Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Nano Lett ; 23(18): 8468-8473, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37669544

ABSTRACT

Layered magnetic materials are becoming a major platform for future spin-based applications. Particularly, the air-stable van der Waals compound CrSBr is attracting considerable interest due to its prominent magneto-transport and magneto-optical properties. In this work, we observe a transition from antiferromagnetic to ferromagnetic behavior in CrSBr crystals exposed to high-energy, non-magnetic ions. Already at moderate fluences, ion irradiation induces a remanent magnetization with hysteresis adapting to the easy-axis anisotropy of the pristine magnetic order up to a critical temperature of 110 K. Structure analysis of the irradiated crystals in conjunction with density functional theory calculations suggests that the displacement of constituent atoms due to collisions with ions and the formation of interstitials favors ferromagnetic order between the layers.

2.
Angew Chem Int Ed Engl ; 63(20): e202320091, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38488855

ABSTRACT

Conjugated coordination polymers (c-CPs) are unique organic-inorganic hybrid semiconductors with intrinsically high electrical conductivity and excellent charge carrier mobility. However, it remains a challenge in tailoring electronic structures, due to the lack of clear guidelines. Here, we develop a strategy wherein controlling the redox state of hydroquinone/benzoquinone (HQ/BQ) ligands allows for the modulation of the electronic structure of c-CPs while maintaining the structural topology. The redox-state control is achieved by reacting the ligand TTHQ (TTHQ=1,2,4,5-tetrathiolhydroquinone) with silver acetate and silver nitrate, yielding Ag4TTHQ and Ag4TTBQ (TTBQ=1,2,4,5-tetrathiolbenzoquinone), respectively. In spite of sharing the same topology consisting of a two-dimensional Ag-S network and HQ/BQ layer, they exhibit different band gaps (1.5 eV for Ag4TTHQ and 0.5 eV for Ag4TTBQ) and conductivities (0.4 S/cm for Ag4TTHQ and 10 S/cm for Ag4TTBQ). DFT calculations reveal that these differences arise from the ligand oxidation state inhibiting energy band formation near the Fermi level in Ag4TTHQ. Consequently, Ag4TTHQ displays a high Seebeck coefficient of 330 µV/K and a power factor of 10 µW/m ⋅ K2, surpassing Ag4TTBQ and the other reported silver-based c-CPs. Furthermore, terahertz spectroscopy demonstrates high charge mobilities exceeding 130 cm2/V ⋅ s in both Ag4TTHQ and Ag4TTBQ.

3.
J Am Chem Soc ; 145(4): 2430-2438, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36661343

ABSTRACT

Electrically conductive coordination polymers and metal-organic frameworks are attractive emerging electroactive materials for (opto-)electronics. However, developing semiconducting coordination polymers with high charge carrier mobility for devices remains a major challenge, urgently requiring the rational design of ligands and topological networks with desired electronic structures. Herein, we demonstrate a strategy for synthesizing high-mobility semiconducting conjugated coordination polymers (c-CPs) utilizing novel conjugated ligands with D2h symmetry, namely, "4 + 2" phenyl ligands. Compared with the conventional phenyl ligands with C6h symmetry, the reduced symmetry of the "4 + 2" ligands leads to anisotropic coordination in the formation of c-CPs. Consequently, we successfully achieve a single-crystalline three-dimensional (3D) c-CP Cu4DHTTB (DHTTB = 2,5-dihydroxy-1,3,4,6-tetrathiolbenzene), containing orthogonal ribbon-like π-d conjugated chains rather than 2D conjugated layers. DFT calculation suggests that the resulting Cu4DHTTB exhibits a small band gap (∼0.2 eV), strongly dispersive energy bands near the Fermi level with a low electron-hole reduced effective mass (∼0.2m0*). Furthermore, the four-probe method reveals a semiconducting behavior with a decent conductivity of 0.2 S/cm. Thermopower measurement suggests that it is a p-type semiconductor. Ultrafast terahertz photoconductivity measurements confirm Cu4DHTTB's semiconducting nature and demonstrate the Drude-type transport with high charge carrier mobilities up to 88 ± 15 cm2 V-1 s-1, outperforming the conductive 3D coordination polymers reported till date. This molecular design strategy for constructing high-mobility semiconducting c-CPs lays the foundation for achieving high-performance c-CP-based (opto-)electronics.

4.
Opt Express ; 31(16): 26451-26462, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710506

ABSTRACT

Photonic integrated circuits require photodetectors that operate at room temperature with sensitivity at telecom wavelengths and are suitable for integration with planar complementary-metal-oxide-semiconductor (CMOS) technology. Silicon hyperdoped with deep-level impurities is a promising material for silicon infrared detectors because of its strong room-temperature photoresponse in the short-wavelength infrared region caused by the creation of an impurity band within the silicon band gap. In this work, we present the first experimental demonstration of lateral Te-hyperdoped Si PIN photodetectors operating at room temperature in the optical telecom bands. We provide a detailed description of the fabrication process, working principle, and performance of the photodiodes, including their key figure of merits. Our results are promising for the integration of active and passive photonic elements on a single Si chip, leveraging the advantages of planar CMOS technology.

5.
Phys Rev Lett ; 131(18): 186903, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37977608

ABSTRACT

We study THz-driven condensate dynamics in epitaxial thin films of MgB_{2}, a prototype two-band superconductor (SC) with weak interband coupling. The temperature and excitation density dependent dynamics follow the behavior predicted by the phenomenological bottleneck model for the single-gap SC, implying adiabatic coupling between the two condensates on the ps timescale. The amplitude of the THz-driven suppression of condensate density reveals an unexpected decrease in pair-breaking efficiency with increasing temperature-unlike in the case of optical excitation. The reduced pair-breaking efficiency of narrow-band THz pulses, displaying minimum near ≈0.7 T_{c}, is attributed to THz-driven, long-lived, nonthermal quasiparticle distribution, resulting in Eliashberg-type enhancement of superconductivity, competing with pair breaking.

6.
Nano Lett ; 22(13): 5137-5142, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35758596

ABSTRACT

Negatively charged boron vacancies (VB-) in hexagonal boron nitride (hBN) exhibit a broad emission spectrum due to strong electron-phonon coupling and Jahn-Teller mixing of electronic states. As such, the direct measurement of the zero-phonon line (ZPL) of VB- has remained elusive. Here, we measure the room-temperature ZPL wavelength to be 773 ± 2 nm by coupling the hBN layer to the high-Q nanobeam cavity. As the wavelength of cavity mode is tuned, we observe a pronounced intensity resonance, indicating the coupling to VB-. Our observations are consistent with the spatial redistribution of VB- emission. Spatially resolved measurements show a clear Purcell effect maximum at the midpoint of the nanobeam, in accord with the optical field distribution of the cavity mode. Our results are in good agreement with theoretical calculations, opening the way to using VB- as cavity spin-photon interfaces.

7.
Opt Express ; 29(13): 19920-19927, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34266092

ABSTRACT

We report the emission of high-field terahertz pulses from a GaAs large-area photoconductive emitter pumped with a Ti:Sapphire amplifier laser system at 800 nm wavelength and 1 kHz repetition rate. The maximum estimated terahertz electric field at the focus is ≳ 230 kV/cm. We also demonstrate the capability of the terahertz field to cause a non-linear effect, which usually requires high-field terahertz pulses generated through optical rectification or an air plasma. A significant drop in the optical conductivity of optically pumped GaAs due to Γ-L inter-valley scattering of free electrons caused by the strong THz field is found.

8.
Nano Lett ; 20(5): 3225-3231, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32227897

ABSTRACT

We probe the electron transport properties in the shell of GaAs/In0.2Ga0.8As core/shell nanowires at high electric fields using optical pump/THz probe spectroscopy with broadband THz pulses and peak electric fields up to 0.6 MV/cm. The plasmon resonance of the photoexcited charge carriers exhibits a systematic redshift and a suppression of its spectral weight for THz driving fields exceeding 0.4 MV/cm. This behavior is attributed to the intervalley electron scattering that results in the doubling of the average electron effective mass. Correspondingly, the electron mobility at the highest fields drops to about half of the original value. We demonstrate that the increase of the effective mass is nonuniform along the nanowires and takes place mainly in their middle part, leading to a spatially inhomogeneous carrier response. Our results quantify the nonlinear transport regime in GaAs-based nanowires and show their high potential for development of nanodevices operating at THz frequencies.

9.
Angew Chem Int Ed Engl ; 60(25): 13859-13864, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-33835643

ABSTRACT

Two-dimensional polymers (2DPs) are a class of atomically/molecularly thin crystalline organic 2D materials. They are intriguing candidates for the development of unprecedented organic-inorganic 2D van der Waals heterostructures (vdWHs) with exotic physicochemical properties. In this work, we demonstrate the on-water surface synthesis of large-area (cm2 ), monolayer 2D polyimide (2DPI) with 3.1-nm lattice. Such 2DPI comprises metal-free porphyrin and perylene units linked by imide bonds. We further achieve a scalable synthesis of 2DPI-graphene (2DPI-G) vdWHs via a face-to-face co-assembly of graphene and 2DPI on the water surface. Remarkably, femtosecond transient absorption spectroscopy reveals an ultra-fast interlayer charge transfer (ca. 60 fs) in the resultant 2DPI-G vdWH upon protonation by acid, which is equivalent to that of the fastest reports among inorganic 2D vdWHs. Such large interlayer electronic coupling is ascribed to the interlayer cation-π interaction between 2DP and graphene.

10.
Opt Express ; 28(18): 26111-26121, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32906887

ABSTRACT

We create and isolate single-photon emitters with a high brightness approaching 105 counts per second in commercial silicon-on-insulator (SOI) wafers. The emission occurs in the infrared spectral range with a spectrally narrow zero phonon line in the telecom O-band and shows a high photostability even after days of continuous operation. The origin of the emitters is attributed to one of the carbon-related color centers in silicon, the so-called G center, allowing purification with the 12C and 28Si isotopes. Furthermore, we envision a concept of a highly-coherent scalable quantum photonic platform, where single-photon sources, waveguides and detectors are integrated on an SOI chip. Our results provide a route towards the implementation of quantum processors, repeaters and sensors compatible with the present-day silicon technology.

11.
Opt Express ; 28(17): 25358-25370, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32907058

ABSTRACT

We report the observation of the intersubband AC-Stark effect in a single wide GaAs/AlGaAs quantum well. In a three-level configuration, the n = 2 to n = 3 intersubband transition is resonantly pumped at 3.5 THz using a free-electron laser. The induced spectral changes are probed using THz time-domain spectroscopy with a broadband pulse extending up to 4 THz. We observe an Autler-Townes splitting at the 1 - 2 intersubband transition as well as an indication of a Mollow triplet at the 2 - 3 transition, both evidencing the dressed states. For longer delay times, a relaxation of the hot-electron system with a time constant of around 420 ps is measured.

12.
Opt Express ; 28(24): 35490-35497, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379662

ABSTRACT

We investigate here terahertz enhancement effects arising from micrometer and nanometer structured electrode features of photoconductive terahertz emitters. Nanostructured electrode based emitters utilizing the palsmonic effect are currently one of the hottest topics in the research field. We demonstrate here that even in the absence of any plasmonic resonance with the pump pulse, such structures can improve the antenna effect by enhancing the local d.c. electric field near the structure edges. Utilizing this effect in Hilbert-fractal and grating-like designs, enhancement of the THz field of up to a factor of ∼ 2 is observed. We conclude that the cause of this THz emission enhancement in our emitters is different from the earlier reported plasmonic-electrode effect in a similar grating-like structure. In our structure, the proximity of photoexcited carriers to the electrodes and local bias field enhancement close to the metallization cause the enhanced efficiency. Due to the nature of this effect, the THz emission efficiency is almost independent of the pump laser polarization. Compared to the plasmonic effect, these effects work under relaxed device fabrication and operating conditions.

13.
Opt Express ; 28(5): 7245-7258, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32225957

ABSTRACT

We study radiative relaxation at terahertz frequencies in n-type Ge/SiGe quantum wells, optically pumped with a terahertz free electron laser. Two wells coupled through a tunneling barrier are designed to operate as a three-level laser system with non-equilibrium population generated by optical pumping around the 1→3 intersubband transition at 10 THz. The non-equilibrium subband population dynamics are studied by absorption-saturation measurements and compared to a numerical model. In the emission spectroscopy experiment, we observed a photoluminescence peak at 4 THz, which can be attributed to the 3→2 intersubband transition with possible contribution from the 2→1 intersubband transition. These results represent a step towards silicon-based integrated terahertz emitters.

14.
Opt Express ; 27(9): 13108-13115, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31052840

ABSTRACT

We study here the effect of the electrode parameters on the terahertz emission efficiency of large-area emitters based on interdigitated electrodes. Electrode parameters are optimized to get maximum terahertz emission by optimizing the balance condition among the emission efficiency of individual electrode pairs, number of emitters per unit area, and fraction of semiconductor exposed for optical pumping. A maximum enhancement by about 50% in the peak to peak electric field is observed as compared to the previous state of the art design.

15.
Nanotechnology ; 30(24): 244004, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-30790771

ABSTRACT

We present the electrical properties of GaAs/In x Ga1-x As core/shell nanowires (NWs) measured by ultrafast optical pump-terahertz probe spectroscopy. This contactless technique was used to measure the photoconductivity of NWs with shell compositions of x = 0.20, 0.30 and 0.44. The results were fitted with the model of localized surface plasmon in a cylinder in order to obtain electron mobilities, concentrations and lifetimes in the In x Ga1-x As NW shells. The estimated lifetimes are about 80-100 ps and the electron mobility reaches 3700 cm2 V-1 s-1 at room temperature. This makes GaAs/InGaAs NWs good candidates for the realization of high-electron-mobility transistors, which can also be monolithically integrated in Si-CMOS circuits.

16.
Nanotechnology ; 30(5): 054001, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30499464

ABSTRACT

In the present work, millisecond-range flash lamp annealing is used to recrystallize Mn-implanted Ge. Through systematic investigations of structural and magnetic properties, we find that the flash lamp annealing produces a phase mixture consisting of spinodally decomposed Mn-rich ferromagnetic clusters within a paramagnetic-like matrix with randomly distributed Mn atoms. Increasing the annealing energy density from 46, via 50, to 56 J cm-2 causes the segregation of Mn atoms into clusters, as proven by transmission electron microscopy analysis and quantitatively confirmed by magnetization measurements. According to x-ray absorption spectroscopy, the dilute Mn ions within Ge are in d 5 electronic configuration. This Mn-doped Ge shows paramagnetism, as evidenced by the unsaturated magnetic-field-dependent x-ray magnetic circular dichroism signal. Our study reveals how spinodal decomposition occurs and influences the formation of ferromagnetic Mn-rich Ge-Mn nanoclusters.

17.
Nanotechnology ; 30(8): 084003, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30523880

ABSTRACT

We report a strong shift of the plasma resonance in highly-doped GaAs/InGaAs core/shell nanowires (NWs) for intense infrared excitation observed by scattering-type scanning near-field infrared microscopy. The studied NWs show a sharp plasma resonance at a photon energy of about 125 meV in the case of continuous wave excitation by a CO2 laser. Probing the same NWs with the pulsed free-electron laser with peak electric field strengths up to several 10 kV cm-1 reveals a power-dependent redshift to about 95 meV and broadening of the plasmonic resonance. We assign this effect to a substantial heating of the electrons in the conduction band and subsequent increase of the effective mass in the nonparabolic Γ-valley.

18.
Opt Express ; 26(18): 24054-24065, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30184898

ABSTRACT

We present an in-depth theoretical and numerical discussion on the Fano signatures observed in differential transmission spectra obtained from multiquantum well structures. These signatures stem from ponderomotive and intersubband polarization currents modified by the coupling between the optical responses of different layers. A detailed discussion of this process is provided, evaluating quantitatively the amplitude and shape of the Fano signatures and their dependence on structural parameters, such as carrier concentration and layer width. The theoretical model described here aims to predict quantitatively the weight of the contributions of the ponderomotive currents in relation to the intersubband ones. In order to include the effect of the entire structure in the theoretical spectra, the optical response of each layer is addressed within the density matrix formalism and encompassed in an optical transfer matrix. This method also ensures the correct inclusion of the phase sensitive superposition of optical responses of different layers on which the Fano signatures are based. Numerical simulations obtained from the presented theoretical approach are in excellent agreement with the behavior observed in previous experiments.

20.
Nanotechnology ; 29(50): 504004, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30240362

ABSTRACT

We demonstrate a simple route to grow ensembles of self-catalyzed GaAs nanowires with a remarkably narrow statistical distribution of lengths on natively oxidized Si(111) substrates. The fitting of the nanowire length distribution (LD) with a theoretical model reveals that the key requirements for narrow LDs are the synchronized nucleation of all nanowires on the substrate and the absence of beam shadowing from adjacent nanowires. Both requirements are fulfilled by controlling the size and number density of the openings in SiO x , where the nanowires nucleate. This is achieved by using a pre-growth treatment of the substrate with Ga droplets and two annealing cycles. The narrowest nanowire LDs are markedly sub-Poissonian, which validates the theoretical predictions about temporally anti-correlated nucleation events in individual nanowires, the so-called nucleation antibunching. Finally, the reproducibility of sub-Poissonian LDs attests the reliability of our growth method.

SELECTION OF CITATIONS
SEARCH DETAIL