA2 deficiency, had already undergone allo-HSCT. In addition, one patient is awaiting allo-HSCT. The indications to perform allo-HSCT were myeloid neoplasia, disseminated viral infection, severe obliterating bronchiolitis, and/or HPV-associated in situ carcinoma. Two patients died, 8 months and 7 years after allo-HSCT, respectively. CONCLUSION: Our main conclusion is that the majority of patients with symptomatic GATA2 deficiency will need allo-HSCT, and a close surveillance of these patients is important to find the "optimal window" for allo-HSCT. We advocate a more offensive approach to allo-HSCT than previously described.
Subject(s)
GATA2 Deficiency , Hematopoietic Stem Cell Transplantation , Bone Marrow , GATA2 Deficiency/diagnosis , GATA2 Deficiency/genetics , GATA2 Deficiency/therapy , GATA2 Transcription Factor/genetics , Humans , Norway/epidemiologyABSTRACT
BACKGROUND: Childhood represents an immunological window of vulnerability in which individuals are at increased risk for both serious infections and development of allergic diseases, particularly affecting the airways. However, little is known about how the airway mucosal immune system is organised and functions during early age. Here, the organisation of immune cells in bronchial mucosa of children was characterised. METHODS: Immunophenotyping was performed on mucosal samples obtained postmortem from nine children aged 2-15 years without any history of atopic manifestations or any signs of respiratory disease, who died from non-inflammatory causes. RESULTS: In all nine cases, isolated lymphoid follicles (ILFs), interpreted as bronchus-associated lymphoid tissue (BALT), were found, constituting an average frequency of 60 ILFs/cm(2) of airway mucosal surface. Outside these ILFs, dense networks of CD11c(+) myeloid dendritic cells (DCs), CD68(+) macrophages and CD3(+)CD45RA(-) memory T cells were found. Plasmacytoid DCs occurred in low numbers. Importantly, intraepithelial antigen-presenting cells were found to extend cellular projections into the airway lumen. CONCLUSION: The density and location of antigen-presenting cells and T cells in this age group are similar to those observed in adults. However, in contrast to adults, BALT appears to be a normal feature of the airway mucosa throughout childhood, suggesting that these structures contribute to regional immunity and homeostasis. This indicates that the local immune system in the airways of children has unique features which should be taken into account, not only when studying airway immunology and immunopathology, but also in the development of mucosal vaccines.