Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
PLoS Med ; 12(3): e1001796, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25734483

ABSTRACT

BACKGROUND: Chronic lymphocytic leukemia (CLL), the most common adulthood leukemia, is characterized by the accumulation of abnormal CD5+ B lymphocytes, which results in a progressive failure of the immune system. Despite intense research efforts, drug resistance remains a major cause of treatment failure in CLL, particularly in patients with dysfunctional TP53. The objective of our work was to identify potential approaches that might overcome CLL drug refractoriness by examining the pro-apoptotic potential of targeting the cell surface receptor CD47 with serum-stable agonist peptides. METHODS AND FINDINGS: In peripheral blood samples collected from 80 patients with CLL with positive and adverse prognostic features, we performed in vitro genetic and molecular analyses that demonstrate that the targeting of CD47 with peptides derived from the C-terminal domain of thrombospondin-1 efficiently kills the malignant CLL B cells, including those from high-risk individuals with a dysfunctional TP53 gene, while sparing the normal T and B lymphocytes from the CLL patients. Further studies reveal that the differential response of normal B lymphocytes, collected from 20 healthy donors, and leukemic B cells to CD47 peptide targeting results from the sustained activation in CLL B cells of phospholipase C gamma-1 (PLCγ1), a protein that is significantly over-expressed in CLL. Once phosphorylated at tyrosine 783, PLCγ1 enables a Ca2+-mediated, caspase-independent programmed cell death (PCD) pathway that is not down-modulated by the lymphocyte microenvironment. Accordingly, down-regulation of PLCγ1 or pharmacological inhibition of PLCγ1 phosphorylation abolishes CD47-mediated killing. Additionally, in a CLL-xenograft model developed in NOD/scid gamma mice, we demonstrate that the injection of CD47 agonist peptides reduces tumor burden without inducing anemia or toxicity in blood, liver, or kidney. The limitations of our study are mainly linked to the affinity of the peptides targeting CD47, which might be improved to reach the standard requirements in drug development, and the lack of a CLL animal model that fully mimics the human disease. CONCLUSIONS: Our work provides substantial progress in (i) the development of serum-stable CD47 agonist peptides that are highly effective at inducing PCD in CLL, (ii) the understanding of the molecular events regulating a novel PCD pathway that overcomes CLL apoptotic avoidance, (iii) the identification of PLCγ1 as an over-expressed protein in CLL B cells, and (iv) the description of a novel peptide-based strategy against CLL.


Subject(s)
Apoptosis/drug effects , B-Lymphocytes/metabolism , CD47 Antigen/metabolism , Drug Resistance, Neoplasm , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Peptides/pharmacology , Phospholipase C gamma/metabolism , Aged , Aged, 80 and over , Animals , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Male , Mice , Mice, Inbred NOD , Middle Aged , Peptides/therapeutic use , Thrombospondin 1/therapeutic use
3.
J Med Chem ; 62(17): 7656-7668, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31403795

ABSTRACT

In order to optimize the potency of the first serum-stable peptide agonist of CD47 (PKHB1) in triggering regulated cell death of cancer cells, we designed a maturation process aimed to mimic the trimeric structure of the thrombospondin-1/CD47 binding epitope. For that purpose, an N-methylation scan of the PKHB1 sequence was realized to prevent peptide aggregation. Structural and pharmacological analyses were conducted in order to assess the conformational impact of these chemical modifications on the backbone structure and the biological activity. This structure-activity relationship study led to the discovery of a highly soluble N-methylated peptide that we termed PKT16. Afterward, this monomer was used for the design of a homotrimeric peptide mimic that we termed [PKT16]3, which proved to be 10-fold more potent than its monomeric counterpart. A pharmacological evaluation of [PKT16]3 in inducing cell death of adherent (A549) and nonadherent (MEC-1) cancer cell lines was also performed.


Subject(s)
Drug Design , Peptides/chemistry , Peptides/pharmacology , Thrombospondin 1/chemistry , A549 Cells , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Peptides/chemical synthesis , Protein Conformation , Protein Stability , Structure-Activity Relationship , Thrombospondin 1/pharmacology
4.
J Med Chem ; 59(18): 8412-21, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27526615

ABSTRACT

Thrombospondin-1 (TSP-1) is a glycoprotein considered as a key actor within the tumor microenvironment. Its binding to CD47, a cell surface receptor, triggers programmed cell death. Previous studies allowed the identification of 4N1K decapeptide derived from the TSP-1/CD47 binding epitope. Here, we demonstrate that this peptide is able to induce selective apoptosis of various cancer cell lines while sparing normal cells. A structure-activity relationship study led to the design of the first serum stable TSP-1 mimetic agonist peptide able to trigger selective programmed cell death (PCD) of at least lung, breast, and colorectal cancer cells. Altogether, these results will be of valuable interest for further investigation in the design of potent CD47 agonist peptides, opening new perspectives for the development of original anticancer therapies.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Peptides/chemistry , Peptides/pharmacology , Thrombospondin 1/agonists , Amino Acid Sequence , Apoptosis/drug effects , Cell Line, Tumor , Humans , Models, Molecular , Neoplasms/drug therapy , Neoplasms/metabolism , Structure-Activity Relationship , Thrombospondin 1/metabolism
5.
Stem Cells Dev ; 21(2): 239-48, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-21867425

ABSTRACT

Gaucher disease (GD) is a lysosomal storage disorder due to glucocerebrosidase (GBA) deficiency. Mechanisms leading to the emergence of hematological and skeletal manifestations observed in GD are poorly explained. Bone marrow (BM) mesenchymal stem cells (MSCs) are multipotent progenitors that participate in the regulation of bone mass. MSCs should thus represent a cell population involved in the development or progression of bone disease in GD. In a chemical model of GD obtained with Conduritol ß epoxide (CBE), a specific inhibitor of GBA activity, we functionally characterized BM MSCs and specifically analyzed their capacity to differentiate into osteoblasts. GBA deficiency obtained with CBE treatment, leads to a dramatic impairment of MSCs proliferation and to morphological abnormalities. Although the capacity of MSCs to differentiate into osteoblasts was not modified, the levels of several soluble factors that regulate bone metabolism were increased in MSCs treated with CBE, compared with untreated MSCs. Moreover, addition of conditioned media from CBE-treated MSCs on monocyte-derived osteoclasts cultured on bone matrix leads to an increase of resorption areas. These data suggested that, in GD, MSCs represents a stem cell population that is likely to be involved in bone pathogenesis.


Subject(s)
Bone Marrow/enzymology , Gaucher Disease/pathology , Glucosylceramidase/deficiency , Mesenchymal Stem Cells/cytology , Osteoblasts/pathology , Osteoclasts/pathology , Bone Resorption/pathology , Cell Cycle , Cell Differentiation , Cell Movement , Cell Proliferation , Cells, Cultured , Cellular Microenvironment , Culture Media, Conditioned , Gaucher Disease/chemically induced , Gaucher Disease/enzymology , Humans , Inositol/analogs & derivatives , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/enzymology , Models, Biological , Osteoblasts/enzymology , Osteoclasts/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL