Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Scand J Clin Lab Invest ; 82(6): 461-466, 2022 10.
Article in English | MEDLINE | ID: mdl-36129375

ABSTRACT

Haptoglobin-related protein (Hpr) is a plasma protein with high sequence similarity to haptoglobin (Hp). Like Hp, Hpr also binds hemoglobin (Hb) with high affinity, but it does not bind to the Hb-Hp receptor CD163 on macrophages. The Hpr concentration is markedly lower than Hp in plasma and its regulation is not understood. In the present study, we have developed non-crossreactive antibodies to Hpr to analyze the Hpr concentration in 112 plasma samples from anonymized individuals and compared it to Hp. The results show that plasma Hpr correlated with Hp concentrations (rho = 0.46, p = .0001). Hpr accounts for on average 0.35% of the Hp/Hpr pool but up to 29% at low Hp levels. Furthermore, the Hpr concentrations were significantly lower in individuals with the Hp2-2 phenotype compared to those with the Hp2-1 or Hp1-1 phenotypes. Experimental binding analysis did not provide evidence that Hpr associates with Hp and in this way is removed via CD163. In conclusion, the Hpr concentration correlates to Hp concentrations and Hp-phenotypes by yet unknown mechanisms independent of CD163-mediated removal of Hb-Hp complexes.


Subject(s)
Haptoglobins , Hemoglobins , Antigens, Neoplasm , Blood Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Haptoglobins/chemistry , Haptoglobins/genetics , Haptoglobins/metabolism , Hemoglobins/metabolism , Humans , Phenotype
2.
Scand J Clin Lab Invest ; 82(6): 467-473, 2022 10.
Article in English | MEDLINE | ID: mdl-36129425

ABSTRACT

Haptoglobin (Hp) is an abundant plasma protein scavenging hemoglobin (Hb) via CD163 on macrophages. This process consumes Hp, which therefore negatively correlates to hemolysis. However, exact measurements of Hp plasma levels are complicated by different phenotypes (Hp1-1, Hp2-1, and Hp2-2) forming different oligomeric states with differences in immunoreactivity. In addition, humans have an immune-cross-reactive Hp-related protein. In the present study, we developed Hp-specific monoclonal antibodies for an accurate Hp analysis of the different Hp phenotypes in a panel of 112 anonymous samples from hospitalized individuals subjected to routine Hp immunoturbidimetric measurements. The data revealed immunoturbidimetry as a reliable method in most cases but also that the use of non-phenotype-specific calibrators leads to substantial bias in the measurement of the Hp-concentration, non at least in Hp1-1 individuals. Furthermore, analysis of the Hb-dependence of the CD163 interaction with Hp1-1 and Hp2-2 showed that a higher 'cost-effectiveness' in the consumption of dimeric Hp1-1 versus multimeric Hp phenotypes is a likely contribution to the observed differences in the plasma levels of the Hp phenotypes. In conclusion, the determination of Hp phenotype and the use of phenotype-specific calibrators are essential to obtain a precise estimate of the Hp level in healthy and diseased individuals.


Subject(s)
Haptoglobins , Hemoglobins , Antibodies, Monoclonal , Chromosomal Proteins, Non-Histone/genetics , Haptoglobins/genetics , Haptoglobins/metabolism , Hemoglobins/metabolism , Humans , Phenotype
3.
Mov Disord ; 36(4): 963-976, 2021 04.
Article in English | MEDLINE | ID: mdl-33332647

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder with a significant immune component, as demonstrated by changes in immune biomarkers in patients' biofluids. However, which specific cells are responsible for those changes is unclear because most immune biomarkers can be produced by various cell types. OBJECTIVES: The aim of this study was to explore monocyte involvement in PD. METHODS: We investigated the monocyte-specific biomarker sCD163, the soluble form of the receptor CD163, in cerebrospinal fluid (CSF) and serum in two experiments, and compared it with other biomarkers and clinical data. Potential connections between CD163 and alpha-synuclein were studied in vitro. RESULTS: CSF-sCD163 increased in late-stage PD and correlated with the PD biomarkers alpha-synuclein, Tau, and phosphorylated Tau, whereas it inversely correlated with the patients' cognitive scores, supporting monocyte involvement in neurodegeneration and cognition in PD. Serum-sCD163 increased only in female patients, suggesting a sex-distinctive monocyte response. CSF-sCD163 also correlated with molecules associated with adaptive and innate immune system activation and with immune cell recruitment to the brain. Serum-sCD163 correlated with proinflammatory cytokines and acute-phase proteins, suggesting a relation to chronic systemic inflammation. Our in vitro study showed that alpha-synuclein activates macrophages and induces shedding of sCD163, which in turn enhances alpha-synuclein uptake by myeloid cells, potentially participating in its clearance. CONCLUSIONS: Our data present sCD163 as a potential cognition-related biomarker in PD and suggest a role for monocytes in both peripheral and brain immune responses. This may be directly related to alpha-synuclein's proinflammatory capacity but could also have consequences for alpha-synuclein processing. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Cognition , Parkinson Disease , Receptors, Cell Surface , Amyloid beta-Peptides , Biomarkers , Female , Humans , Monocytes , Parkinson Disease/complications , Peptide Fragments , alpha-Synuclein
4.
Clin Chem Lab Med ; 57(11): 1690-1698, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31228860

ABSTRACT

Background Intravascular hemolysis and in vitro hemolysis are prevalent contributors to failed blood sample analysis in the routine hospital laboratory. Interferences by hemoglobin in spectrophotometric and certain enzyme activity assays is the major causative factor. Methods By exploiting the hemoglobin-binding properties of the iron-regulated surface determinant H (IsdH) protein from Staphylococcus aureus we have developed a new method to instantly remove hemoglobin and hemoglobin-haptoglobin complexes from plasma in vitro thereby enabling the measurement of hemoglobin-sensitive analytes in hemolyzed plasma. In the present study we used an engineered IsdH mutant form conjugated to Sepharose for the efficient removal of plasma hemoglobin in concentrations up to 15 mg/mL. The high abundance of haptoglobin, which forms a tight complex with hemoglobin in plasma, did not affect the hemoglobin removal by IsdH Sepharose. Results Applying the method on plasma samples that beforehand were spiked with blood hemolysate re-enabled measurement of the hemolysis sensitive parameters: alkaline phosphatase, conjugated bilirubin, iron, ferritin, γ-glutamyltransferase, total thyroxine and troponin T. IsdH Sepharose-mediated hemoglobin removal also enabled measurement of hemolysis sensitive parameters in hemolyzed samples from anonymized patients. Conclusions In conclusion, IsdH Sepharose is a simple cost-effective pretreatment of hemolyzed samples correcting and enabling the measurement of several important hemoglobin-sensitive parameters in a way compatible with standard procedures in routine laboratories.


Subject(s)
Antigens, Bacterial/metabolism , Blood Specimen Collection/methods , Hemolysis/physiology , Receptors, Cell Surface/metabolism , Humans
5.
Arch Toxicol ; 92(6): 2119-2135, 2018 06.
Article in English | MEDLINE | ID: mdl-29589053

ABSTRACT

A remaining expression of the transcription factor Wilms tumor 1 (WT1) after cytotoxic chemotherapy indicates remaining leukemic clones in patients. We determined the regulation and relevance of WT1 in leukemic cells exposed to replicative stress and DNA damage. To induce these conditions, we used the clinically relevant chemotherapeutics hydroxyurea and doxorubicin. We additionally treated cells with the pro-apoptotic kinase inhibitor staurosporine. Our data show that these agents promote apoptosis to a variable extent in a panel of 12 leukemic cell lines and that caspases cleave WT1 during apoptosis. A chemical inhibition of caspases as well as an overexpression of mitochondrial, anti-apoptotic BCL2 family proteins significantly reduces the processing of WT1 and cell death in hydroxyurea-sensitive acute promyelocytic leukemia cells. Although the reduction of WT1 correlates with the pharmacological efficiency of chemotherapeutics in various leukemic cells, the elimination of WT1 by different strategies of RNA interference (RNAi) does not lead to changes in the cell cycle of chronic myeloid leukemia K562 cells. RNAi against WT1 does also not increase the extent of apoptosis and the accumulation of γH2AX in K562 cells exposed to hydroxyurea. Likewise, a targeted genetic depletion of WT1 in primary oviduct cells does not increase the levels of γH2AX. Our findings position WT1 as a downstream target of the apoptotic process that occurs in response to cytotoxic forms of replicative stress and DNA damage.


Subject(s)
Apoptosis/drug effects , DNA Damage , Doxorubicin/pharmacology , Gene Expression Regulation, Leukemic/drug effects , Hydroxyurea/pharmacology , WT1 Proteins/metabolism , Animals , Apoptosis/genetics , Caspases/metabolism , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , DNA Replication/drug effects , Fallopian Tubes/drug effects , Female , Humans , K562 Cells , Mice, Knockout , Primary Cell Culture , WT1 Proteins/genetics
6.
Arch Toxicol ; 91(5): 2191-2208, 2017 May.
Article in English | MEDLINE | ID: mdl-27807597

ABSTRACT

The treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) induces granulocytic differentiation. This process renders APL cells resistant to cytotoxic chemotherapies. Epigenetic regulators of the histone deacetylases (HDACs) family, which comprise four classes (I-IV), critically control the development and progression of APL. We set out to clarify the parameters that determine the interaction between ATRA and histone deacetylase inhibitors (HDACi). Our assays included drugs against class I HDACs (MS-275, VPA, and FK228), pan-HDACi (LBH589, SAHA), and the novel HDAC6-selective compound Marbostat-100. We demonstrate that ATRA protects APL cells from cytotoxic effects of SAHA, MS-275, and Marbostat-100. However, LBH589 and FK228, which have a superior substrate-inhibitor dissociation constant (Ki) for the class I deacetylases HDAC1, 2, 3, are resistant against ATRA-dependent cytoprotective effects. We further show that HDACi evoke DNA damage, measured as induction of phosphorylated histone H2AX and by the comet assay. The ability of ATRA to protect APL cells from the induction of p-H2AX by HDACi is a readout for the cytoprotective effects of ATRA. Moreover, ATRA increases the fraction of cells in the G1 phase, together with an accumulation of the cyclin-dependent kinase inhibitor p21 and a reduced expression of thymidylate synthase (TdS). In contrast, the ATRA-dependent activation of the transcription factors STAT1, NF-κB, and C/EBP hardly influences the responses of APL cells to HDACi. We conclude that the affinity of HDACi for class I HDACs determines whether such drugs can kill naïve and maturated APL cells.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Leukemia/drug therapy , Leukemia/pathology , Tretinoin/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Benzamides/pharmacology , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , DNA Damage/drug effects , Drug Resistance, Neoplasm/drug effects , Histone Deacetylase Inhibitors/administration & dosage , Humans , Leukemia/metabolism , NF-kappa B/metabolism , Pyridines/pharmacology , STAT1 Transcription Factor/metabolism , Tretinoin/administration & dosage
7.
Biochim Biophys Acta ; 1845(2): 202-20, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24440709

ABSTRACT

Survivin belongs to the family of apoptosis inhibitors (IAPs), which antagonizes the induction of cell death. Dysregulated expression of IAPs is frequently observed in cancers, and the high levels of survivin in tumors compared to normal adult tissues make it an attractive target for pharmacological interventions. The small imidazolium-based compound YM155 has recently been reported to block the expression of survivin via inhibition of the survivin promoter. Recent data, however, question that this is the sole and main effect of this drug, which is already being tested in ongoing clinical studies. Here, we critically review the current data on YM155 and other new experimental agents supposed to antagonize survivin. We summarize how cells from various tumor entities and with differential expression of the tumor suppressor p53 respond to this agent in vitro and as murine xenografts. Additionally, we recapitulate clinical trials conducted with YM155. Our article further considers the potency of YM155 in combination with other anti-cancer agents and epigenetic modulators. We also assess state-of-the-art data on the sometimes very promiscuous molecular mechanisms affected by YM155 in cancer cells.


Subject(s)
Imidazoles/administration & dosage , Inhibitor of Apoptosis Proteins/biosynthesis , Naphthoquinones/administration & dosage , Neoplasms/genetics , Animals , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/genetics , Mice , Neoplasms/pathology , Promoter Regions, Genetic/drug effects , Survivin , Xenograft Model Antitumor Assays
8.
Cell Rep ; 42(12): 113528, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38041817

ABSTRACT

Apolipoproteins L1 and L3 (APOLs) are associated at the Golgi with the membrane fission factors phosphatidylinositol 4-kinase-IIIB (PI4KB) and non-muscular myosin 2A. Either APOL1 C-terminal truncation (APOL1Δ) or APOL3 deletion (APOL3-KO [knockout]) reduces PI4KB activity and triggers actomyosin reorganization. We report that APOL3, but not APOL1, controls PI4KB activity through interaction with PI4KB and neuronal calcium sensor-1 or calneuron-1. Both APOLs are present in Golgi-derived autophagy-related protein 9A vesicles, which are involved in PI4KB trafficking. Like APOL3-KO, APOL1Δ induces PI4KB dissociation from APOL3, linked to reduction of mitophagy flux and production of mitochondrial reactive oxygen species. APOL1 and APOL3, respectively, can interact with the mitophagy receptor prohibitin-2 and the mitophagosome membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). While APOL1 conditions PI4KB and APOL3 involvement in mitochondrion fission and mitophagy, APOL3-VAMP8 interaction promotes fusion between mitophagosomal and endolysosomal membranes. We propose that APOL3 controls mitochondrial membrane dynamics through interactions with the fission factor PI4KB and the fusion factor VAMP8.


Subject(s)
Apolipoprotein L1 , Mitochondrial Membranes , Apolipoprotein L1/genetics , Mitochondrial Membranes/metabolism , Golgi Apparatus/metabolism , Mitochondria , 1-Phosphatidylinositol 4-Kinase/metabolism , Apolipoproteins/genetics , Apolipoproteins/metabolism , Mitochondrial Dynamics
9.
Cell Rep ; 30(11): 3821-3836.e13, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32187552

ABSTRACT

The C-terminal variants G1 and G2 of apolipoprotein L1 (APOL1) confer human resistance to the sleeping sickness parasite Trypanosoma rhodesiense, but they also increase the risk of kidney disease. APOL1 and APOL3 are death-promoting proteins that are partially associated with the endoplasmic reticulum and Golgi membranes. We report that in podocytes, either APOL1 C-terminal helix truncation (APOL1Δ) or APOL3 deletion (APOL3KO) induces similar actomyosin reorganization linked to the inhibition of phosphatidylinositol-4-phosphate [PI(4)P] synthesis by the Golgi PI(4)-kinase IIIB (PI4KB). Both APOL1 and APOL3 can form K+ channels, but only APOL3 exhibits Ca2+-dependent binding of high affinity to neuronal calcium sensor-1 (NCS-1), promoting NCS-1-PI4KB interaction and stimulating PI4KB activity. Alteration of the APOL1 C-terminal helix triggers APOL1 unfolding and increased binding to APOL3, affecting APOL3-NCS-1 interaction. Since the podocytes of G1 and G2 patients exhibit an APOL1Δ or APOL3KO-like phenotype, APOL1 C-terminal variants may induce kidney disease by preventing APOL3 from activating PI4KB, with consecutive actomyosin reorganization of podocytes.


Subject(s)
Actomyosin/metabolism , Apolipoprotein L1/chemistry , Apolipoprotein L1/genetics , Apolipoproteins L/metabolism , Kidney Diseases/metabolism , Mutation/genetics , Amino Acid Sequence , Apolipoprotein L1/urine , Calcium/metabolism , Cell Line , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Humans , Kidney Diseases/urine , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Minor Histocompatibility Antigens/metabolism , Neuronal Calcium-Sensor Proteins/metabolism , Neuropeptides/metabolism , Phenotype , Phosphatidylinositol Phosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Podocytes/drug effects , Podocytes/metabolism , Podocytes/ultrastructure , Poly I-C/pharmacology , Potassium Channels/metabolism , Protein Binding/drug effects , Protein Structure, Secondary
10.
Methods Mol Biol ; 1510: 387-398, 2017.
Article in English | MEDLINE | ID: mdl-27761837

ABSTRACT

Incorporation of drugs into particles can improve their therapeutic effectiveness. Solubility, half-life time, targeting, and the release of the drug can be modified by the encapsulation into a particle. Histone deacetylase inhibitors have a great potential to be used as therapeutics for many different diseases. In this chapter, we describe the inclusion of the low molar mass HDACi Ex527 into polymer-based particles and liposomes.


Subject(s)
Carbazoles/pharmacology , Drug Compounding/methods , Histone Deacetylase Inhibitors/pharmacology , Liposomes/metabolism , Acetylation , Carbazoles/chemistry , Cell Survival/drug effects , Dextrans/chemistry , Flow Cytometry , Fluorescent Dyes/chemistry , HEK293 Cells , Half-Life , Histone Deacetylase Inhibitors/chemistry , Humans , Lactic Acid/chemistry , Liposomes/chemistry , Phosphatidylcholines/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Rhodamines/chemistry , Solubility
11.
Macromol Biosci ; 14(1): 69-80, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23966296

ABSTRACT

The use of different nanoparticles (NPs) for successful encapsulation of bioactive substances is discussed. The inclusion efficiency into liposomes, acetalated dextran (Ac-Dex), and variants of poly[(lactic acid)-co-(glycolic acid)] (PLGA) NPs is analyzed after chemical degradation. Efficient inclusion of SIRT1 inhibitor Ex527 in liposomes, Ac-Dex- and PLGA-NPs is observed for all procedures used. Activity of Ex527 is demonstrated by monitoring the acetylation status of SIRT1-target p53. In contrast, small peptides are only incorporated into acid-terminated PLGA-NPs and marginally into Ac-Dex-NPs. The yield depends on peptide sequence and terminal modifications. Activity is exemplified for angiotensin II using the dynamic mass redistribution technology.


Subject(s)
Carbazoles/chemistry , Histone Deacetylase Inhibitors/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , Peptides/chemistry , Acetylation , Angiotensin II/chemistry , Angiotensin II/pharmacology , Carbazoles/pharmacology , Dextrans/chemistry , Drug Carriers/chemistry , HEK293 Cells/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxamic Acids/chemistry , Lactic Acid/chemistry , Liposomes/pharmacology , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Sirtuin 1/antagonists & inhibitors , Valproic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL