Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473876

ABSTRACT

This study was investigated to examine the neuroprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced-dementia mice. Consumption of FPB by mice resulted in improved memory dysfunction in the Y-maze, passive avoidance, and Morris water maze tests. FPB significantly decreased oxidative stress by regulating levels of malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) in brain tissues. In addition, FPB restored cerebral mitochondrial dysfunction by modulating levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP. In addition, FPB enhanced the cholinergic system via the regulation of acetylcholine (ACh) content, acetylcholinesterase (AChE) activity, and expressions of AChE and choline acetyltransferase (ChAT) in brain tissues. FPB ameliorated neuronal apoptosis through modulation of the protein kinase B (AKT)/B-cell lymphoma (BCL)-2 signaling pathway. Also, FPB improved inflammation response by down-regulating the toll-like receptor (TLR)-4/nuclear factor (NF)-κB pathway. Additionally, FPB ameliorated synaptic plasticity via the increase of the expressions of synaptophysin (SYP), postsynaptic density protein (PSD)-95, and growth-associated protein (GAP)-43. Treatment with FPB also reinforced the blood-brain barrier by increasing tight junctions including zonula occludens (ZO)-1, occludin, and claudin-1. In conclusion, these results show that FPB can improve cognitive impairment via AKT/NF-κB pathways in ethanol-induced-dementia mice.


Subject(s)
Dementia , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Acetylcholinesterase/metabolism , Larva/metabolism , Signal Transduction , Oxidative Stress
2.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612870

ABSTRACT

Ulcerative colitis (UC) is one of the inflammatory bowel diseases (IBD) that is characterized by systemic immune system activation. This study was performed to assess the alleviative effect of administering an aqueous extract of Eucommia ulmoides leaves (AEEL) on cognitive dysfunction in mice with dextran sulfate sodium (DSS)-induced colitis. The major bioactive compounds of AEEL were identified as a quinic acid derivative, caffeic acid-O-hexoside, and 3-O-caffeoylquinic acid using UPLC Q-TOF/MSE. AEEL administration alleviated colitis symptoms, which are bodyweight change and colon shortening. Moreover, AEEL administration protected intestinal barrier integrity by increasing the tight junction protein expression levels in colon tissues. Likewise, AEEL improved behavioral dysfunction in the Y-maze, passive avoidance, and Morris water maze tests. Additionally, AEEL improved short-chain fatty acid (SCFA) content in the feces of DSS-induced mice. In addition, AEEL improved damaged cholinergic systems in brain tissue and damaged mitochondrial and antioxidant functions in colon and brain tissues caused by DSS. Also, AEEL protected against DSS-induced cytotoxicity and inflammation in colon and brain tissues by c-Jun N-terminal kinase (JNK) and the toll-like receptor 4 (TLR4) signaling pathway. Therefore, these results suggest that AEEL is a natural material that alleviates DSS-induced cognitive dysfunction with the modulation of gut-brain interaction.


Subject(s)
Cognitive Dysfunction , Colitis , Eucommiaceae , Animals , Mice , Dextran Sulfate/adverse effects , Toll-Like Receptor 4 , Colitis/chemically induced , Colitis/drug therapy , Chlorogenic Acid , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy
3.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542468

ABSTRACT

This study was performed to investigate the protective effects of Allium ochotense on fatty liver and hepatitis in chronic alcohol-induced hepatotoxicity. The physiological compounds of a mixture of aqueous and 60% ethanol (2:8, w/w) extracts of A. ochotense (EA) were identified as kestose, raffinose, kaempferol and quercetin glucoside, and kaempferol di-glucoside by UPLC Q-TOF MSE. The EA regulated the levels of lipid metabolism-related biomarkers such as total cholesterol, triglyceride, low-density lipoprotein (LDL), and high-density lipoprotein (HDL)-cholesterol in serum. Also, EA ameliorated the levels of liver toxicity-related biomarkers such as glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and total bilirubin in serum. EA improved the antioxidant system by reducing malondialdehyde contents and increasing superoxide dismutase (SOD) levels and reduced glutathione content. EA improved the alcohol metabolizing enzymes such as alcohol dehydrogenase, acetaldehyde dehydrogenase, and cytochrome P450 2E1 (CYP2E1). Treatment with EA alleviated lipid accumulation-related protein expression by improving phosphorylation of AMP-activated protein kinase (p-AMPK) expression levels. Especially, EA reduced inflammatory response by regulating the toll-like receptor-4/nuclear factor kappa-light-chain-enhancer of activated B cells (TLR-4/NF-κB) signaling pathway. EA showed an anti-apoptotic effect by regulating the expression levels of B-cell lymphoma 2 (BCl-2), BCl-2-associated X protein (BAX), and caspase 3. Treatment with EA also ameliorated liver fibrosis via inhibition of transforming growth factor-beta 1/suppressor of mothers against decapentaplegic (TGF-ß1/Smad) pathway and alpha-smooth muscle actin (α-SMA). Therefore, these results suggest that EA might be a potential prophylactic agent for the treatment of alcoholic liver disease.


