Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Am J Hum Genet ; 100(1): 75-90, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28041643

ABSTRACT

Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.


Subject(s)
DNA Mutational Analysis , Genetic Variation/genetics , Genome, Human/genetics , Retinal Diseases/genetics , Adaptor Proteins, Signal Transducing/genetics , Alleles , Base Sequence , Choroideremia/genetics , Ethnicity/genetics , Exome/genetics , Female , Genes, Recessive/genetics , Humans , Introns/genetics , Male , Mutation , Rare Diseases/genetics
2.
Am J Ophthalmol ; 207: 87-98, 2019 11.
Article in English | MEDLINE | ID: mdl-31077665

ABSTRACT

PURPOSE: Familial exudative vitreoretinopathy (FEVR) is a rare finding in patients with genetic forms of microcephaly. This study documents the detailed phenotype and expands the range of genetic heterogeneity. DESIGN: Retrospective case series. METHODS: Twelve patients (10 families) with a diagnosis of FEVR and microcephaly were ascertained from pediatric genetic eye clinics and underwent full clinical assessment including retinal imaging. Molecular investigations included candidate gene Sanger sequencing, whole-exome sequencing (WES), and whole-genome sequencing (WGS). RESULTS: All patients had reduced vision and nystagmus. Six were legally blind. Two probands carried bi-allelic LRP5 variants, both presenting with bilateral retinal folds. A novel homozygous splice variant, and 2 missense variants were identified. Subsequent bone density measurement identified osteoporosis in one proband. Four families had heterozygous KIF11 variants. Two probands had a retinal fold in one eye and chorioretinal atrophy in the other; the other 2 had bilateral retinal folds. Four heterozygous variants were found, including 2 large deletions not identified on Sanger sequencing or WES. Finally, a family of 2 children with learning difficulties, abnormal peripheral retinal vasculogenesis, and rod-cone dystrophy were investigated. They were found to have bi-allelic splicing variants in TUBGCP6. Three families remain unsolved following WES and WGS. CONCLUSIONS: Molecular diagnosis has been achieved in 7 of 10 families investigated, including a previously unrecognized association with LRP5. WGS enabled molecular diagnosis in 3 families after prior negative Sanger sequencing of the causative gene. This has enabled patient-specific care with targeted investigations and accurate family counseling.


Subject(s)
Abnormalities, Multiple , Familial Exudative Vitreoretinopathies/genetics , Kinesins/genetics , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Microcephaly/genetics , Microtubule-Associated Proteins/genetics , Mutation , Adolescent , Child , Child, Preschool , DNA/genetics , DNA Mutational Analysis , Electroretinography , Familial Exudative Vitreoretinopathies/diagnosis , Familial Exudative Vitreoretinopathies/metabolism , Female , Fluorescein Angiography , Fundus Oculi , Humans , Infant , Kinesins/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Male , Microcephaly/diagnosis , Microcephaly/metabolism , Microtubule-Associated Proteins/metabolism , Pedigree , Phenotype , Retrospective Studies , Tomography, Optical Coherence
SELECTION OF CITATIONS
SEARCH DETAIL