ABSTRACT
BACKGROUND: The prioritization of U.S. health care personnel for early receipt of messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19), allowed for the evaluation of the effectiveness of these new vaccines in a real-world setting. METHODS: We conducted a test-negative case-control study involving health care personnel across 25 U.S. states. Cases were defined on the basis of a positive polymerase-chain-reaction (PCR) or antigen-based test for SARS-CoV-2 and at least one Covid-19-like symptom. Controls were defined on the basis of a negative PCR test for SARS-CoV-2, regardless of symptoms, and were matched to cases according to the week of the test date and site. Using conditional logistic regression with adjustment for age, race and ethnic group, underlying conditions, and exposures to persons with Covid-19, we estimated vaccine effectiveness for partial vaccination (assessed 14 days after receipt of the first dose through 6 days after receipt of the second dose) and complete vaccination (assessed ≥7 days after receipt of the second dose). RESULTS: The study included 1482 case participants and 3449 control participants. Vaccine effectiveness for partial vaccination was 77.6% (95% confidence interval [CI], 70.9 to 82.7) with the BNT162b2 vaccine (Pfizer-BioNTech) and 88.9% (95% CI, 78.7 to 94.2) with the mRNA-1273 vaccine (Moderna); for complete vaccination, vaccine effectiveness was 88.8% (95% CI, 84.6 to 91.8) and 96.3% (95% CI, 91.3 to 98.4), respectively. Vaccine effectiveness was similar in subgroups defined according to age (<50 years or ≥50 years), race and ethnic group, presence of underlying conditions, and level of patient contact. Estimates of vaccine effectiveness were lower during weeks 9 through 14 than during weeks 3 through 8 after receipt of the second dose, but confidence intervals overlapped widely. CONCLUSIONS: The BNT162b2 and mRNA-1273 vaccines were highly effective under real-world conditions in preventing symptomatic Covid-19 in health care personnel, including those at risk for severe Covid-19 and those in racial and ethnic groups that have been disproportionately affected by the pandemic. (Funded by the Centers for Disease Control and Prevention.).
Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/prevention & control , Health Personnel , Vaccine Efficacy , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Adolescent , Adult , Aged , BNT162 Vaccine/administration & dosage , COVID-19/diagnosis , COVID-19/ethnology , COVID-19 Serological Testing , Case-Control Studies , Female , Humans , Immunization, Secondary , Male , Middle Aged , Polymerase Chain Reaction , United StatesABSTRACT
Vaccine effectiveness (VE) against COVID-19 hospitalization was evaluated among immunocompetent adults (≥18 years) during March-August 2021 using a case-control design. Among 1669 hospitalized COVID-19 cases (11% fully vaccinated) and 1950 RT-PCR-negative controls (54% fully vaccinated), VE was 96% (95% confidence interval [CI], 93%-98%) among patients with no chronic medical conditions and 83% (95% CI, 76%-88%) among patients with ≥ 3 categories of conditions. VE was similar between those aged 18-64 years versus ≥65 years (P > .05). VE against severe COVID-19 was very high among adults without chronic conditions and lessened with increasing comorbidity burden.
Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Chronic Disease , Hospitalization , Humans , Vaccines, Synthetic , mRNA VaccinesABSTRACT
BACKGROUND: As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination coverage increases in the United States, there is a need to understand the real-world effectiveness against severe coronavirus disease 2019 (COVID-19) and among people at increased risk for poor outcomes. METHODS: In a multicenter case-control analysis of US adults hospitalized March 11-May 5, 2021, we evaluated vaccine effectiveness to prevent COVID-19 hospitalizations by comparing odds of prior vaccination with a messenger RNA (mRNA) vaccine (Pfizer-BioNTech or Moderna) between cases hospitalized with COVID-19 and hospital-based controls who tested negative for SARS-CoV-2. RESULTS: Among 1212 participants, including 593 cases and 619 controls, median age was 58 years, 22.8% were Black, 13.9% were Hispanic, and 21.0% had immunosuppression. SARS-CoV-2 lineage B0.1.1.7 (Alpha) was the most common variant (67.9% of viruses with lineage determined). Full vaccination (receipt of 2 vaccine doses ≥14 days before illness onset) had been received by 8.2% of cases and 36.4% of controls. Overall vaccine effectiveness was 87.1% (95% confidence interval [CI], 80.7-91.3). Vaccine effectiveness was similar for Pfizer-BioNTech and Moderna vaccines, and highest in adults aged 18-49 years (97.4%; 95% CI, 79.3-9.7). Among 45 patients with vaccine-breakthrough COVID hospitalizations, 44 (97.8%) were ≥50 years old and 20 (44.4%) had immunosuppression. Vaccine effectiveness was lower among patients with immunosuppression (62.9%; 95% CI,20.8-82.6) than without immunosuppression (91.3%; 95% CI, 85.6-94.8). CONCLUSION: During March-May 2021, SARS-CoV-2 mRNA vaccines were highly effective for preventing COVID-19 hospitalizations among US adults. SARS-CoV-2 vaccination was beneficial for patients with immunosuppression, but effectiveness was lower in the immunosuppressed population.
Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization , Humans , Middle Aged , RNA , SARS-CoV-2 , United States/epidemiology , mRNA VaccinesABSTRACT
PURPOSE: Our goal was to identify discrete clinical characteristics associated with safe discharge from an emergency department/urgent care for patients with a history of cancer and concurrent COVID-19 infection during the SARS-CoV-2 pandemic and prior to widespread vaccination. PATIENTS AND METHODS: We retrospectively analyzed 255 adult patients with a history of cancer who presented to Memorial Sloan Kettering Cancer Center (MSKCC) urgent care center (UCC) from March 1, 2020 to May 31, 2020 with concurrent COVID-19 infection. We evaluated associations between patient characteristics and 30-day mortality from initial emergency department (ED) or urgent care center (UCC) visit and the absence of a severe event within 30 days. External validation was performed on a retrospective data from 29 patients followed at Fred Hutchinson Cancer Research Center that presented to the local emergency department. A late cohort of 108 additional patients at MSKCC from June 1, 2020 to January 31, 2021 was utilized for further validation. RESULTS: In the MSKCC cohort, 30-day mortality and severe event rate was 15% and 32% respectively. Using stepwise regression analysis, elevated BUN and glucose, anemia, and tachypnea were selected as the main predictors of 30-day mortality. Conversely, normal albumin, BUN, calcium, and glucose, neutrophil-lymphocyte ratio <3, lack of (severe) hypoxia, lack of bradycardia or tachypnea, and negative imaging were selected as the main predictors of an uneventful course as defined as a Lack Of a Severe Event within Thirty Days (LOSETD). Utilizing this information, we devised a tool to predict 30-day mortality and LOSETD which achieved an area under the operating curve (AUC) of 79% and 74% respectively. Similar estimates of AUC were obtained in an external validation cohort. A late cohort at MSKCC was consistent with the prior, albeit with a lower AUC. CONCLUSION: We identified easily obtainable variables that predict 30-day mortality and the absence of a severe event for patients with a history of cancer and concurrent COVID-19. This has been translated into a bedside tool that the clinician may utilize to assist disposition of this group of patients from the emergency department or urgent care setting.
Subject(s)
COVID-19/therapy , Neoplasms/complications , Aged , Emergency Service, Hospital , Female , Humans , Male , Retrospective Studies , SARS-CoV-2 , Treatment OutcomeABSTRACT
BACKGROUND: Because of the increased risk for severe coronavirus disease 2019 (COVID-19), the Advisory Committee on Immunization Practices (ACIP) initially prioritized COVID-19 vaccination for persons in long-term care facilities (LTCF), persons aged ≥65 years, and persons aged 16-64 years with high-risk medical conditions when there is limited vaccine supply. We compared characteristics and severe outcomes of hospitalized patients with COVID-19 in the United States between early and later in the pandemic categorized by groups at higher risk of severe COVID-19. METHODS: Observational study of sampled patients aged ≥18 years who tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and admitted to one of 14 academic hospitals in the United States during March-June and October-December 2020. Demographic and clinical information were gathered from electronic health record data. RESULTS: Among 647 patients, 91% met ≥1 of the following risk factors for severe COVID-19 [91% March-June (nâ =â 434); 90% October-December (nâ =â 213)]; 19% were LTCF residents, 45% were aged ≥65-years, and 84% had ≥1 high-risk condition. The proportion of patients who resided in a LTCF declined significantly (25% vs 6%) from early to later pandemic periods. Compared with patients at lower risk for severe COVID-19, in-hospital mortality was higher among patients at high risk for severe COVID-19 (20% vs 7%); these differences were consistently observed between March-June and October-December. CONCLUSIONS: Most adults hospitalized with COVID-19 were those recommended to be prioritized for vaccination based on risk for developing severe COVID-19. These findings highlight the continued urgency to vaccinate patients at high risk for severe COVID-19 and monitor vaccination impact on hospitalizations and outcomes.
Subject(s)
COVID-19 , Adolescent , Adult , COVID-19 Vaccines , Hospitalization , Humans , SARS-CoV-2 , United States/epidemiology , VaccinationABSTRACT
Throughout the COVID-19 pandemic, health care personnel (HCP) have been at high risk for exposure to SARS-CoV-2, the virus that causes COVID-19, through patient interactions and community exposure (1). The Advisory Committee on Immunization Practices recommended prioritization of HCP for COVID-19 vaccination to maintain provision of critical services and reduce spread of infection in health care settings (2). Early distribution of two mRNA COVID-19 vaccines (Pfizer-BioNTech and Moderna) to HCP allowed assessment of the effectiveness of these vaccines in a real-world setting. A test-negative case-control study is underway to evaluate mRNA COVID-19 vaccine effectiveness (VE) against symptomatic illness among HCP at 33 U.S. sites across 25 U.S. states. Interim analyses indicated that the VE of a single dose (measured 14 days after the first dose through 6 days after the second dose) was 82% (95% confidence interval [CI] = 74%-87%), adjusted for age, race/ethnicity, and underlying medical conditions. The adjusted VE of 2 doses (measured ≥7 days after the second dose) was 94% (95% CI = 87%-97%). VE of partial (1-dose) and complete (2-dose) vaccination in this population is comparable to that reported from clinical trials and recent observational studies, supporting the effectiveness of mRNA COVID-19 vaccines against symptomatic disease in adults, with strong 2-dose protection.
Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Health Personnel/statistics & numerical data , Occupational Diseases/prevention & control , Adult , Aged , COVID-19/epidemiology , COVID-19 Testing , COVID-19 Vaccines/administration & dosage , Case-Control Studies , Female , Humans , Immunization Schedule , Male , Middle Aged , Occupational Diseases/epidemiology , United States/epidemiology , Young AdultABSTRACT
Real-world evaluations have demonstrated high effectiveness of vaccines against COVID-19-associated hospitalizations (1-4) measured shortly after vaccination; longer follow-up is needed to assess durability of protection. In an evaluation at 21 hospitals in 18 states, the duration of mRNA vaccine (Pfizer-BioNTech or Moderna) effectiveness (VE) against COVID-19-associated hospitalizations was assessed among adults aged ≥18 years. Among 3,089 hospitalized adults (including 1,194 COVID-19 case-patients and 1,895 non-COVID-19 control-patients), the median age was 59 years, 48.7% were female, and 21.1% had an immunocompromising condition. Overall, 141 (11.8%) case-patients and 988 (52.1%) controls were fully vaccinated (defined as receipt of the second dose of Pfizer-BioNTech or Moderna mRNA COVID-19 vaccines ≥14 days before illness onset), with a median interval of 65 days (range = 14-166 days) after receipt of second dose. VE against COVID-19-associated hospitalization during the full surveillance period was 86% (95% confidence interval [CI] = 82%-88%) overall and 90% (95% CI = 87%-92%) among adults without immunocompromising conditions. VE against COVID-19- associated hospitalization was 86% (95% CI = 82%-90%) 2-12 weeks and 84% (95% CI = 77%-90%) 13-24 weeks from receipt of the second vaccine dose, with no significant change between these periods (p = 0.854). Whole genome sequencing of 454 case-patient specimens found that 242 (53.3%) belonged to the B.1.1.7 (Alpha) lineage and 74 (16.3%) to the B.1.617.2 (Delta) lineage. Effectiveness of mRNA vaccines against COVID-19-associated hospitalization was sustained over a 24-week period, including among groups at higher risk for severe COVID-19; ongoing monitoring is needed as new SARS-CoV-2 variants emerge. To reduce their risk for hospitalization, all eligible persons should be offered COVID-19 vaccination.
Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Humans , Male , Middle Aged , Time Factors , United States/epidemiology , Vaccines, Synthetic , Young Adult , mRNA VaccinesABSTRACT
Three COVID-19 vaccines are authorized or approved for use among adults in the United States (1,2). Two 2-dose mRNA vaccines, mRNA-1273 from Moderna and BNT162b2 from Pfizer-BioNTech, received Emergency Use Authorization (EUA) by the Food and Drug Administration (FDA) in December 2020 for persons aged ≥18 years and aged ≥16 years, respectively. A 1-dose viral vector vaccine (Ad26.COV2 from Janssen [Johnson & Johnson]) received EUA in February 2021 for persons aged ≥18 years (3). The Pfizer-BioNTech vaccine received FDA approval for persons aged ≥16 years on August 23, 2021 (4). Current guidelines from FDA and CDC recommend vaccination of eligible persons with one of these three products, without preference for any specific vaccine (4,5). To assess vaccine effectiveness (VE) of these three products in preventing COVID-19 hospitalization, CDC and collaborators conducted a case-control analysis among 3,689 adults aged ≥18 years who were hospitalized at 21 U.S. hospitals across 18 states during March 11-August 15, 2021. An additional analysis compared serum antibody levels (anti-spike immunoglobulin G [IgG] and anti-receptor binding domain [RBD] IgG) to SARS-CoV-2, the virus that causes COVID-19, among 100 healthy volunteers enrolled at three hospitals 2-6 weeks after full vaccination with the Moderna, Pfizer-BioNTech, or Janssen COVID-19 vaccine. Patients with immunocompromising conditions were excluded. VE against COVID-19 hospitalizations was higher for the Moderna vaccine (93%; 95% confidence interval [CI] = 91%-95%) than for the Pfizer-BioNTech vaccine (88%; 95% CI = 85%-91%) (p = 0.011); VE for both mRNA vaccines was higher than that for the Janssen vaccine (71%; 95% CI = 56%-81%) (all p<0.001). Protection for the Pfizer-BioNTech vaccine declined 4 months after vaccination. Postvaccination anti-spike IgG and anti-RBD IgG levels were significantly lower in persons vaccinated with the Janssen vaccine than the Moderna or Pfizer-BioNTech vaccines. Although these real-world data suggest some variation in levels of protection by vaccine, all FDA-approved or authorized COVID-19 vaccines provide substantial protection against COVID-19 hospitalization.
Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Immunocompromised Host/immunology , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , Female , Humans , Male , Middle Aged , United States/epidemiology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult , mRNA VaccinesABSTRACT
PURPOSE: Many patients with cancer seek care for pain in the emergency department (ED). Prospective research on cancer pain in this setting has historically been insufficient. We conducted this study to describe the reported pain among cancer patients presenting to the ED, how pain is managed, and how pain may be associated with clinical outcomes. METHODS: We conducted a multicenter cohort study on adult patients with active cancer presenting to 18 EDs in the USA. We reported pain scores, response to medication, and analgesic utilization. We estimated the associations between pain severity, medication utilization, and the following outcomes: 30-day mortality, 30-day hospital readmission, and ED disposition. RESULTS: The study population included 1075 participants. Those who received an opioid in the ED were more likely to be admitted to the hospital and were more likely to be readmitted within 30 days (OR 1.4 (95% CI: 1.11, 1.88) and OR 1.56 (95% CI: 1.17, 2.07)), respectively. Severe pain at ED presentation was associated with increased 30-day mortality (OR 2.30, 95% CI: 1.05, 5.02), though this risk was attenuated when adjusting for clinical factors (most notably functional status). CONCLUSIONS: Patients with severe pain had a higher risk of mortality, which was attenuated when correcting for clinical characteristics. Those patients who required opioid analgesics in the ED were more likely to require admission and were more at risk of 30-day hospital readmission. Future efforts should focus on these at-risk groups, who may benefit from additional services including palliative care, hospice, or home-health services.
Subject(s)
Analgesics/therapeutic use , Cancer Pain/drug therapy , Emergency Service, Hospital/statistics & numerical data , Hospitalization/statistics & numerical data , Pain Management/methods , Adult , Analgesics, Opioid/therapeutic use , Cancer Pain/mortality , Female , Humans , Male , Middle Aged , Odds Ratio , Pain Management/mortality , Pain Measurement , Patient Readmission/statistics & numerical data , Prospective Studies , United StatesABSTRACT
Importance: A comprehensive understanding of the benefits of COVID-19 vaccination requires consideration of disease attenuation, determined as whether people who develop COVID-19 despite vaccination have lower disease severity than unvaccinated people. Objective: To evaluate the association between vaccination with mRNA COVID-19 vaccines-mRNA-1273 (Moderna) and BNT162b2 (Pfizer-BioNTech)-and COVID-19 hospitalization, and, among patients hospitalized with COVID-19, the association with progression to critical disease. Design, Setting, and Participants: A US 21-site case-control analysis of 4513 adults hospitalized between March 11 and August 15, 2021, with 28-day outcome data on death and mechanical ventilation available for patients enrolled through July 14, 2021. Date of final follow-up was August 8, 2021. Exposures: COVID-19 vaccination. Main Outcomes and Measures: Associations were evaluated between prior vaccination and (1) hospitalization for COVID-19, in which case patients were those hospitalized for COVID-19 and control patients were those hospitalized for an alternative diagnosis; and (2) disease progression among patients hospitalized for COVID-19, in which cases and controls were COVID-19 patients with and without progression to death or mechanical ventilation, respectively. Associations were measured with multivariable logistic regression. Results: Among 4513 patients (median age, 59 years [IQR, 45-69]; 2202 [48.8%] women; 23.0% non-Hispanic Black individuals, 15.9% Hispanic individuals, and 20.1% with an immunocompromising condition), 1983 were case patients with COVID-19 and 2530 were controls without COVID-19. Unvaccinated patients accounted for 84.2% (1669/1983) of COVID-19 hospitalizations. Hospitalization for COVID-19 was significantly associated with decreased likelihood of vaccination (cases, 15.8%; controls, 54.8%; adjusted OR, 0.15; 95% CI, 0.13-0.18), including for sequenced SARS-CoV-2 Alpha (8.7% vs 51.7%; aOR, 0.10; 95% CI, 0.06-0.16) and Delta variants (21.9% vs 61.8%; aOR, 0.14; 95% CI, 0.10-0.21). This association was stronger for immunocompetent patients (11.2% vs 53.5%; aOR, 0.10; 95% CI, 0.09-0.13) than immunocompromised patients (40.1% vs 58.8%; aOR, 0.49; 95% CI, 0.35-0.69) (P < .001) and weaker at more than 120 days since vaccination with BNT162b2 (5.8% vs 11.5%; aOR, 0.36; 95% CI, 0.27-0.49) than with mRNA-1273 (1.9% vs 8.3%; aOR, 0.15; 95% CI, 0.09-0.23) (P < .001). Among 1197 patients hospitalized with COVID-19, death or invasive mechanical ventilation by day 28 was associated with decreased likelihood of vaccination (12.0% vs 24.7%; aOR, 0.33; 95% CI, 0.19-0.58). Conclusions and Relevance: Vaccination with an mRNA COVID-19 vaccine was significantly less likely among patients with COVID-19 hospitalization and disease progression to death or mechanical ventilation. These findings are consistent with risk reduction among vaccine breakthrough infections compared with absence of vaccination.
Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 , Hospitalization/statistics & numerical data , Adult , Aged , COVID-19/classification , COVID-19/epidemiology , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/classification , Case-Control Studies , Disease Progression , Female , Humans , Male , Middle Aged , Respiration, Artificial , SARS-CoV-2 , Severity of Illness Index , VaccinationABSTRACT
Descriptions of coronavirus disease 2019 (COVID-19) in the United States have focused primarily on hospitalized patients. Reports documenting exposures to SARS-CoV-2, the virus that causes COVID-19, have generally been described within congregate settings, such as meat and poultry processing plants (1) and long-term care facilities (2). Understanding individual behaviors and demographic characteristics of patients with COVID-19 and risks for severe illness requiring hospitalization can inform efforts to reduce transmission. During April 15-May 24, 2020, telephone interviews were conducted with a random sample of adults aged ≥18 years who had positive reverse transcription-polymerase chain reaction (RT-PCR) test results for SARS-CoV-2 in outpatient and inpatient settings at 11 U.S. academic medical centers in nine states. Respondents were contacted 14-21 days after SARS-CoV-2 testing and asked about their demographic characteristics, underlying chronic conditions, symptoms experienced on the date of testing, and potential exposures to SARS-CoV-2 during the 2 weeks before illness onset (or the date of testing among those who did not report symptoms at the time of testing). Among 350 interviewed patients (271 [77%] outpatients and 79 [23%] inpatients), inpatients were older, more likely to be Hispanic and to report dyspnea than outpatients. Fewer inpatients (39%, 20 of 51) reported a return to baseline level of health at 14-21 days than did outpatients (64%, 150 of 233) (p = 0.001). Overall, approximately one half (46%) of patients reported known close contact with someone with COVID-19 during the preceding 2 weeks. This was most commonly a family member (45%) or a work colleague (34%). Approximately two thirds (64%, 212 of 333) of participants were employed; only 35 of 209 (17%) were able to telework. These findings highlight the need for screening, case investigation, contact tracing, and isolation of infected persons to control transmission of SARS-CoV-2 infection during periods of community transmission. The need for enhanced measures to ensure workplace safety, including ensuring social distancing and more widespread use of cloth face coverings, are warranted (3).
Subject(s)
Coronavirus Infections/diagnosis , Inpatients/statistics & numerical data , Outpatients/statistics & numerical data , Pneumonia, Viral/diagnosis , Academic Medical Centers , Adult , Aged , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Risk Factors , Socioeconomic Factors , United States/epidemiologyABSTRACT
Prolonged symptom duration and disability are common in adults hospitalized with severe coronavirus disease 2019 (COVID-19). Characterizing return to baseline health among outpatients with milder COVID-19 illness is important for understanding the full spectrum of COVID-19-associated illness and tailoring public health messaging, interventions, and policy. During April 15-June 25, 2020, telephone interviews were conducted with a random sample of adults aged ≥18 years who had a first positive reverse transcription-polymerase chain reaction (RT-PCR) test for SARS-CoV-2, the virus that causes COVID-19, at an outpatient visit at one of 14 U.S. academic health care systems in 13 states. Interviews were conducted 14-21 days after the test date. Respondents were asked about demographic characteristics, baseline chronic medical conditions, symptoms present at the time of testing, whether those symptoms had resolved by the interview date, and whether they had returned to their usual state of health at the time of interview. Among 292 respondents, 94% (274) reported experiencing one or more symptoms at the time of testing; 35% of these symptomatic respondents reported not having returned to their usual state of health by the date of the interview (median = 16 days from testing date), including 26% among those aged 18-34 years, 32% among those aged 35-49 years, and 47% among those aged ≥50 years. Among respondents reporting cough, fatigue, or shortness of breath at the time of testing, 43%, 35%, and 29%, respectively, continued to experience these symptoms at the time of the interview. These findings indicate that COVID-19 can result in prolonged illness even among persons with milder outpatient illness, including young adults. Effective public health messaging targeting these groups is warranted. Preventative measures, including social distancing, frequent handwashing, and the consistent and correct use of face coverings in public, should be strongly encouraged to slow the spread of SARS-CoV-2.
Subject(s)
Ambulatory Care , Coronavirus Infections/complications , Coronavirus Infections/therapy , Delivery of Health Care/organization & administration , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Recovery of Function , Adolescent , Adult , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Risk Factors , Time Factors , Treatment Outcome , United States/epidemiology , Young AdultABSTRACT
Since March 2020, large-scale efforts to reduce transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), have continued. Mitigation measures to reduce workplace exposures have included work site policies to support flexible work site options, including telework, whereby employees work remotely without commuting to a central place of work.* Opportunities to telework have varied across industries among U.S. jobs where telework options are feasible (1). However, little is known about the impact of telework on risk for SARS-CoV-2 infection. A case-control investigation was conducted to compare telework between eligible symptomatic persons who received positive SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) test results (case-patients, 153) and symptomatic persons with negative test results (control-participants, 161). Eligible participants were identified in outpatient health care facilities during July 2020. Among employed participants who reported on their telework status during the 2 weeks preceding illness onset (248), the percentage who were able to telework on a full- or part-time basis was lower among case-patients (35%; 42 of 120) than among control-participants (53%; 68 of 128) (p<0.01). Case-patients were more likely than were control-participants to have reported going exclusively to an office or school setting (adjusted odds ratio [aOR] = 1.8; 95% confidence interval [CI] = 1.2-2.7) in the 2 weeks before illness onset. The association was also observed when further restricting to the 175 participants who reported working in a profession outside the critical infrastructure (aOR = 2.1; 95% CI = 1.3-3.6). Providing the option to work from home or telework when possible, is an important consideration for reducing the risk for SARS-CoV-2 infection. In industries where telework options are not available, worker safety measures should continue to be scaled up to reduce possible worksite exposures.
Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Symptom Assessment , Telecommunications/statistics & numerical data , Work/statistics & numerical data , Adolescent , Adult , Ambulatory Care Facilities , COVID-19 , Case-Control Studies , Female , Humans , Male , Middle Aged , Pandemics , United States/epidemiology , Young AdultABSTRACT
Community and close contact exposures continue to drive the coronavirus disease 2019 (COVID-19) pandemic. CDC and other public health authorities recommend community mitigation strategies to reduce transmission of SARS-CoV-2, the virus that causes COVID-19 (1,2). Characterization of community exposures can be difficult to assess when widespread transmission is occurring, especially from asymptomatic persons within inherently interconnected communities. Potential exposures, such as close contact with a person with confirmed COVID-19, have primarily been assessed among COVID-19 cases, without a non-COVID-19 comparison group (3,4). To assess community and close contact exposures associated with COVID-19, exposures reported by case-patients (154) were compared with exposures reported by control-participants (160). Case-patients were symptomatic adults (persons aged ≥18 years) with SARS-CoV-2 infection confirmed by reverse transcription-polymerase chain reaction (RT-PCR) testing. Control-participants were symptomatic outpatient adults from the same health care facilities who had negative SARS-CoV-2 test results. Close contact with a person with known COVID-19 was more commonly reported among case-patients (42%) than among control-participants (14%). Case-patients were more likely to have reported dining at a restaurant (any area designated by the restaurant, including indoor, patio, and outdoor seating) in the 2 weeks preceding illness onset than were control-participants (adjusted odds ratio [aOR] = 2.4; 95% confidence interval [CI] = 1.5-3.8). Restricting the analysis to participants without known close contact with a person with confirmed COVID-19, case-patients were more likely to report dining at a restaurant (aOR = 2.8, 95% CI = 1.9-4.3) or going to a bar/coffee shop (aOR = 3.9, 95% CI = 1.5-10.1) than were control-participants. Exposures and activities where mask use and social distancing are difficult to maintain, including going to places that offer on-site eating or drinking, might be important risk factors for acquiring COVID-19. As communities reopen, efforts to reduce possible exposures at locations that offer on-site eating and drinking options should be considered to protect customers, employees, and communities.
Subject(s)
Community-Acquired Infections/epidemiology , Contact Tracing , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Environmental Exposure/adverse effects , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Adolescent , Adult , Ambulatory Care Facilities , COVID-19 , Environmental Exposure/statistics & numerical data , Female , Humans , Male , Middle Aged , Pandemics , United States/epidemiology , Young AdultABSTRACT
Most persons infected with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), develop virus-specific antibodies within several weeks, but antibody titers might decline over time. Understanding the timeline of antibody decline is important for interpreting SARS-CoV-2 serology results. Serum specimens were collected from a convenience sample of frontline health care personnel at 13 hospitals and tested for antibodies to SARS-CoV-2 during April 3-June 19, 2020, and again approximately 60 days later to assess this timeline. The percentage of participants who experienced seroreversion, defined as an antibody signal-to-threshold ratio >1.0 at baseline and <1.0 at the follow-up visit, was assessed. Overall, 194 (6.0%) of 3,248 participants had detectable antibodies to SARS-CoV-2 at baseline (1). Upon repeat testing approximately 60 days later (range = 50-91 days), 146 (93.6%) of 156 participants experienced a decline in antibody response indicated by a lower signal-to-threshold ratio at the follow-up visit, compared with the baseline visit, and 44 (28.2%) experienced seroreversion. Participants with higher initial antibody responses were more likely to have antibodies detected at the follow-up test than were those who had a lower initial antibody response. Whether decay in these antibodies increases risk for reinfection and disease remains unanswered. However, these results suggest that serology testing at a single time point is likely to underestimate the number of persons with previous SARS-CoV-2 infection, and a negative serologic test result might not reliably exclude prior infection.
Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/immunology , Personnel, Hospital/statistics & numerical data , Pneumonia, Viral/immunology , Adult , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , United States/epidemiologyABSTRACT
Health care personnel (HCP) caring for patients with coronavirus disease 2019 (COVID-19) might be at high risk for contracting SARS-CoV-2, the virus that causes COVID-19. Understanding the prevalence of and factors associated with SARS-CoV-2 infection among frontline HCP who care for COVID-19 patients are important for protecting both HCP and their patients. During April 3-June 19, 2020, serum specimens were collected from a convenience sample of frontline HCP who worked with COVID-19 patients at 13 geographically diverse academic medical centers in the United States, and specimens were tested for antibodies to SARS-CoV-2. Participants were asked about potential symptoms of COVID-19 experienced since February 1, 2020, previous testing for acute SARS-CoV-2 infection, and their use of personal protective equipment (PPE) in the past week. Among 3,248 participants, 194 (6.0%) had positive test results for SARS-CoV-2 antibodies. Seroprevalence by hospital ranged from 0.8% to 31.2% (median = 3.6%). Among the 194 seropositive participants, 56 (29%) reported no symptoms since February 1, 2020, 86 (44%) did not believe that they previously had COVID-19, and 133 (69%) did not report a previous COVID-19 diagnosis. Seroprevalence was lower among personnel who reported always wearing a face covering (defined in this study as a surgical mask, N95 respirator, or powered air purifying respirator [PAPR]) while caring for patients (5.6%), compared with that among those who did not (9.0%) (p = 0.012). Consistent with persons in the general population with SARS-CoV-2 infection, many frontline HCP with SARS-CoV-2 infection might be asymptomatic or minimally symptomatic during infection, and infection might be unrecognized. Enhanced screening, including frequent testing of frontline HCP, and universal use of face coverings in hospitals are two strategies that could reduce SARS-CoV-2 transmission.
Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Personnel, Hospital/statistics & numerical data , Pneumonia, Viral/epidemiology , Academic Medical Centers , Adult , Asymptomatic Diseases , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Cross Infection/prevention & control , Female , Humans , Infectious Disease Transmission, Professional-to-Patient/prevention & control , Male , Middle Aged , Pandemics/prevention & control , Personal Protective Equipment/statistics & numerical data , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Seroepidemiologic Studies , United States/epidemiologyABSTRACT
BACKGROUND: Identifying infection is critical in early sepsis screening. This study assessed whether biomarkers of endothelial activation and/or inflammation could improve identification of infection among Emergency Department (ED) patients with organ dysfunction. METHODS: We performed a prospective, observational study at two urban, academic EDs, between June 2016 and December 2017. We included admitted adults with 1) two systemic inflammatory response syndrome criteria and organ dysfunction, 2) systolic blood pressureâ¯<â¯90â¯mmHg, or 3) lactate ≥4.0â¯mmol/L. We excluded patients with trauma, transferred for intracranial hemorrhage, or without available blood samples. Treating ED physicians reported presence of infection (yes/no) at inpatient admission. Assays for angiopoietin-1, angiopoietin-2, soluble tumor necrosis factor receptor-1, interleukin-6, and interleukin-8 were performed using ED blood samples. The primary outcome was infection, adjudicated by paired physician review. Using logistic regression, we compared the performance of physician judgment, biomarkers, and physician judgment-biomarkers combination to predict infection. Area under the curve (AUC) and AUC 95% confidence intervals were estimated by bootstrap procedure. RESULTS: Of 421 patients enrolled, 306 patients met final study criteria. Of these, 154(50.3%) patients had infectious etiologies. Physicians correctly discriminated infectious from non-infectious etiologies in 239 (78.1%). Physician judgment performed moderately when discriminating infection (AUC 0.78, 95% CI: 0.74-0.82) and outperformed the best biomarker model, interleukin-6 alone, (AUC 0.71, 0.66-0.76). Physician judgment improved when including interleukin-6 (AUC 0.84, 0.79-0.87), with modest AUC improvement: 0.06 (0.03-0.08). CONCLUSIONS: In ED patients with organ dysfunction, plasma interleukin-6 may improve infection discrimination when added to physician judgment.
Subject(s)
Interleukin-6/blood , Sepsis/blood , Sepsis/diagnosis , Biomarkers/blood , Clinical Competence , Emergency Service, Hospital , Female , Humans , Male , Middle Aged , Prospective StudiesABSTRACT
OBJECTIVES: To determine whether biomarkers of endothelial activation and inflammation provide added value for prediction of in-hospital mortality within 28 days when combined with physician judgment in critically ill emergency department patients. DESIGN: Prospective, observational study. SETTING: Two urban, academic emergency departments, with ≈80,000 combined annual visits, between June 2016 and December 2017. PATIENTS: Admitted patients, greater than 17 years old, with two systemic inflammatory response syndrome criteria and organ dysfunction, systolic blood pressure less than 90 mm Hg, or lactate greater than 4.0 mmol/L. Patients with trauma, intracranial hemorrhage known prior to arrival, or without available blood samples were excluded. INTERVENTIONS: Emergency department physicians reported likelihood of in-hospital mortality (0-100%) by survey at hospital admission. Remnant EDTA blood samples, drawn during the emergency department stay, were used to measure angiopoietin-1, angiopoietin-2, tumor necrosis factor receptor-1, interleukin-6, and interleukin-8. MEASUREMENTS AND MAIN RESULTS: We screened 421 patients and enrolled 314. The primary outcome of in-hospital mortality within 28 days occurred in 31 (9.9%). When predicting the primary outcome, the best biomarker model included angiopoietin-2 and interleukin-6 and performed moderately well (area under the curve, 0.72; 95% CI, 0.69-0.75), as did physician judgment (area under the curve, 0.78; 95% CI, 0.74-0.82). Combining physician judgment and biomarker models improved performance (area under the curve, 0.85; 95% CI, 0.82-0.87), with area under the curve change of 0.06 (95% CI, 0.04-0.09; p < 0.01) compared with physician judgment alone. CONCLUSIONS: Predicting in-hospital mortality within 28 days among critically ill emergency department patients may be improved by including biomarkers of endothelial activation and inflammation in combination with emergency department physician judgment.
Subject(s)
Clinical Decision-Making , Critical Illness/mortality , Emergency Service, Hospital , Hospital Mortality , Judgment , Medical Staff, Hospital , Angiopoietin-1/blood , Angiopoietin-2/blood , Biomarkers/blood , Female , Humans , Intensive Care Units , Interleukin-6/blood , Interleukin-8/blood , Intubation , Length of Stay , Male , Middle Aged , Prospective Studies , Receptors, Tumor Necrosis Factor, Type I/blood , Sampling Studies , Vasoconstrictor Agents/therapeutic use , Washington/epidemiologyABSTRACT
BACKGROUND: Patients with active cancer account for a growing percentage of all emergency department (ED) visits and have a unique set of risks related to their disease and its treatments. Effective triage for this population is fundamental to facilitating their emergency care. OBJECTIVES: We evaluated the validity of the Emergency Severity Index (ESI; version 4) triage tool to predict ED-relevant outcomes among adult patients with active cancer. METHODS: We conducted a prespecified analysis of the observational cohort established by the National Cancer Institute-supported Comprehensive Oncologic Emergencies Research Network's multicenter (18 sites) study of ED visits by patients with active cancer (N = 1075). We used a series of χ2 tests for independence to relate ESI scores with 1) disposition, 2) ED resource use, 3) hospital length of stay, and 4) 30-day mortality. RESULTS: Among the 1008 subjects included in this analysis, the ESI distribution skewed heavily toward high acuity (>95% of subjects had an ESI level of 1, 2, or 3). ESI was significantly associated with patient disposition and ED resource use (p values < 0.05). No significant associations were observed between ESI and the non-ED based outcomes of hospital length of stay or 30-day mortality. CONCLUSION: ESI scores among ED patients with active cancer indicate higher acuity than the general ED population and are predictive of disposition and ED resource use. These findings show that the ESI is a valid triage tool for use in this population for outcomes directly relevant to ED care.
Subject(s)
Neoplasms/therapy , Severity of Illness Index , Triage/methods , Adult , Aged , Aged, 80 and over , Emergency Service, Hospital/statistics & numerical data , Female , Humans , Length of Stay , Male , Middle Aged , Neoplasms/diagnosis , Neoplasms/mortality , Prospective Studies , Young AdultABSTRACT
OBJECTIVE: This study evaluates whether emergency department septic shock patients without a fever (reported or measured) receive less IV fluids, have decreased antibiotic administration, and suffer increased in-hospital mortality. DESIGN: This was a secondary analysis of a prospective, observational study of patients with shock. SETTING: The study was conducted in an urban, academic emergency department. PATIENTS: The original study enrolled consecutive adult (aged 18 yr or older) emergency department patients from November 11, 2012, to September 23, 2013, who met one of the following shock criteria: 1) systolic blood pressure less than 90 mm Hg after at least 1L IV fluids, 2) new vasopressor requirement, or 3) systolic blood pressure less than 90 mm Hg and IV fluids held for concern of fluid overload. The current study is limited to patients with septic shock. Patients were grouped as febrile if they had a subjective fever or a measured temperature >100.4°F documented in the emergency department; afebrile patients lacked both. MEASUREMENTS AND MAIN RESULTS: Among 378 patients with septic shock, 207 of 378 (55%; 50-60%) were febrile by history or measurement. Afebrile patients had lower rates of antibiotic administration in the emergency department (81% vs 94%; p < 0.01), lower mean volumes of IV fluids (2,607 vs 3,013 mL; p < 0.01), and higher in-hospital mortality rates (33% vs 11%; p < 0.01). After adjusting for bicarbonate less than 20 mEq/L, lactate concentration, respiratory rate greater than or equal to 24 breaths/min, emergency department antibiotics, and emergency department IV fluids volume, being afebrile remained a significant predictor of in-hospital mortality (odds ratio, 4.3; 95% CI, 2.2-8.2; area under the curve = 0.83). CONCLUSIONS: In emergency department patients with septic shock, afebrile patients received lower rates of emergency department antibiotic administration, lower mean IV fluids volume, and suffered higher in-hospital mortality.