Subject(s)
Fatty Liver, Alcoholic , Fatty Liver , Mice , Animals , Kaempferols/pharmacology , Liver/metabolism , Mice, Inbred C57BL , Fatty Liver, Alcoholic/metabolism , Ethanol/toxicity , Ethanol/metabolism , Fatty Liver/metabolism , Inflammation/metabolism , Cholesterol/metabolism , Glucosides/pharmacology , Biomarkers/metabolism , Oxidative Stress
4.
Int J Mol Sci ; 24(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686071

ABSTRACT

This study was conducted to confirm the effects of Korean red ginseng on lung and brain dysfunction in a BALB/c mice model exposed to particulate matter (PM)2.5 for 12 weeks. Learning and cognitive abilities were assessed with Y-maze, passive avoidance, and Morris water maze tests. To evaluate the ameliorating effect of red ginseng extract (RGE), the antioxidant system and mitochondrial function were investigated. The administration of RGE protected lung and brain impairment by regulating the antioxidant system and mitochondrial functions damaged by PM2.5-induced toxicity. Moreover, RGE prevented pulmonary fibrosis by regulating the transforming growth factor beta 1 (TGF-ß1) pathway. RGE attenuated PM2.5-induced pulmonary and cognitive dysfunction by regulating systemic inflammation and apoptosis via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/c-Jun N-terminal kinases (JNK) pathway. In conclusion, RGE might be a potential material that can regulate chronic PM2.5-induced lung and brain cognitive dysfunction.


Subject(s)
Brain Diseases , Panax , Animals , Mice , Antioxidants , Inflammation/drug therapy , Brain , Mice, Inbred BALB C , Lung
5.
Int J Mol Sci ; 24(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37762386

ABSTRACT

This study was conducted to investigate the anti-amnestic property of Korean red pine bark extract (KRPBE) on TMT-induced cognitive decline in ICR mice. As a result of looking at behavioral function, the consumption of KRPBE improved the spatial work ability, short-term learning, and memory ability by Y-maze, passive avoidance, and Morris water maze tests. KRPBE suppressed antioxidant system damage by assessing the SOD activity, reduced GSH content, and MDA levels in brain tissue. In addition, it had a protective effect on cholinergic and synaptic systems by regulating ACh levels, AChE activity, and protein expression levels of ChAT, AChE, SYP, and PSD-95. Also, the KRPBE ameliorated TMT-induced mitochondrial damage by regulating the ROS content, MMP, and ATP levels. Treatment with KRPBE suppressed Aß accumulation and phosphorylation of tau and reduced the expression level of BAX/BCl-2 ratio and caspase 3, improving oxidative stress-induced apoptosis. Moreover, treatment with KRPBE improved cognitive dysfunction by regulating the neuro-inflammatory protein expression levels of p-JNK, p-Akt, p-IκB-α, COX-2, and IL-1ß. Based on these results, the extract of Korean red pine bark, which is discarded as a byproduct of forestry, might be used as an eco-friendly material for functional foods or pharmaceuticals by having an anti-amnesia effect on cognitive impairment.

6.
Int J Mol Sci ; 24(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37629080

ABSTRACT

This study was conducted to evaluate the cognitive dysfunction improvement effect of aqueous extract of Codium fragile (AECF) by regulating the imbalance of the gut-brain axis in chronic particulate matter (PM)2.5-exposed mice. The physiological compounds of AECF were identified as hexadecanamide, oleamide, octadecanamide, stearidonic acid, and linolenic acid by the ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC Q-TOF MSE) analysis. To evaluate the effect of PM2.5 on the antioxidant system, superoxide dismutase (SOD) contents, reduced glutathione (GSH) contents, and malondialdehyde (MDA) contents were measured in colon and brain tissues. AECF significantly ameliorated the imbalance of the antioxidant systems. Also, AECF improved intestinal myeloperoxidase (MPO) activity, the abundance of the gut microbiome, short-chain fatty acids (SCFAs) contents, and tight junction protein expression against PM2.5-induced damage. In addition, AECF prevented PM2.5-induced inflammatory and apoptotic expression via the toll-like receptor-4 (TLR-4)/myeloid differentiation primary response 88 (MyD88) pathway in colon and brain tissues. Additionally, AECF enhanced the mitochondrial function, including the mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) contents in brain tissues. Furthermore, AECF regulated the cholinergic system, such as acetylcholine (ACh) contents, acetylcholinesterase (AChE) activity, and protein expression levels of AChE and choline acetyltransferase (ChAT) in brain tissues. To evaluate the effect of cognitive dysfunction caused by PM2.5-induced intestinal dysfunction, behavior tests such as Y-maze, passive avoidance, and Morris water maze tests were performed. From the results of the behavior tests, AECF ameliorated spatial learning and memory, short-term memory, and long-term learning and memory function. This study confirmed that AECF reduced PM2.5-induced cognitive dysfunction by regulating gut microbiome and inflammation, apoptosis, and mitochondrial function by enhancing the gut-brain axis. Based on these results, this study suggests that AECF, which contains fatty acid amides, might be a potential material for ameliorating PM2.5-induced cognitive dysfunction via gut-brain axis improvement.


Subject(s)
Chlorophyta , Cognitive Dysfunction , Animals , Mice , Brain-Gut Axis , Toll-Like Receptor 4 , Myeloid Differentiation Factor 88 , Acetylcholinesterase , Antioxidants , Adaptor Proteins, Signal Transducing , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy
7.
Mar Drugs ; 20(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35877732

ABSTRACT

To evaluate the biological effects of Porphyra tenera (P. tenera), we tried to confirm the possibility that the intake of P. tenera could modulate cognitive and intestinal functions in PM2.5-induced cognitive decline mice. P. tenera attenuated PM2.5-induced learning and memory impairment through antioxidant and anti-inflammatory effects by regulating the mitochondrial function and TLR-initiated NF-κB signaling. In addition, P. tenera effectively alleviated Aß production/tau phosphorylation by inhibiting the JNK phosphorylation. Also, the bioactive constituents of P. tenera determined the sulfated galactan, mycosporine-like amino acids (MAAs), and chlorophyll derivatives. Moreover, the bioactive compounds of P. tenera by gut fermentation protected against gut dysbiosis and intestinal tight junction damage with a decrease in inflammatory response and short-chain fatty acid production. Based on these results, our findings suggest that P. tenera with sulfated galactan and MAAs is a potential material for cognitive function improvement.


Subject(s)
Cognitive Dysfunction , Porphyra , Rhodophyta , Animals , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Cyclohexanones/pharmacology , Galactans , Glycine , Mice , Particulate Matter , Porphyra/chemistry
8.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613533

ABSTRACT

This study was conducted to compare the synbiotic activity between Corni fructus (C. fructus) and Limosilactobacillus reuteri (L. reuteri) on dextran sulfate sodium (DSS)-induced colitis and cognitive dysfunction in C57BL/6 mice. C. fructus (as prebiotics, PRE), L. reuteri (as probiotics, PRO), and synbiotics (as a mixture of L. reuteri and C. fructus, SYN) were fed to mice for 3 weeks. Consumption of PRE, PRO, and SYN ameliorated colitis symptoms in body weight, large intestinal length, and serum albumin level. Moreover, SYN showed a synergistic effect on intestinal permeability and intestinal anti-inflammation response. Also, SYN significantly improved cognitive function as a result of measuring the Y-maze and passive avoidance tests in DSS-induced behavioral disorder mice. Especially, SYN also restored memory function by increasing the cholinergic system and reducing tau and amyloid ß pathology. In addition, PRE, PRO, and SYN ameliorated dysbiosis by regulating the gut microbiota and the concentration of short-chain fatty acids (SCFAs) in feces. The bioactive compounds of C. fructus were identified with quinic acid, morroniside, loganin, and cornuside, using ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS2). In conclusion, synbiotic supplementation alleviated DSS-induced colitis and cognitive dysfunction by modulating gut microbiota, proinflammatory cytokines, and SCFAs production.


Subject(s)
Colitis , Cornus , Limosilactobacillus reuteri , Synbiotics , Mice , Animals , Amyloid beta-Peptides/adverse effects , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/drug therapy , Dextran Sulfate/toxicity , Disease Models, Animal , Colon/pathology
9.
Molecules ; 27(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36014555

ABSTRACT

This study was conducted to evaluate the protective effect of Juglans regia (walnut, Gimcheon 1ho cultivar, GC) on high-fat diet (HFD)-induced cognitive dysfunction in C57BL/6 mice. The main physiological compounds of GC were identified as pedunculagin/casuariin isomer, strictinin, tellimagrandin I, ellagic acid-O-pentoside, and ellagic acid were identified using UPLC Q-TOF/MS analysis. To evaluate the neuro-protective effect of GC, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2',7'-dichlorodihydrofluorecein diacetate (DCF-DA) analysis were conducted in H2O2 and high glucose-induced neuronal PC12 cells and hippocampal HT22 cells. GC presented significant cell viability and inhibition of reactive oxygen species (ROS) production. GC ameliorated behavioral and memory dysfunction through Y-maze, passive avoidance, and Morris water maze tests. In addition, GC reduced white adipose tissue (WAT), liver fat mass, and serum dyslipidemia. To assess the inhibitory effect of antioxidant system deficit, lipid peroxidation, ferric reducing antioxidant power (FRAP), and advanced glycation end products (AGEs) were conducted. Administration of GC protected the antioxidant damage against HFD-induced diabetic oxidative stress. To estimate the ameliorating effect of GC, acetylcholine (ACh) level, acetylcholinesterase (AChE) activity, and expression of AChE and choline acetyltransferase (ChAT) were conducted, and the supplements of GC suppressed the cholinergic system impairment. Furthermore, GC restored mitochondrial dysfunction by regulating the mitochondrial ROS production and mitochondrial membrane potential (MMP) levels in cerebral tissues. Finally, GC ameliorated cerebral damage by synergically regulating the protein expression of the JNK signaling and apoptosis pathway. These findings suggest that GC could provide a potential functional food source to improve diabetic cognitive deficits and neuronal impairments.


Subject(s)
Cognitive Dysfunction , Juglans , Acetylcholinesterase/metabolism , Animals , Antioxidants/pharmacology , Apoptosis , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Diet, High-Fat , Ellagic Acid/pharmacology , Hydrogen Peroxide/pharmacology , Juglans/metabolism , MAP Kinase Kinase 4/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Oxidative Stress , Rats , Reactive Oxygen Species/metabolism
10.
Curr Issues Mol Biol ; 43(1): 405-422, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205542

ABSTRACT

This study confirmed the ameliorating effect of immature persimmon (Diospyros kaki) ethanolic extract (IPEE) on neuronal cytotoxicity in amyloid beta (Aß)1-42-induced ICR mice. The administration of IPEE ameliorated the cognitive dysfunction in Aß1-42-induced mice by improving the spatial working memory, the short-term and long-term memory functions. IPEE protected the cerebral cholinergic system, such as the acetylcholine (ACh) level and acetylcholinesterase (AChE) activity, and antioxidant system, such as the superoxide dismutase (SOD), reduced glutathione (GSH) and malondialdehyde (MDA) contents. In addition, mitochondrial dysfunction against Aß1-42-induced toxicity was reduced by regulating the reactive oxygen species (ROS), mitochondrial membrane potential and ATP contents. In addition, IPEE regulated the expression levels of tau signaling, such as TNF-α, p-JNK, p-Akt, p-GSK3ß, p-tau, p-NF-κB, BAX and caspase 3. Finally, gallic acid, ellagic acid and quercetin 3-O-(6″-acetyl-glucoside) were identified as the physiological compounds of IPEE using ultra-performance liquid chromatography ion mobility separation quadrupole time-of-flight/tandem mass spectrometry (UPLC IMS Q-TOF/MS2).


Subject(s)
Cognitive Dysfunction/prevention & control , Diospyros/chemistry , Fruit/chemistry , Plant Extracts/pharmacology , Tauopathies/prevention & control , Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Amyloid beta-Peptides , Animals , Antioxidants/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Ethanol/chemistry , Maze Learning/drug effects , Membrane Potential, Mitochondrial/drug effects , Memory, Short-Term/drug effects , Mice, Inbred ICR , Peptide Fragments , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Tauopathies/chemically induced , Tauopathies/metabolism , tau Proteins/metabolism
11.
Mar Drugs ; 19(3)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673531

ABSTRACT

To evaluate the effects of Ecklonia cava (E. cava) on ambient-pollution-induced neurotoxicity, we used a mouse model exposed to particulate matter smaller than 2.5 µm in aerodynamic diameter (PM2.5). The intake of water extract from E. cava (WEE) effectively prevented the learning and memory decline. After a behavioral test, the toll-like receptor (TLR)-4-initiated inflammatory response was confirmed by PM2.5 exposure in the lung and brain tissues, and the WEE was regulated through the inhibition of nuclear factor-kappa B (NF-κB)/inflammasome formation signaling pathway and pro-inflammatory cytokines (IL-6 and IFN-γ). The WEE also effectively improved the PM2.5-induced oxidative damage of the lungs and brain through the inhibition of malondialdehyde (MDA) production and the activation of mitochondrial activity (mitochondrial ROS content, mitochondria membrane potential (MMP), adenosine triphosphate (ATP) content, and mitochondria-mediated apoptotic molecules). In particular, the WEE regulated the cognition-related proteins (a decreased amyloid precursor protein (APP) and p-Tau, and an increased brain-derived neurotrophic factor (BDNF)) associated with PM2.5-induced cognitive dysfunction. Additionally, the WEE prevented the inactivation of acetylcholine (ACh) synthesis and release as a neurotransmitter by regulating the acetylcholinesterase (AChE) activity, choline acetyltransferase (ChAT), and ACh receptor (AChR)-α3 in the brain tissue. The bioactive compounds of the WEE were detected as the polysaccharide (average Mw; 160.13 kDa) and phenolic compounds including 2'-phloroeckol.


Subject(s)
Cognitive Dysfunction/prevention & control , Neurotoxicity Syndromes/prevention & control , Particulate Matter/toxicity , Phaeophyceae/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Behavior, Animal/drug effects , Cognitive Dysfunction/etiology , Inflammasomes/metabolism , Male , Mice , Mice, Inbred BALB C , Mitochondria/drug effects , NF-kappa B/metabolism , Neurotoxicity Syndromes/etiology , Oxidative Stress/drug effects
12.
Mar Drugs ; 19(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34436273

ABSTRACT

The anti-amnesic effect of a mixture (4:6 = phlorotannin:fucoidan from Ecklonia cava, P4F6) was evaluated on amyloid-beta peptide (Aß)-induced cognitive deficit mice. The cognitive function was examined by Y-maze, passive avoidance, and Morris water maze tests, and the intake of the mixture (P4F6) showed an ameliorating effect on Aß-induced learning and memory impairment. After the behavioral tests, superoxide dismutase (SOD) activity and thiobarbituric acid-reactive substances (TBARS) contents were confirmed in brain tissue, and in the results, the mixture (P4F6) attenuated Aß-induced oxidative stress. In addition, mitochondrial activity was evaluated by mitochondrial reactive oxygen species (ROS) content, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, and mitochondria-mediated apoptotic signaling pathway, and the mixture (P4F6) enhanced mitochondrial function. Furthermore, the mixture (P4F6) effectively regulated tau hyperphosphorylation by regulating the protein kinase B (Akt) pathway, and promoted brain-derived neurotrophic factor (BDNF) in brain tissue. Moreover, in the cholinergic system, the mixture (P4F6) ameliorated acetylcholine (ACh) content by regulating acetylcholinesterase (AChE) activity and choline acetyltransferase (ChAT) expression in brain tissue. Based on these results, we suggest that this mixture of phlorotannin and fucoidan (P4F6) might be a substance for improving cognitive function by effectively regulating cognition-related molecules.


Subject(s)
Cognitive Dysfunction/drug therapy , Kelp , Neuroprotective Agents/administration & dosage , Polysaccharides/administration & dosage , Tannins/administration & dosage , Acetylcholine/metabolism , Animals , Aquatic Organisms , Brain/drug effects , Brain/metabolism , Cholinergic Agents/metabolism , Disease Models, Animal , Drug Therapy, Combination , Male , Maze Learning/drug effects , Mice , Mice, Inbred ICR , Mitochondria/metabolism , Neuroprotective Agents/pharmacology , Phytotherapy , Polysaccharides/pharmacology , Tannins/pharmacology
13.
Mar Drugs ; 17(10)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627432

ABSTRACT

Ecklonia cava (E. cava) was investigated to compare the effect of polyphenol and fucoidan extract and mixture (polyphenol:fucoidan = 4:6) on cognitive function. The ameliorating effect of E. cava was evaluated using the Y-maze, passive avoidance and Morris water maze tests with a trimethyltin (TMT)-induced cognitive dysfunction model, and the results showed that the fucoidan extract and mixture (4:6) had relatively higher learning and memory function effects than the polyphenol extract. After a behavioral test, the inhibitory effect of lipid peroxidation and cholinergic system activity were examined in mouse brain tissue, and the fucoidan extract and mixture (4:6) also showed greater improvements than the polyphenol extract. Mitochondrial activity was evaluated using mitochondrial reactive oxygen species (ROS) content, mitochondrial membrane potential (MMP, ΔΨm), adenosine triphosphate (ATP) content, and mitochondria-mediated protein (BAX, cytochrome C) analysis, and these results were similar to the results of the behavioral tests. Finally, to confirm the cognitive function-related mechanism of E. cava, the amyloid-ß production and tau hyperphosphorylation-medicated proteins were analyzed. Based on these results, the improvement effect of E. cava was more influenced by fucoidan than polyphenol. Therefore, our study suggests that the fucoidan-rich substances in E. cava could be a potential material for improving cognitive function by down-regulating amyloid-ß production and tau hyperphosphorylation.


Subject(s)
Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/drug therapy , Down-Regulation/drug effects , Phaeophyceae/chemistry , Phosphorylation/drug effects , Polysaccharides/pharmacology , tau Proteins/metabolism , Animals , Brain/drug effects , Brain/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Lipid Peroxidation/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Memory/drug effects , Mice , Mice, Inbred ICR , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Peptide Fragments/pharmacology , Reactive Oxygen Species/metabolism , Trimethyltin Compounds/pharmacology
14.
Int J Mol Sci ; 20(8)2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30991755

ABSTRACT

The aim of this study was to investigate the availability of seeds, one of the byproducts of green tea, and evaluate the physiological activity of seed oil. The ameliorating effect of green tea seed oil (GTO) was evaluated on H2O2-induced PC12 cells and amyloid beta (Aß)1-42-induced ICR mice. GTO showed improvement of cell viability and reduced reactive oxygen species (ROS) production in H2O2-induced PC12 cells by conducting the 2',3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and 2',7'-dichlorofluorescein diacetate (DCF-DA) analysis. Also, administration of GTO (50 and 100 mg/kg body weight) presented protective effects on behavioral and memory dysfunction by conducting Y-maze, passive avoidance, and Morris water maze tests in Aß-induced ICR mice. GTO protected the antioxidant system by reducing malondialdehyde (MDA) levels, and by increasing superoxide dismutase (SOD) and reducing glutathione (GSH) contents. It significantly regulated the cholinergic system of acetylcholine (ACh) contents, acetylcholinesterase (AChE) activities, and AChE expression. Also, mitochondrial function was improved through the reduced production of ROS and damage of mitochondrial membrane potential (MMP) by regulating the Aß-related c-Jun N-terminal kinase (JNK)/protein kinase B (Akt) and Akt/apoptosis pathways. This study suggested that GTO may have an ameliorating effect on cognitive dysfunction and neurotoxicity through various physiological activities.


Subject(s)
Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/drug therapy , Neuroprotective Agents/therapeutic use , Peptide Fragments/metabolism , Plant Oils/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Tea , Animals , Antioxidants/chemistry , Antioxidants/therapeutic use , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Hydrogen Peroxide/metabolism , Mice, Inbred ICR , Neuroprotective Agents/chemistry , Oxidative Stress/drug effects , PC12 Cells , Plant Oils/chemistry , Rats , Seeds/chemistry , Tea/chemistry
15.
Int J Mol Sci ; 19(5)2018 May 17.
Article in English | MEDLINE | ID: mdl-29772805

ABSTRACT

This study was conducted to assess the antioxidant capacity and protective effect of the ethyl acetate fraction from persimmon (Diospyros kaki) (EFDK) on H2O2-induced hippocampal HT22 cells and trimethyltin chloride (TMT)-induced Institute of Cancer Research (ICR) mice. EFDK had high antioxidant activities and neuroprotective effects in HT22 cells. EFDK ameliorated behavioral and memory deficits in Y-maze, passive avoidance and Morris water maze tests. Also, EFDK restored the antioxidant system by regulating malondialdehyde (MDA), superoxide dismutase (SOD) and reduced gluthathione (GSH), and the cholinergic system by controlling the acetylcholine (ACh) level and acetylcholinesterase (AChE) activity and expression. EFDK enhanced mitochondrial function by regulating reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP). Ultimately, EFDK regulated the c-Jun N-terminal kinase (JNK)/protein kinase B (Akt) pathway and apoptotic pathway by suppressing the expression of tumor necrosis factor-alpha (TNF-α), phosphorylated insulin receptor substrate 1 (IRS-1pSer), phosphorylated JNK (p-JNK), phosphorylated tau (p-tau), phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (p-NF-κB), Bcl-2-associated X protein (BAX) and cytosolic cytochrome c, and increasing the expression of phosphorylated Akt (p-Akt) and mitochondrial cytochrome c. This study suggested that EFDK had antioxidant activity and a neuroprotective effect, and ameliorated cognitive abnormalities in TMT-induced mice by regulating the JNK/Akt and apoptotic pathway.


Subject(s)
Acetates/pharmacology , Cognition/drug effects , Diospyros/chemistry , JNK Mitogen-Activated Protein Kinases/metabolism , Neurons/drug effects , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Cell Count , Cognitive Dysfunction , Male , Maze Learning/drug effects , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Pyramidal Cells/pathology
16.
Int J Mol Sci ; 18(11)2017 Nov 13.
Article in English | MEDLINE | ID: mdl-29137190

ABSTRACT

Spirulina maxima, a microalga containing high levels of protein and many polyphenols, including chlorophyll a and C-phycocyanin, has antioxidant and anti-inflammatory therapeutic effects. However, the mechanisms where by Spirulina maxima ameliorates cognitive disorders induced by amyloid-ß 1-42 (Aß1-42) are not fully understood. In this study, we investigated whether a 70% ethanol extract of Spirulina maxima (SM70EE) ameliorated cognitive impairments induced by an intracerebroventricular injection of Aß1-42 in mice. SM70EE increased the step-through latency time in the passive avoidance test and decreased the escape latency time in the Morris water maze test in Aß1-42-injected mice. SM70EE reduced hippocampal Aß1-42 levels and inhibited amyloid precursor protein processing-associated factors in Aß1-42-injected mice. Additionally, acetylcholinesterase activity was suppressed by SM70EE in Aß1-42-injected mice. Hippocampal glutathione levels were examined to determine the effects of SM70EE on oxidative stress in Aß1-42-injected mice. SM70EE increased the levels of glutathione and its associated factors that were reduced in Aß1-42-injected mice. SM70EE also promoted activation of the brain-derived neurotrophic factor/phosphatidylinositol-3 kinase/serine/threonine protein kinase signaling pathway and inhibited glycogen synthase kinase-3ß phosphorylation. These findings suggested that SM70EE ameliorated Aß1-42-induced cognitive impairments by inhibiting the increased phosphorylation of glycogen synthase kinase-3ß caused by intracerebroventricular injection of Aß1-42 in mice.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , Maze Learning , Memory Disorders/drug therapy , Plant Extracts/therapeutic use , Spirulina/chemistry , Acetylcholinesterase/metabolism , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/toxicity , Animals , Glutathione/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Injections, Intraventricular , Male , Memory Disorders/etiology , Mice , Mice, Inbred ICR , Peptide Fragments/administration & dosage , Peptide Fragments/toxicity , Phosphorylation , Plant Extracts/pharmacology , Protein Processing, Post-Translational
17.
BMC Complement Altern Med ; 14: 482, 2014 Dec 13.
Article in English | MEDLINE | ID: mdl-25496367

ABSTRACT

BACKGROUND: The physiological effects of the non-anthocyanin fraction (NAF) in a black soybean seed coat extract on Aß-induced oxidative stress were investigated to confirm neuroprotection. In addition, we examined the preventive effect of NAF on cognitive defects induced by the intracerebroventricular (ICV) injection of Aß. METHODS: Levels of cellular oxidative stress were measured using 2',7'-dichlorofluorescein diacetate (DCF-DA). Neuronal cell viability was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay. To investigate in vivo anti-amnesic effects of NAF by using Y-maze and passive avoidance tests, the learning and memory impairment in mice was induced by Aß. After in vivo assays, acetylcholinesterase (AChE) activity and level of malondialdehyde (MDA) in the mouse brain were determined to confirm the cognitive effect. Individual phenolics of NAF were qualitatively analyzed by using an ultra-performance liquid chromatography (UPLC) Accurate-Mass Quadrupole Time of-Flight (Q-TOF) UPLC/MS. RESULTS: A NAF showed cell protective effects against oxidative stress-induced cytotoxicity. Intracellular ROS accumulated through Aß1-40 treatment was significantly reduced in comparison to cells only treated with Aß1-40. In MTT and LDH assay, the NAF also presented neuroprotective effects on Aß1-40-treated cytotoxicity. Finally, the administration of this NAF in mice significantly reversed the Aß1-40-induced cognitive defects in in vivo behavioral tests. After behavioral tests, the mice brains were collected in order to examine lipid peroxidation and AChE activity. AChE, preparation was inhibited by NAF in a dose-dependent manner. MDA generation in the brain homogenate of mice treated with the NAF was decreased. Q-TOF UPLC/MS analyses revealed three major phenolics from the non-anthocyanin fraction; epicatechin, procyanidin B1, and procyanidin B2. CONCLUSIONS: The results suggest that the NAF in black soybean seed coat extracts may improve the cytotoxicity of Aß in PC12 cells, possibly by reducing oxidative stress, and also have an anti-amnesic effect on the in vivo learning and memory deficits caused by Aß. Q-TOF UPLC/MS analyses showed three major phenolics; (-)-epicatechin, procyanidin B1, and procyanidin B2. Above results suggest that (-)-epicatechins are the major components, and contributors to the anti-amnesic effect of the NAF from black soybean seed coat.


Subject(s)
Brain/drug effects , Glycine max/chemistry , Memory Disorders/drug therapy , Memory/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Polyphenols/pharmacology , Acetylcholinesterase/metabolism , Amyloid beta-Peptides/adverse effects , Amyloid beta-Peptides/metabolism , Animals , Antioxidants/analysis , Antioxidants/pharmacology , Antioxidants/therapeutic use , Biflavonoids/analysis , Biflavonoids/pharmacology , Biflavonoids/therapeutic use , Brain/metabolism , Catechin/analysis , Catechin/pharmacology , Catechin/therapeutic use , Cell Survival/drug effects , Cognition Disorders/drug therapy , Cognition Disorders/metabolism , Learning/drug effects , Learning Disabilities/drug therapy , Learning Disabilities/metabolism , Male , Memory Disorders/metabolism , Mice, Inbred ICR , Neuroprotective Agents/analysis , Neuroprotective Agents/therapeutic use , PC12 Cells , Peptide Fragments/adverse effects , Peptide Fragments/metabolism , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Polyphenols/analysis , Polyphenols/therapeutic use , Proanthocyanidins/analysis , Proanthocyanidins/pharmacology , Proanthocyanidins/therapeutic use , Rats , Seeds
18.
Anaerobe ; 28: 199-206, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24979684

ABSTRACT

Three Pediococcus pentosaceus strains were isolated from jeotgals, salted and fermented Korean sea-foods, and their probiotic potentials were examined. After 2 h exposure to pH 3.0, P. pentosaceus F66 survived with the survival ratio of 32.6% followed by P. pentosaceus D56 (17.2%) and P. pentosaceus A24 (7.5%). P. pentosaceus F66 also survived better (26.6%) than P. pentosaceus A24 (13.7%) and P. pentosaceus D56 (5.8%) after 2 h exposure to 0.3% bile salts. Three strains grew slowly on MRS broth with 15% NaCl (w/v), reaching the OD600 values of 0.4-0.8 in 36 h. They adhered to Caco-2 cells (10.9-13.9 CFU/cell) with similar degree of adherence of a positive control, Lactobacillus rhamnosus GG (12.8 ± 0.5 CFU/cell). Three strains possess some desirable enzyme activities such as ß-galactosidase, α-glucosidase, ß-glucosidase, and N-acetyl-ß-glucosidase. From these results, P. pentosaceus F66 seems qualified as a probiotic and can be utilized for fermented foods including jeotgals.


Subject(s)
Pediococcus/physiology , Probiotics/pharmacology , Seafood/microbiology , Bacterial Adhesion , Bile Acids and Salts/metabolism , Caco-2 Cells , Enzymes/analysis , Epithelial Cells/microbiology , Humans , Hydrogen-Ion Concentration , Korea , Lacticaseibacillus rhamnosus , Microbial Viability/drug effects , Pediococcus/drug effects , Pediococcus/isolation & purification , Sodium Chloride/metabolism
19.
J Microbiol Biotechnol ; 34(6): 1307-1313, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38881175

ABSTRACT

This study investigates whether red pine (Pinus densiflora Sieb. et Zucc.) bark extract (PBE) can alleviate diabetes and abnormal apoptosis signaling pathways in the hippocampus of streptozotocin (STZ)-induced diabetic Sprague-Dawley (SD) rats. Two dosages of PBE (15 and 30 mg/kg of body weight/day) were administered orally to STZ-induced diabetic SD rats for 20 days. Blood glucose level and body weight were measured once per week. After 20 days of oral administration of PBE, the rat hippocampus was collected, and the production of Akt, p-Akt, GSK-3ß, p-GSK-3ß, tau, p-tau, Bax, and Bcl-2 proteins were determined by western blot analysis. A decrease in blood glucose level and recovery of body weight were observed in PBE-treated diabetic rats. In the Akt/GSK-3ß/tau signaling pathway, PBE inhibited diabetes-induced Akt inactivation, GSK-3ß inactivation, and tau hyperphosphorylation. The protein production ratio of Bax/Bcl-2 was restored to the control group level. These results suggest that PBE, rich in phenolic compounds, can be used as a functional food ingredient to ameliorate neuronal apoptosis in diabetes mellitus.


Subject(s)
Apoptosis , Blood Glucose , Diabetes Mellitus, Experimental , Glycogen Synthase Kinase 3 beta , Hippocampus , Pinus , Plant Bark , Plant Extracts , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Plant Bark/chemistry , Rats , Male , Blood Glucose/metabolism , Blood Glucose/drug effects , Pinus/chemistry , Apoptosis/drug effects , Streptozocin , tau Proteins/metabolism , Body Weight/drug effects , Phosphorylation/drug effects , bcl-2-Associated X Protein/metabolism
20.
J Microbiol Biotechnol ; 34(3): 606-621, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38111317

ABSTRACT

This study evaluated the hepatoprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced liver injury mice. As a result of amino acids in FPB, 18 types of amino acids including essential amino acids were identified. In the results of in vitro tests, FPB increased alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. In addition, FPB treatment increased cell viability on ethanol- and H2O2-induced HepG2 cells. FPB ameliorated serum biomarkers related to hepatoxicity including glutamic oxaloacetic transaminase, glutamine pyruvic transaminase, total bilirubin, and lactate dehydrogenase and lipid metabolism including triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. Also, FPB controlled ethanol metabolism enzymes by regulating the protein expression levels of ADH, ALDH, and cytochrome P450 2E1 in liver tissue. FPB protected hepatic oxidative stress by improving malondialdehyde content, reduced glutathione, and superoxide dismutase levels. In addition, FPB reversed mitochondrial dysfunction by regulating reactive oxygen species production, mitochondrial membrane potential, and ATP levels. FPB protected ethanol-induced apoptosis, fatty liver, and hepatic inflammation through p-AMP-activated protein kinase and TLR-4/NF-κB signaling pathways. Furthermore, FPB prevented hepatic fibrosis by decreasing TGF-ß1/Smad pathway. In summary, these results suggest that FPB might be a potential prophylactic agent for the treatment of alcoholic liver disease via preventing liver injury such as fatty liver, hepatic inflammation due to chronic ethanol-induced oxidative stress.


Subject(s)
Chemical and Drug Induced Liver Injury , Fatty Liver , Animals , Mice , Amino Acids/metabolism , AMP-Activated Protein Kinases/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Cholesterol/metabolism , Ethanol/metabolism , Fatty Liver/metabolism , Hydrogen Peroxide/metabolism , Inflammation/metabolism , Larva/metabolism , Liver , Oxidative Stress , Toll-Like Receptor 4/metabolism , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL