Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
Add more filters

Publication year range
1.
J Environ Manage ; 365: 121625, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959772

ABSTRACT

This is the first study providing long-term data on the dynamics of bees and wasps and their parasitoids for the evidence-based management of reed beds. Ten years ago, we identified Lipara (Chloropidae) - induced galls on common reed (Phragmites australis, Poaceae) as a critically important resource for specialized bees and wasps (Hymenoptera: Aculeata). We found that they were surprisingly common in relatively newly formed anthropogenic habitats, which elicited questions about the dynamics of bees and wasps and their parasitoids in newly formed reed beds of anthropogenic origin. Therefore, in the winter and spring of 2022/23, we sampled reed galls from the same set of reed beds of anthropogenic and natural origin as those in 2012/13. At 10 sites, the number of sampled galls was similar in both time periods (80-122% of the value from 2012/13); 12 sites experienced a moderate decline (30-79% of the value from 2012/13), and the number of galls at six sampling sites was only 3-23% of their abundance in 2012/13. Spontaneous development was associated with increasing populations. After 10 years of spontaneous development, the populations of bees and wasps (including their parasitoids) bound to Lipara-induced reed galls increased in abundance and species richness or remained at their previous levels, which was dependent on the sampling site. The only identified threat consisted of reclamation efforts. The effects of habitat age were limited, and the assemblages in habitats of near-natural and anthropogenic origin largely overlapped. However, several species were consistently present at lower abundances in the anthropogenic habitats and vice versa. In conclusion, we provided evidence-based support for the establishment of oligotrophic reed beds of anthropogenic origin as management tools providing sustainable habitats for specialized reed gall-associated aculeate hymenopteran inquilines, including the threatened species.


Subject(s)
Ecosystem , Wasps , Animals , Wasps/physiology , Hymenoptera/physiology , Poaceae , Bees/parasitology , Plant Tumors/parasitology
2.
Parasitol Res ; 122(12): 3159-3168, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864718

ABSTRACT

Species of the genus Morishitium Witenberg, 1928 are parasites of the body cavity, air sacs, and lungs of birds. At least 14 species are considered valid, but molecular confirmation of their status is lacking. Here, we provide the first molecular data on Morishitium dollfusi isolated from their type host Pica pica, compared them with previously reported molecular data from Morishitium polonicum isolated from their type and paratype hosts, Turdus merula and Turdus philomelos, and performed extensive measurements of 511 individuals of Morishitium spp. across a broad host spectrum, at multiple infection intensities, and year-round. We analyzed the molecular phylogenetics of Morishitium spp. adults isolated from bird hosts of Czech origin and provide comparative measurements of the analyzed specimens. Based on the molecular examination of morphologically identified specimens of M. dollfusi and M. polonicum (CO1, ND1, and ITS2 markers), we propose synonymization of Morishitium dollfusi (Timon-David, 1950) with Morishitium polonicum (Machalska, 1980) (isolates of European origin). The three markers were either identical (CO1, ITS2) or formed haplotypes shared by the two species (ND1). Morphological analyses revealed a continuum of key identification features for the two above-named species, although we used specimens matching the original descriptions and isolated them from the type hosts. Therefore, Morishitium polonicum is a junior synonym of Morishitium dollfusi. Attention is needed regarding the status of East Asian isolates identified previously as M. polonicum (or M. polonicum malayense). The molecular analysis revealed that these isolates form a distinct clade, and further research is needed to produce data allowing the likely separation of the malayense clade as a separate species.


Subject(s)
Lizards , Passeriformes , Songbirds , Trematoda , Humans , Animals , Pica , Phylogeny
3.
Parasitol Res ; 120(5): 1687-1697, 2021 May.
Article in English | MEDLINE | ID: mdl-33655349

ABSTRACT

Larvae of Tylodelphys Diesing, 1950 are major digenean pathogens of fish and amphibians. Tylodelphys spp. may induce mass mortality of fish and increase their susceptibility to predation. Even though Tylodelphys spp. cause substantial damage to aquaculture systems, surprisingly little is known regarding the taxonomy of this commercially important genus with a limited number of visible autapomorphic identification features. The authors obtained the DNA sequences and analyzed the molecular phylogenetics of Tylodelphys spp. adults isolated from bird hosts of Czech origin and provide comparative measurements of the analyzed species. They identified a previously unknown species complex that is subject to cryptic speciation and was previously morphologically identified as Tylodelphys excavata (Rudolphi, 1803) sensu lato. This species complex consists of three morphologically similar but genetically well-separated species. Tylodelphys excavata sensu stricto remains the dominant Tylodelphys isolated from Ciconia ciconia, which also serves as a satellite host of Tylodelphys circibuteonis Odening, 1962, which is the resurrected species for which birds of prey serve as core hosts. The authors describe Tylodelphys nigriciconis sp. n. Heneberg & Sitko as a new species identified in Ciconia nigra. By providing the first sequences of Tylodelphys podicipina Kozicka and Niewiadomska, 1960, they also show that Tylodelphys immer Dubois, 1961 is a junior synonym of T. podicipina. Further research is needed to match the provided molecular data with the DNA of larval Tylodelphys from outbreaks in commercially exploited fish species.


Subject(s)
Amphibians/parasitology , Fishes/parasitology , Trematoda/genetics , Trematode Infections/veterinary , Animals , Birds/parasitology , DNA, Helminth/genetics , Phylogeny , Species Specificity , Trematoda/classification , Trematoda/cytology , Trematode Infections/parasitology
4.
J Environ Manage ; 280: 111740, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33272659

ABSTRACT

Azole fungicides (benzimidazoles, triazoles and imidazoles) are among the most widely used agrochemicals in the world. Unfortunately, azole fungicides are increasingly recognized for playing the role of endocrine disruptors in non-target organisms. Previously, the fecundity of ants with semi-claustral colony founding was found to be severely decreased in response to field-realistic concentrations of azole fungicides. However, during claustral colony founding, the ant queens do not feed and could therefore be protected against effects of agrochemicals applied during the colony founding. In the present study, we hypothesized that claustral colony founding is associated with a lower risk of oral exposure of ant queens to azole fungicides. We exposed queens of a common farmland ant species with claustral colony founding, Lasius niger, to four azole fungicides (epoxiconazole, flusilazole, prochloraz and thiophanate-methyl) that are commonly used in foliar applications and analyzed the differences in fecundity between fungicide-treated groups and the control water-treated group. We found that oral exposure to all four tested formulations of azole fungicides decreased the fecundity of L. niger queens. The decreases in fecundity ranged from 30.5% (epoxiconazole) to 40.3% (prochloraz), although the concentrations of fungicides used were several times lower than the minimum effective concentrations used to eliminate the target fungi by foliar applications of examined fungicides on various crops. Ants with both claustral and semi-claustral colony founding are highly vulnerable to field-realistic concentrations of azole fungicides that are sprayed in foliar applications. Azole fungicides substantially decrease the fitness of ant queens and may explain part of the recently observed decreases in farmland insect abundance and diversity.


Subject(s)
Ants , Fungicides, Industrial , Animals , Azoles/toxicity , Fertility , Fungicides, Industrial/toxicity , Niger , Reproduction
5.
J Sep Sci ; 43(5): 962-969, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31833157

ABSTRACT

Beauverolides (beauveriolides) are abundant, biologically active cyclodepsipeptides produced by many entomopathogenic fungi, including those that are used as biopesticides. Beauverolides act as cholesterol acyltransferase inhibitors in humans; thus, their mode of action has been the subject of pharmacological and clinical research. The cost-effective analytical methods are needed for fast, routine laboratory analysis of beauverolides. We isolated beauverolides from the fungal strain Isaria fumosorosea PFR 97-Apopka and opened the rings of the isolated beauverolides using a pyridine alkaline medium. We separated fractions of cyclic and linearized beauverolides by thin-layer chromatography, and found the chloroform-acetate (9:1, v/v) and chloroform-acetonitrile-acetate (8:1:1, v/v/v) mobile phases, respectively, to be the most efficient. We examined all the fractions by liquid chromatography-mass spectrometry using ion trap and Orbitrap high resolution mass spectrometry. For rapid screening of the contents of cyclic, and, particularly, linearized beauverolides, we developed a novel analytical method that consisted of using capillary electrophoresis coupled with contactless conductivity detection. Furthermore, we improved the separation of the peptides by applying capillary micellar electrokinetic chromatography with the N-cyclohexyl-2-aminoethanesulfonic acid:SDS:NaOH buffer, pH 9.8 as the background electrolyte. The described novel methods allow fast and cost-effective separation of chemically related groups of beauverolides.


Subject(s)
Anticholesteremic Agents/isolation & purification , Cordyceps/chemistry , Depsipeptides/isolation & purification , Anticholesteremic Agents/chemistry , Chromatography, Liquid , Depsipeptides/chemistry , Humans , Mass Spectrometry
6.
Parasitol Res ; 119(12): 4123-4134, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33029718

ABSTRACT

Turdus philomelos is a common Western Palearctic thrush species of forests and agricultural landscapes, where it relies on the presence of hedgerows, patches of trees, and shrubs. In the present study, we address long-term changes in component communities of trematodes in T. philomelos across the timespan of over half a century. Based on our preliminary observations, we hypothesized that component communities of trematodes in T. philomelos in the study area are more diverse and species-rich compared with several decades ago. In the 1961-2019, we performed full-body necropsies of T. philomelos, which originated from the southern Czech Republic, and examined them for the presence of trematodes. We compared the trematode species richness and diversity of the analyzed component communities. The number of trematode species per host steadily increased in time in adult females and males. In juveniles, the highest numbers of trematode species per host were reached already in 1961-1990, then dropped and slowly raised up again in the latter time periods. The newly accumulated evidence suggests that trematodes with intermediate hosts previously restricted to T. philomelos wintering grounds increased in abundance in the study area. Some of them (Morishitium polonicum, Psilotornus confertus) sporadically appeared in juveniles or first-year birds, from which they were previously completely absent. Some of the spreading species, such as Lutztrema attenuatum, are present in high prevalence and high intensities of infection. Yet unknown part of observed changes could be related to changes in food composition; however, direct evidence for changes in T. philomelos diet is lacking despite clear evidence for a decline in earthworms in agricultural landscapes.


Subject(s)
Bird Diseases/parasitology , Helminthiasis, Animal/parasitology , Songbirds/parasitology , Trematoda/isolation & purification , Animals , Czech Republic , Ecological Parameter Monitoring , Ecosystem , Female , Male , Trematoda/classification , Trematoda/genetics
7.
Parasitol Res ; 119(3): 935-945, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32088756

ABSTRACT

As host community diversity decreases, parasite diversity may also decline. The life cycles of trematodes involve multiple hosts from different orders, with many trematodes displaying narrow host specialization. In the 1960s and 2010s, we performed full-body necropsies of juvenile or first-year birds of four wetland bird species, Anas platyrhynchos, Aythya fuligula, Fulica atra, and Chroicocephalus ridibundus which originated from the southern Czech Republic, and examined them for the presence of trematodes. We compared the trematode species richness and diversity of the analyzed component communities. We found complete disintegration of host-parasite networks, which led to declining populations and local extinctions of the majority of trematode species, particularly those with narrow host preferences. For example, in black-headed gulls, 67% of trematode species recorded in the 1960s were absent in gulls that were examined in the 2010s. In contrast, we did not identify any trematode species that were absent in the 1960s but present in the 2010s. This collapse provides new insight into the recent debate regarding whether human-caused extinctions should be considered a problem when locally extinct host species are replaced by an equal or even higher number of nonnative species, thus maintaining local alpha diversities but leading to biotic homogenization and consequently reducing beta diversity. By documenting the collapse of the host-parasite network, we provide a strong argument that biodiversity cannot be assessed by simple measures alone, as only local-scale conservation measures allow the preservation of host-pathogen interactions and nutrient cycles and thus prevent the loss of low-visibility species, such as helminths.


Subject(s)
Charadriiformes/parasitology , Ducks/parasitology , Extinction, Biological , Trematoda/classification , Animals , Biodiversity , Birds/parasitology , Czech Republic , Europe , Host-Parasite Interactions , Life Cycle Stages , Trematoda/isolation & purification , Wetlands
8.
Clin Exp Allergy ; 49(1): 54-67, 2019 01.
Article in English | MEDLINE | ID: mdl-30288810

ABSTRACT

BACKGROUND: CD16 was previously suggested to be a new marker of basophils that is subject to downregulation by FcεRI crosslinking. Certain compounds, including supraoptimal concentrations of the PKC inhibitors, bisindolylmaleimides, decouple the release of granules containing CD203c, CD63 and histamine, and may thus help to identify the mechanisms related to the CD16 externalization. OBJECTIVE: We hypothesized that CD16 is differentially expressed on the surface of basophils in patients with birch pollen or insect venom allergy and is subject to a regulation in response to allergens. We also employed CD203c and CD63 externalization decoupling by bisindolylmaleimides. METHODS: We performed a basophil activation test coupled with CD16 and histamine detection using cells isolated from patients with allergy to birch pollen or insect venom and negative controls. We employed two PKC inhibitors, bisindolylmaleimide II and Ro 31-8220 at their supraoptimal concentrations and, after difficulties reproducing previously published data, we analyzed the fluorescence of these inhibitors alone. We identified the CD16 isoforms by sequencing nested RT-PCR amplicons from flow cytometry sorted basophils and by cleaving the CD16b GPI anchor using a phospholipase C. RESULTS: We provide the first evidence that CD16a is expressed as a surface antigen on a small subpopulation of human basophils in patients with respiratory and insect venom allergy, and this antigen shows increased surface expression following allergen challenge or FcεRI crosslinking. We rejected the apparent decoupling of the surface expression of basophil activation markers following the administration of bisindolylmaleimides. CONCLUSIONS & CLINICAL RELEVANCE: The inclusion of αCD16 in negative selection cocktails selects against a subset of basophils that are CD16+ or CD16dim . Using CD16dim basophils and unstained leucocytes, we show that previous studies with supraoptimal concentrations of bisindolylmaleimides are likely flawed and are not associated with the differential expression of CD203c and CD63.


Subject(s)
Arthropod Venoms/toxicity , Basophils/immunology , Hypersensitivity/immunology , Indoles/chemistry , Maleimides/chemistry , Phosphoric Diester Hydrolases/immunology , Pyrophosphatases/immunology , Receptors, IgG/immunology , Tetraspanin 30/immunology , Adult , Aged , Basophils/pathology , Female , GPI-Linked Proteins/immunology , Humans , Hypersensitivity/pathology , Insect Bites and Stings/immunology , Insect Bites and Stings/pathology , Male , Middle Aged
9.
Parasitol Res ; 118(7): 2203-2211, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31154527

ABSTRACT

Mitochondrial (mt) DNA has been useful in revealing the phylogenetic relationship of eukaryotic organisms including flatworms. Therefore, the use of mitogenomic data for the comparative and phylogenetic purposes is needed for those families of digenetic trematodes for which the mitogenomic data are still missing. Molecular data with sufficiently rich informative characters that can better resolve species identification, discrimination, and membership in different genera is also required for members of some morphologically difficult families of trematodes bearing few autapomorphic characters among its members. Here, the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (rDNA) and the complete mt genome of the trematode Uvitellina sp. (Cyclocoelidae: Haematotrephinae) was determined and annotated. The mt genome of this avian trematode is 14,217 bp in length, containing 36 genes plus a single non-coding region. The ITS rDNA sequences were used for the pairwise sequence comparison of Uvitellina sp. with European cyclocoelid species, and the mitochondrial 12 protein-coding genes (PCGs) and two ribosomal RNA genes were used to evaluate the position of the family within selected trematodes. The ITS rDNA analysis of Uvitellina sp. showed less nucleotide differences with Hyptiasmus oculeus (16.77%) than with other European cyclocoelids (18.63-23.58%). The Bayesian inference (BI) analysis using the 12 mt PCGs and two rRNA genes supported the placement of the family Cyclocoelidae within the superfamily Echinostomatoidea (Plagiorchiida: Echinostmata). The availability of the mt genome sequences of Uvitellina sp. provides a novel resource of molecular markers for phylogenetic studies of Cyclocoelidae and other trematodes.


Subject(s)
DNA, Mitochondrial/genetics , Echinostomatidae/genetics , Genome, Mitochondrial/genetics , Mitochondria/genetics , Animals , Base Sequence , Bayes Theorem , Birds/parasitology , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , Echinostomatidae/classification , Phylogeny , Sequence Analysis, DNA
11.
Electrophoresis ; 39(20): 2605-2611, 2018 10.
Article in English | MEDLINE | ID: mdl-29292827

ABSTRACT

A sensitive capillary electrophoretic method with on-line sample preconcentration by large volume sample stacking has been developed for determination of the anti-microbial agent pentamidine. The separation is performed in a fused silica capillary coated with covalently bound hydroxypropyl cellulose, with an internal diameter of 50 µm and length of 31.5 cm; the background electrolyte was 100 mM acetic acid/Tris at pH 4.7. The stacking is tested using a model sample of 1 µM pentamidine dissolved in 25% infusion solution and 75% acidified acetonitrile. Stacking permits the injection of a sample zone with a length of 95% of the total capillary length to achieve an enhancing factor of 77 compared to low injection into 1.8% of the total capillary length, with simultaneous high separation efficiency of approximately 1 350 000 plates/m. Stacking is based on simultaneous application of a separation field and a hydrodynamic pressure to force the acetonitrile zone out of the capillary. This approach allows the determination of pentamidine in rat blood plasma using only 12.5 µL of plasma treated by the addition of acetonitrile in a ratio of 1:3 v/v. The attained LOD is 0.03 µM and the intra-day repeatability is 0.1% for the migration time and 1.0% for the peak area at the injection 28.3% of capillary length. The performed pharmacokinetic study with ten-second scanning of the blood reveals rapid dynamics of pentamidine in the arterial bloodstream, while the changes are much slower in the venous system.


Subject(s)
Anti-Infective Agents/blood , Electrophoresis, Capillary/methods , Pentamidine/blood , Animals , Limit of Detection , Linear Models , Male , Pressure , Rats , Rats, Wistar , Reproducibility of Results
12.
Int Arch Allergy Immunol ; 177(1): 57-68, 2018.
Article in English | MEDLINE | ID: mdl-29895027

ABSTRACT

BACKGROUND: A portion of adults with humoral immune changes have clinical diabetes that is initially not insulin-requiring (latent autoimmune diabetes of the adult, LADA). One of the genes strongly associated with autoimmune diabetes is PTPN22. We hypothesized that the manifestation and clinical features of LADA are linked to functional variants of PTPN22. METHODS: We genotyped allelic frequencies of 1 protective and 3 risk-associated PTPN22 variants in 156 Czech LADA patients, 194 type 2 diabetes mellitus patients with LADA-like progression to insulinotherapy and 324 type 1 diabetes mellitus patients, and subsequently examined the associations of PTPN22 variants with the expression of autoantibodies and other clinical features of LADA. RESULTS: We challenged the paradigm that stated that the PTPN22 c.1858T allele serves as a risk allele for LADA, although we confirmed its risk status in the geographically matched T1DM cohort. In contrast, the frequencies of other PTPN22 alleles (c.-1123C, c.788A and c.1970-852C) differed significantly from the healthy controls. We confirmed gender-related differences in the frequency of some PTPN22 polymorphisms (but not c.1858C>T) in LADA. The particular PTPN22 alleles and genotypes were associated with specific clinical features of the examined patients (autoantibodies, HbA1c and age at diagnosis of diabetes). CONCLUSIONS: The variability in PTPN22 haplotypes suggests that the genetic signature of LADA is independent and should not be considered a hybrid form of T1DM and T2DM. Further studies should elucidate the associations with clinical characteristics of the LADA patients and focus on the newly emerging types of diabetes with the disease onset in early to mid-adulthood.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Genetic Predisposition to Disease , Latent Autoimmune Diabetes in Adults/genetics , Latent Autoimmune Diabetes in Adults/immunology , Polymorphism, Genetic , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Adult , Aged , Alleles , Autoantibodies/blood , Autoantibodies/immunology , Biomarkers , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 2 , Diagnosis, Differential , Female , Gene Frequency , Genetic Association Studies , Genotype , Humans , Latent Autoimmune Diabetes in Adults/diagnosis , Male , Middle Aged , Odds Ratio , Phenotype , Polymorphism, Single Nucleotide
13.
Parasitology ; 144(4): 368-383, 2017 04.
Article in English | MEDLINE | ID: mdl-27831461

ABSTRACT

Cyclocoelidae Stossich, 1902 are medium-sized to large digenean bird parasites. Although these parasites bear few visible autapomorphic signs, and their diagnostic characters are unstable in response to the pressure applied during preparation, the numerous hitherto suggested re-classifications within the family have not been supported by any molecular analysis. We analyse here cyclocoelids found during the extensive examination of central European birds performed from 1962 to 2016, provide comparative measurements, host spectra, prevalence and intensity, and provide and analyse sequences of four DNA loci of five of the cyclocoelid species. Cyclocoleum Brandes, 1892 appears paraphyletic; thus we suggest the re-classification of Cyclocoleum obscurum (Leidy, 1887) as Harrahium obscurum (Leidy, 1887) Sitko and Heneberg comb. n. Molecular phylogenetics questioned also the validity of Cyclocoelinae Stossich, 1902 and Hyptiasminae Dollfus, 1948, which formed a single clade, whereas Allopyge Johnston, 1913, Prohyptiasmus Witenberg, 1923 and Morishitium Witenberg, 1928 formed another clade. Haematotrephinae Dollfus, 1948 are newly characterized as having a pretesticular or intertesticular ovary that forms a triangle with the testes. Analyses of non-European genera of the Cyclocoelidae and an examination of the position of families within Echinostomata La Rue, 1926 are needed.


Subject(s)
Bird Diseases/parasitology , Trematoda/anatomy & histology , Trematoda/classification , Trematode Infections/veterinary , Animals , Bird Diseases/epidemiology , Birds , DNA, Helminth/genetics , DNA, Helminth/isolation & purification , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Europe/epidemiology , Female , Gene Expression Regulation, Enzymologic , Phylogeny , RNA, Helminth/genetics , RNA, Ribosomal, 18S/genetics , Species Specificity , Trematoda/genetics , Trematode Infections/epidemiology , Trematode Infections/parasitology
14.
Semin Cancer Biol ; 35 Suppl: S199-S223, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25865775

ABSTRACT

Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer.


Subject(s)
Carcinogenesis/drug effects , Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Tumor Microenvironment/genetics , Antineoplastic Agents/therapeutic use , Carcinogenesis/genetics , Cell Proliferation/drug effects , Humans , Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/prevention & control , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/prevention & control , Signal Transduction , Tumor Microenvironment/drug effects
15.
Parasitology ; 143(4): 455-74, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26817665

ABSTRACT

The Brachylaimoidea are digenean parasites of vertebrates, including humans, domestic animals, poultry and wild game. Numerous Brachylaimoidea, particularly adults of Brachylaima and Leucochloridium, are difficult to identify to species. We provide and analyse sequences of two nuclear (18S rDNA, ITS2) and two mitochondrial (CO1, ND1) DNA loci of central European species of the Brachylaimoidea, namely Leucochloridium holostomum, Leucochloridium paradoxum, Leucochloridium perturbatum, Leucochloridium subtilis, Leucochloridium vogtianum, Urotocus rossitensis, Urogonimus macrostomus, Michajlovia migrata, Leucochloridiomorpha lutea, Brachylaima arcuatus, Brachylaima fuscata and Brachylaima mesostoma. We identified three clades in the genus Leucochloridium, which do not correspond to the previously suggested subgenera Neoleucochloridium, Papilloleucochloridium and Leucochloridium. We reject classification of Urotocus and Urogonimus in Leucochloridiinae, and, instead, re-establish the subfamilies Urotocinae and Urogoniminae. We synonymize the genus Renylaima with the genus Brachylaima. We reject M. migrata as a member of Leucochloridiinae sensu stricto or Brachylaimidae suggested by some previous authors. We found that the previously sequenced Glaphyrostomum sp. does not cluster with any hitherto sequenced Brachylaimidae. We also provide comparative measurements of the examined central European Brachylaimoidea, address the the specificity of their localization in the host and discuss their host-specific prevalence and intensity of infections based on the extensive dataset of birds examined in 1962-2015.


Subject(s)
Bird Diseases/parasitology , Phylogeny , Trematoda/anatomy & histology , Trematoda/genetics , Trematode Infections/veterinary , Animals , Biological Evolution , Bird Diseases/epidemiology , Birds , DNA, Helminth/chemistry , DNA, Intergenic/chemistry , DNA, Mitochondrial/chemistry , DNA, Ribosomal/chemistry , Europe/epidemiology , Host Specificity , Prevalence , RNA, Ribosomal, 18S/genetics , Sequence Alignment , Trematoda/classification , Trematode Infections/epidemiology , Trematode Infections/parasitology
16.
Parasitology ; 143(12): 1592-604, 2016 10.
Article in English | MEDLINE | ID: mdl-27356772

ABSTRACT

The Renicolidae are digenean parasites of piscivorous and molluscivorous birds. Although they exhibit few morphological autapomorphies and are highly variable, the numerous suggested re-classifications within the family have never been supported by any molecular analyses. We address the possible synonymization of species within the Renicola pinguis complex suggested previously by Odening. We provide and analyse sequences of two nuclear (ITS2, 28S rDNA) and two mitochondrial (CO1, ND1) DNA loci of central European species of the Renicolidae, namely Renicola lari, Renicola pinguis and Renicola sternae sp. n., and we also provide first sequences of Renicola sloanei. The combined molecular and comparative morphological analysis confirms the previously questioned validity of the three Renicola spp. of highly similar morphology, which display strict niche separation in terms of host specificity and selectivity. We identify two previously unreported clades within the genus Renicola; however, only one of them is supported by the analysis of adult worms. We also provide comparative measurements of the three examined closely related central European renicolids, and describe the newly proposed tern-specialized species Renicola sternae sp. n., which was previously repeatedly misidentified as Renicola paraquinta. Based on the extensive dataset collected in 1962-2015, we update the host spectrum of Renicolidae parasitizing central European birds (Renicola bretensis, R. lari, Renicola mediovitellata, R. pinguis, Renicola secunda and R. sternae sp. n.) and discuss their host-specific prevalence and intensity of infections.


Subject(s)
Trematoda/anatomy & histology , Trematoda/classification , Animals , Birds/parasitology , Cluster Analysis , DNA, Helminth/chemistry , DNA, Helminth/genetics , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Europe , Microscopy , Phylogeny , RNA, Ribosomal, 28S/genetics , Sequence Analysis, DNA , Trematoda/genetics
17.
J Invertebr Pathol ; 133: 95-106, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26706117

ABSTRACT

Monotypic stands of common reed and the reed-gall-associated insect assemblages are distributed worldwide. However, fungi associated with these assemblages have not been characterized in detail. Here we examined 5200 individuals (12 species) of immature aculeate hymenopterans or their parasitoids collected at 34 sampling sites in Central Europe. We noticed fungal outgrowth on exoskeletons of 83 (1.60%) larvae and pupae. The most common host was eudominant Pemphredon fabricii. However, the less abundant aculeate hymenopteran reed gall inquilines were infected at higher prevalence, these included Trypoxylon deceptorium, Trypoxylon minus, Hoplitis leucomelana and Hylaeus moricei (all considered new host records). We identified three fungal species, Penicillium buchwaldii (72% of cases), Aspergillus pseudoglaucus (22%) and Penicillium quebecense (6%). When multibrooded nests were affected, only a part of individuals was infected in 62% of cases. The sampling site-specific infection rate reached up to 13%, thus fungal infections should be considered an important variable driving the abundance of gall inquilines. Infections of generalist host species were more frequent than those of reed gall specialists, suggesting that suboptimal conditions decreased the immunocompetence of non-specialized species, which only occasionally nest in reed galls and feed in reed beds.


Subject(s)
Aspergillus/physiology , Hymenoptera/microbiology , Penicillium/physiology , Plant Tumors/microbiology , Animals , Aspergillus/cytology , Aspergillus/genetics , DNA, Fungal/chemistry , Host-Pathogen Interactions , Hymenoptera/classification , Larva/microbiology , Likelihood Functions , Penicillium/cytology , Penicillium/genetics , Phylogeny , Pupa/microbiology
18.
Carcinogenesis ; 36 Suppl 1: S160-83, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26106136

ABSTRACT

Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.


Subject(s)
Environmental Exposure/adverse effects , Hazardous Substances/adverse effects , Tumor Microenvironment/drug effects , Animals , Carcinogenesis/chemically induced , Humans , Neoplasms/chemically induced
19.
Biochem Biophys Res Commun ; 458(1): 194-200, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25645020

ABSTRACT

A 67 kDa cytosolic FERM domain containing protein having significant protein tyrosine phosphatases activity (PTPL) has been purified to homogeneity from Setaria cervi, a bovine filarial parasite. The MALDI-MS/MS analysis of the purified protein revealed 16 peptide peaks showing nearest match to Brugia malayi Moesin/ezrin/radixin homolog 1 protein and one peptide showing significant similarity with a region lying in the catalytic domain of human PTPD1. PTPL showed significant cross reactivity with the human PTP1B antibody and colocalize with actin in the coelomyrian cells of hypodermis in the parasite. PTPL was stress regulated as it showed marked decrease in the expression when exposed to Aspirin, an antifilarial drug and Phenylarsine Oxide, PTP inhibitor.


Subject(s)
Cytosol/metabolism , Helminth Proteins/chemistry , Helminth Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Setaria Nematode/chemistry , Amino Acid Sequence , Animals , Arsenicals/pharmacology , Aspirin/pharmacology , Catalytic Domain , Cross Reactions , Female , Helminth Proteins/isolation & purification , Humans , Molecular Sequence Data , Protein Structure, Tertiary , Protein Tyrosine Phosphatases/chemistry , Sequence Homology, Amino Acid , Setaria Nematode/drug effects , Setaria Nematode/pathogenicity
20.
Int Arch Allergy Immunol ; 166(3): 189-98, 2015.
Article in English | MEDLINE | ID: mdl-25896041

ABSTRACT

BACKGROUND: The protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene encodes lymphoid tyrosine phosphatase (LYP), which is expressed primarily in lymphoid tissues. The functional but geographically highly variable PTPN22 single-nucleotide polymorphisms (SNPs), particularly c.1858C>T, contribute to the onset and progression of autoimmunity-associated diseases and facilitate the expression of disease-associated autoantibodies. In Central Europe, 17-25% of patients with monogenic diabetes (maturity-onset diabetes of the young, MODY) transiently express islet cell autoantibodies. METHODS: We addressed the links between the functional and geographically variable PTPN22 SNPs with MODY manifestation and the expression of islet cell autoantibodies in 276 MODY patients who originated from four regions (the Czech Republic, Israel, Japan and Brazil). RESULTS: The frequency of PTPN22 polymorphisms in the MODY patients was similar to those in geographically matched healthy populations, with the exception of c.788G>A, the minor allele frequency of which was significantly elevated in the Czech hepatocyte nuclear factor 1-α (HNF1A) MODY patients [odds ratio (OR) 4.8, 95% confidence interval (CI) 2.2-10.7] and the Brazilian MODY patients (OR 8.4, 95% CI 1.8-39.1). A barely significant increase in the c.788G>A minor allele was also detected in the islet cell autoantibody-positive Czech MODY patients. However, c.788A behaves as a loss-of-function mutant in T cells, and thus protects against autoimmunity. CONCLUSIONS: MODY patients (including islet cell autoantibody-positive cases) do not display any increase in autoimmunity-associated PTPN22 alleles. The absence of autoimmunity-associated PTPN22 alleles was also demonstrated in latent autoimmune diabetes in adults, which suggests that the slow kinetics of the onset of autoantibodies is subject to a regulation that is different from that experienced in type 1 diabetes and other autoimmune disorders.


Subject(s)
Autoimmunity/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/immunology , Islets of Langerhans/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Adult , Autoantibodies/blood , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmunity/immunology , Brazil , Czech Republic , Female , Genetic Predisposition to Disease , Humans , Islets of Langerhans/cytology , Israel , Japan , Male , Middle Aged , Polymorphism, Single Nucleotide , T-Lymphocytes/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL