Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 619(7969): 338-347, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37380775

ABSTRACT

Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic1. Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans1. Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3)2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure3. Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses.


Subject(s)
Birds , Host Microbial Interactions , Influenza A virus , Influenza in Birds , Influenza, Human , Viral Zoonoses , Animals , Humans , Birds/virology , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/growth & development , Influenza A virus/isolation & purification , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza, Human/prevention & control , Influenza, Human/transmission , Influenza, Human/virology , Primates , Respiratory System/metabolism , Respiratory System/virology , Risk Assessment , Viral Zoonoses/prevention & control , Viral Zoonoses/transmission , Viral Zoonoses/virology , Virus Replication
2.
Nature ; 617(7961): 555-563, 2023 May.
Article in English | MEDLINE | ID: mdl-36996873

ABSTRACT

An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.


Subject(s)
Adenovirus Infections, Human , Dependovirus , Hepatitis , Child , Humans , Acute Disease/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/genetics , Adenovirus Infections, Human/virology , Alleles , Case-Control Studies , CD4-Positive T-Lymphocytes/immunology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/isolation & purification , Genetic Predisposition to Disease , Helper Viruses/isolation & purification , Hepatitis/epidemiology , Hepatitis/genetics , Hepatitis/virology , Hepatocytes/virology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Liver/virology
3.
PLoS Pathog ; 19(11): e1011589, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37934791

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve throughout the coronavirus disease-19 (COVID-19) pandemic, giving rise to multiple variants of concern (VOCs) with different biological properties. As the pandemic progresses, it will be essential to test in near real time the potential of any new emerging variant to cause severe disease. BA.1 (Omicron) was shown to be attenuated compared to the previous VOCs like Delta, but it is possible that newly emerging variants may regain a virulent phenotype. Hamsters have been proven to be an exceedingly good model for SARS-CoV-2 pathogenesis. Here, we aimed to develop robust quantitative pipelines to assess the virulence of SARS-CoV-2 variants in hamsters. We used various approaches including RNAseq, RNA in situ hybridization, immunohistochemistry, and digital pathology, including software assisted whole section imaging and downstream automatic analyses enhanced by machine learning, to develop methods to assess and quantify virus-induced pulmonary lesions in an unbiased manner. Initially, we used Delta and Omicron to develop our experimental pipelines. We then assessed the virulence of recent Omicron sub-lineages including BA.5, XBB, BQ.1.18, BA.2, BA.2.75 and EG.5.1. We show that in experimentally infected hamsters, accurate quantification of alveolar epithelial hyperplasia and macrophage infiltrates represent robust markers for assessing the extent of virus-induced pulmonary pathology, and hence virus virulence. In addition, using these pipelines, we could reveal how some Omicron sub-lineages (e.g., BA.2.75 and EG.5.1) have regained virulence compared to the original BA.1. Finally, to maximise the utility of the digital pathology pipelines reported in our study, we developed an online repository containing representative whole organ histopathology sections that can be visualised at variable magnifications (https://covid-atlas.cvr.gla.ac.uk). Overall, this pipeline can provide unbiased and invaluable data for rapidly assessing newly emerging variants and their potential to cause severe disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , SARS-CoV-2/genetics , Virulence , Machine Learning
4.
PLoS Biol ; 19(12): e3001065, 2021 12.
Article in English | MEDLINE | ID: mdl-34932557

ABSTRACT

The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19), represents an ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 replication. Utilizing a three-dimensional (3D) air-liquid interface (ALI) model that closely mimics the natural tissue physiology of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. Respiratory tissue incubated at 40°C remained permissive to SARS-CoV-2 entry but refractory to viral transcription, leading to significantly reduced levels of viral RNA replication and apical shedding of infectious virus. We identify tissue temperature to play an important role in the differential regulation of epithelial host responses to SARS-CoV-2 infection that impact upon multiple pathways, including intracellular immune regulation, without disruption to general transcription or epithelium integrity. We present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication in respiratory epithelia. Our data identify an important role for tissue temperature in the epithelial restriction of SARS-CoV-2 independently of canonical interferon (IFN)-mediated antiviral immune defenses.


Subject(s)
Epithelial Cells/immunology , Hot Temperature , Immunity, Innate/immunology , Interferons/immunology , Respiratory Mucosa/immunology , SARS-CoV-2/immunology , Virus Replication/immunology , Adolescent , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Gene Expression Profiling/methods , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/genetics , Interferons/genetics , Interferons/metabolism , Male , Middle Aged , Models, Biological , RNA-Seq/methods , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Tissue Culture Techniques , Vero Cells , Virus Replication/genetics , Virus Replication/physiology
5.
PLoS Biol ; 19(2): e3001091, 2021 02.
Article in English | MEDLINE | ID: mdl-33630831

ABSTRACT

The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science.


Subject(s)
COVID-19 Vaccines , COVID-19/diagnosis , COVID-19/virology , Reverse Genetics , SARS-CoV-2/genetics , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Animals , Chlorocebus aethiops , Codon , Humans , Hydrazones/pharmacology , Mice , Morpholines/pharmacology , Open Reading Frames , Plasmids/genetics , Pyrimidines/pharmacology , Serine Endopeptidases/metabolism , Vero Cells , Viral Proteins/metabolism
6.
Emerg Infect Dis ; 29(6): 1236-1239, 2023 06.
Article in English | MEDLINE | ID: mdl-37209676

ABSTRACT

We developed an ELISPOT assay for evaluating Middle East respiratory syndrome coronavirus (MERS-CoV)‒specific T-cell responses in dromedary camels. After single modified vaccinia virus Ankara-MERS-S vaccination, seropositive camels showed increased levels of MERS-CoV‒specific T cells and antibodies, indicating suitability of camel vaccinations in disease-endemic areas as a promising approach to control infection.


Subject(s)
Camelus , Coronavirus Infections , T-Lymphocytes , Viral Vaccines , Animals , Camelus/immunology , T-Lymphocytes/immunology , Middle East Respiratory Syndrome Coronavirus , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Viral Vaccines/immunology , Vaccination/veterinary , Enzyme-Linked Immunospot Assay , Antibodies, Viral
7.
J Infect Dis ; 224(1): 31-38, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33754149

ABSTRACT

Virus-virus interactions influence the epidemiology of respiratory infections. However, the impact of viruses causing upper respiratory infections on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and transmission is currently unknown. Human rhinoviruses cause the common cold and are the most prevalent respiratory viruses of humans. Interactions between rhinoviruses and cocirculating respiratory viruses have been shown to shape virus epidemiology at the individual host and population level. Here, we examined the replication kinetics of SARS-CoV-2 in the human respiratory epithelium in the presence or absence of rhinovirus. We show that human rhinovirus triggers an interferon response that blocks SARS-CoV-2 replication. Mathematical simulations show that this virus-virus interaction is likely to have a population-wide effect as an increasing prevalence of rhinovirus will reduce the number of new coronavirus disease 2019 cases.


Subject(s)
Antibiosis , COVID-19/virology , Coinfection , Picornaviridae Infections/virology , Rhinovirus/physiology , SARS-CoV-2/physiology , Virus Replication , COVID-19/epidemiology , Cell Line , Cells, Cultured , Fluorescent Antibody Technique , Humans , Respiratory Mucosa/virology
8.
Int J Mol Sci ; 22(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34445189

ABSTRACT

Tamoxifen is frequently used in murine knockout systems with CreER/LoxP. Besides possible neuroprotective effects, tamoxifen is described as having a negative impact on adult neurogenesis. The present study investigated the effect of a high-dose tamoxifen application on Theiler's murine encephalomyelitis virus (TMEV)-induced hippocampal damage. Two weeks after TMEV infection, 42% of the untreated TMEV-infected mice were affected by marked inflammation with neuronal loss, whereas 58% exhibited minor inflammation without neuronal loss. Irrespective of the presence of neuronal loss, untreated mice lacked TMEV antigen expression within the hippocampus at 14 days post-infection (dpi). Interestingly, tamoxifen application 0, 2 and 4, or 5, 7 and 9 dpi decelerated virus elimination and markedly increased neuronal loss to 94%, associated with increased reactive astrogliosis at 14 dpi. T cell infiltration, microgliosis and expression of water channels were similar within the inflammatory lesions, regardless of tamoxifen application. Applied at 0, 2 and 4 dpi, tamoxifen had a negative impact on the number of doublecortin (DCX)-positive cells within the dentate gyrus (DG) at 14 dpi, without a long-lasting effect on neuronal loss at 147 dpi. Thus, tamoxifen application during a TMEV infection is associated with transiently increased neuronal loss in the hippocampus, increased reactive astrogliosis and decreased neurogenesis in the DG.


Subject(s)
Estrogen Antagonists/adverse effects , Hippocampus/drug effects , Neurons/drug effects , Tamoxifen/adverse effects , Animals , Cardiovirus Infections/complications , Cardiovirus Infections/pathology , Cardiovirus Infections/veterinary , Cell Death/drug effects , Doublecortin Protein , Hippocampus/pathology , Mice, Inbred C57BL , Neurons/pathology , Theilovirus/physiology
9.
PLoS Pathog ; 14(8): e1007235, 2018 08.
Article in English | MEDLINE | ID: mdl-30075026

ABSTRACT

During Coxsackievirus B3 (CVB3) infection hepatitis is a potentially life threatening complication, particularly in newborns. Studies with type I interferon (IFN-I) receptor (IFNAR)-deficient mice revealed a key role of the IFN-I axis in the protection against CVB3 infection, whereas the source of IFN-I and cell types that have to be IFNAR triggered in order to promote survival are still unknown. We found that CVB3 infected IFN-ß reporter mice showed effective reporter induction, especially in hepatocytes and only to a minor extent in liver-resident macrophages. Accordingly, upon in vitro CVB3 infection of primary hepatocytes from murine or human origin abundant IFN-ß responses were induced. To identify sites of IFNAR-triggering we performed experiments with Mx reporter mice, which upon CVB3 infection showed massive luciferase induction in the liver. Immunohistological studies revealed that during CVB3 infection MX1 expression of hepatocytes was induced primarily by IFNAR-, and not by IFN-III receptor (IFNLR)-triggering. CVB3 infection studies with primary human hepatocytes, in which either the IFN-I or the IFN-III axis was inhibited, also indicated that primarily IFNAR-, and to a lesser extent IFNLR-triggering was needed for ISG induction. Interestingly, CVB3 infected mice with a hepatocyte-specific IFNAR ablation showed severe liver cell necrosis and ubiquitous viral dissemination that resulted in lethal disease, as similarly detected in classical IFNAR-/- mice. In conclusion, we found that during CVB3 infection hepatocytes are major IFN-I producers and that the liver is also the organ that shows strong IFNAR-triggering. Importantly, hepatocytes need to be IFNAR-triggered in order to prevent virus dissemination and to assure survival. These data are compatible with the hypothesis that during CVB3 infection hepatocytes serve as important IFN-I producers and sensors not only in the murine, but also in the human system.


Subject(s)
Coxsackievirus Infections , Enterovirus B, Human/immunology , Hepatocytes/metabolism , Interferon-beta/genetics , Liver/pathology , Receptor, Interferon alpha-beta/metabolism , Animals , Cells, Cultured , Chlorocebus aethiops , Coxsackievirus Infections/complications , Coxsackievirus Infections/genetics , Coxsackievirus Infections/immunology , Coxsackievirus Infections/virology , Enterovirus B, Human/growth & development , Humans , Interferon-beta/metabolism , Liver/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Necrosis/virology , Receptor, Interferon alpha-beta/genetics , Signal Transduction/genetics , Signal Transduction/immunology , Vero Cells , Viral Load/genetics , Viral Load/immunology
10.
Blood ; 131(5): 533-545, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29233822

ABSTRACT

Mendelian susceptibility to mycobacterial disease is a rare primary immunodeficiency characterized by severe infections caused by weakly virulent mycobacteria. Biallelic null mutations in genes encoding interferon gamma receptor 1 or 2 (IFNGR1 or IFNGR2) result in a life-threatening disease phenotype in early childhood. Recombinant interferon γ (IFN-γ) therapy is inefficient, and hematopoietic stem cell transplantation has a poor prognosis. Thus, we developed a hematopoietic stem cell (HSC) gene therapy approach using lentiviral vectors that express Ifnγr1 either constitutively or myeloid specifically. Transduction of mouse Ifnγr1-/- HSCs led to stable IFNγR1 expression on macrophages, which rescued their cellular responses to IFN-γ. As a consequence, genetically corrected HSC-derived macrophages were able to suppress T-cell activation and showed restored antimycobacterial activity against Mycobacterium avium and Mycobacterium bovis Bacille Calmette-Guérin (BCG) in vitro. Transplantation of genetically corrected HSCs into Ifnγr1-/- mice before BCG infection prevented manifestations of severe BCG disease and maintained lung and spleen organ integrity, which was accompanied by a reduced mycobacterial burden in lung and spleen and a prolonged overall survival in animals that received a transplant. In summary, we demonstrate an HSC-based gene therapy approach for IFNγR1 deficiency, which protects mice from severe mycobacterial infections, thereby laying the foundation for a new therapeutic intervention in corresponding human patients.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Mycobacterium Infections/prevention & control , Protective Agents , Receptors, Interferon/genetics , Animals , Cells, Cultured , Hematopoietic Stem Cell Transplantation/methods , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium avium , Protective Agents/metabolism , Protective Agents/therapeutic use , RAW 264.7 Cells , Interferon gamma Receptor
11.
Int J Mol Sci ; 21(5)2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32131483

ABSTRACT

Neurotropic viruses infect the central nervous system (CNS) and cause acute or chronic neurologic disabilities. Regulatory T cells (Treg) play a critical role for immune homeostasis, but may inhibit pathogen-specific immunity in infectious disorders. The present review summarizes the current knowledge about Treg in human CNS infections and their animal models. Besides dampening pathogen-induced immunopathology, Treg have the ability to facilitate protective responses by supporting effector T cell trafficking to the infection site and the development of resident memory T cells. Moreover, Treg can reduce virus replication by inducing apoptosis of infected macrophages and attenuate neurotoxic astrogliosis and pro-inflammatory microglial responses. By contrast, detrimental effects of Treg are caused by suppression of antiviral immunity, allowing for virus persistence and latency. Opposing disease outcomes following Treg manipulation in different models might be attributed to differences in technique and timing of intervention, infection route, genetic background, and the host's age. In addition, mouse models of virus-induced demyelination revealed that Treg are able to reduce autoimmunity and immune-mediated CNS damage in a disease phase-dependent manner. Understanding the unique properties of Treg and their complex interplay with effector cells represents a prerequisite for the development of new therapeutic approaches in neurotropic virus infections.


Subject(s)
Central Nervous System Diseases/immunology , T-Lymphocytes, Regulatory/immunology , Virus Diseases/immunology , Animals , Central Nervous System Diseases/virology , Humans
12.
Int J Mol Sci ; 20(7)2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30959793

ABSTRACT

Theiler's murine encephalomyelitis (TME) represents a versatile animal model for studying the pathogenesis of demyelinating diseases such as multiple sclerosis. Hallmarks of TME are demyelination, astrogliosis, as well as inflammation. Previous studies showed that matrix metalloproteinase 12 knockout (Mmp12-/-) mice display an ameliorated clinical course associated with reduced demyelination. The present study aims to elucidate the impact of MMP12 deficiency in TME with special emphasis on astrogliosis, macrophages infiltrating the central nervous system (CNS), and the phenotype of microglia/macrophages (M1 or M2). SJL wild-type and Mmp12-/- mice were infected with TME virus (TMEV) or vehicle (mock) and euthanized at 28 and 98 days post infection (dpi). Immunohistochemistry or immunofluorescence of cervical and thoracic spinal cord for detecting glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1), chemokine receptor 2 (CCR2), CD107b, CD16/32, and arginase I was performed and quantitatively evaluated. Statistical analyses included the Kruskal⁻Wallis test followed by Mann⁻Whitney U post hoc tests. TMEV-infected Mmp12-/- mice showed transiently reduced astrogliosis in association with a strong trend (p = 0.051) for a reduced density of activated/reactive microglia/macrophages compared with wild-type mice at 28 dpi. As astrocytes are an important source of cytokine production, including proinflammatory cytokines triggering or activating phagocytes, the origin of intralesional microglia/macrophages as well as their phenotype were determined. Only few phagocytes in wild-type and Mmp12-/- mice expressed CCR2, indicating that the majority of phagocytes are represented by microglia. In parallel to the reduced density of activated/reactive microglia at 98 dpi, TMEV-infected Mmp12-/- showed a trend (p = 0.073) for a reduced density of M1 (CD16/32- and CD107b-positive) microglia, while no difference regarding the density of M2 (arginase I- and CD107b-positive) cells was observed. However, a dominance of M1 cells was detected in the spinal cord of TMEV-infected mice at all time points. Reduced astrogliosis in Mmp12-/- mice was associated with a reduced density of activated/reactive microglia and a trend for a reduced density of M1 cells. This indicates that MMP12 plays an important role in microglia activation, polarization, and migration as well as astrogliosis and microglia/astrocyte interaction.


Subject(s)
Astrocytes/pathology , Cardiovirus Infections/enzymology , Cardiovirus Infections/virology , Gliosis/enzymology , Gliosis/virology , Matrix Metalloproteinase 12/deficiency , Microglia/pathology , Spinal Cord/pathology , Animals , Cell Movement , Glial Fibrillary Acidic Protein/metabolism , Immunophenotyping , Inflammation/metabolism , Inflammation/pathology , Macrophages/metabolism , Matrix Metalloproteinase 12/metabolism , Mice, Knockout , Phenotype
13.
Int J Mol Sci ; 20(4)2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30823515

ABSTRACT

BACKGROUND: Spinal cord (SC) lesions in Theiler's murine encephalomyelitis virus induced demyelinating disease (TMEV-IDD) resemble important features of brain lesions in progressive multiple sclerosis (MS) including inflammation, demyelination, and axonal damage. The aim of the present study was a comparison of SC lesions in MS and TMEV-IDD focusing on spatial and temporal distribution of demyelination, inflammation, SC atrophy (SCA), and axonal degeneration/loss in major descending motor pathways. METHODS: TMEV and mock-infected mice were investigated clinically once a week. SC tissue was collected at 42, 98, 147, and 196 days post infection, and investigated using hematoxylin and eosin (HE) staining, immunohistochemistry targeting myelin basic protein (demyelination), Mac3 (microglia/macrophages), phosphorylated neurofilaments (axonal damage) and transmission electron microscopy. RESULTS: Demyelination prevailed in SC white matter in TMEV-IDD, contrasting a predominant gray matter involvement in MS. TMEV-infected mice revealed a significant loss of axons similar to MS. Ultrastructural analysis in TMEV-IDD revealed denuded axons, degenerative myelin changes, axonal degeneration, as well as remyelination. SCA is a consistent finding in the SC of MS patients and was also detected at a late time point in TMEV-IDD. CONCLUSION: This comparative study further indicates the suitability of TMEV-IDD as animal model also for the investigation of progressive SC lesions in MS.


Subject(s)
Demyelinating Diseases/pathology , Demyelinating Diseases/virology , Disease Models, Animal , Multiple Sclerosis/pathology , Spinal Cord Diseases/pathology , Spinal Cord/pathology , Theilovirus , Animals , Axons/pathology , Female , Immunohistochemistry/methods , Mice
14.
PLoS Pathog ; 9(1): e1003133, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23326235

ABSTRACT

Schmallenberg virus (SBV) is an emerging orthobunyavirus of ruminants associated with outbreaks of congenital malformations in aborted and stillborn animals. Since its discovery in November 2011, SBV has spread very rapidly to many European countries. Here, we developed molecular and serological tools, and an experimental in vivo model as a platform to study SBV pathogenesis, tropism and virus-host cell interactions. Using a synthetic biology approach, we developed a reverse genetics system for the rapid rescue and genetic manipulation of SBV. We showed that SBV has a wide tropism in cell culture and "synthetic" SBV replicates in vitro as efficiently as wild type virus. We developed an experimental mouse model to study SBV infection and showed that this virus replicates abundantly in neurons where it causes cerebral malacia and vacuolation of the cerebral cortex. These virus-induced acute lesions are useful in understanding the progression from vacuolation to porencephaly and extensive tissue destruction, often observed in aborted lambs and calves in naturally occurring Schmallenberg cases. Indeed, we detected high levels of SBV antigens in the neurons of the gray matter of brain and spinal cord of naturally affected lambs and calves, suggesting that muscular hypoplasia observed in SBV-infected lambs is mostly secondary to central nervous system damage. Finally, we investigated the molecular determinants of SBV virulence. Interestingly, we found a biological SBV clone that after passage in cell culture displays increased virulence in mice. We also found that a SBV deletion mutant of the non-structural NSs protein (SBVΔNSs) is less virulent in mice than wild type SBV. Attenuation of SBV virulence depends on the inability of SBVΔNSs to block IFN synthesis in virus infected cells. In conclusion, this work provides a useful experimental framework to study the biology and pathogenesis of SBV.


Subject(s)
Bunyaviridae Infections/virology , Cerebral Cortex/virology , Host-Pathogen Interactions/immunology , Immunity, Innate/immunology , Orthobunyavirus/pathogenicity , Amino Acid Sequence , Animals , Base Sequence , Bunyaviridae Infections/immunology , Bunyaviridae Infections/mortality , Bunyaviridae Infections/pathology , Cattle , Cell Line , Cerebellar Diseases/immunology , Cerebellar Diseases/pathology , Cerebellar Diseases/virology , Cerebral Cortex/immunology , Cerebral Cortex/pathology , Disease Models, Animal , Disease Progression , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Endothelium, Vascular/virology , Mice , Molecular Sequence Data , Neurons/immunology , Neurons/pathology , Neurons/virology , Orthobunyavirus/genetics , Orthobunyavirus/isolation & purification , Sequence Deletion , Sheep , Spinal Cord/immunology , Spinal Cord/pathology , Spinal Cord/virology , Survival Rate , Vacuoles , Viral Tropism , Virulence , Virus Cultivation , Virus Replication
15.
Toxicol Pathol ; 43(5): 737-42, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25694088

ABSTRACT

Periodic acid-Schiff (PAS)-positive granular deposits in the hippocampus have been reported previously in certain inbred mouse strains such as C57BL/6 and the senescent-accelerated mouse prone-8. Here, we report for the first time that similar PAS-positive granules age dependently occur in SJL/J mice, a mouse strain, for instance, used for central nervous system disease research. Moreover, similar granules stained intensely positive with a polyclonal antibody directed against p75 neurotrophin receptor (p75(NTR)). Granular deposits were absent in young mice and developed with aging in CA1 and CA2 regions of the hippocampus. Interestingly, granules significantly diminished in SJL/J mice previously treated with cuprizone, a copper chelator, which is a useful model for toxic demyelination. The presented data support the idea that granules might be the result of an imbalance of redox-active metals and/or a dysregulation of complementary mechanisms that regulate their homeostasis in astrocyte-neuron coupling, respectively. It remains to be determined whether the unsuspected immunoreactivity for p75(NTR) represents a false-positive reaction or whether p75(NTR) is crucially involved in the pathogenesis of age-related hippocampal granular deposits in mice.


Subject(s)
Hippocampus/chemistry , Hippocampus/pathology , Periodic Acid/chemistry , Age Factors , Animals , Cuprizone/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Immunohistochemistry , Mice , Mice, Inbred Strains , Monoamine Oxidase Inhibitors/pharmacology , Receptors, Nerve Growth Factor/metabolism , Rosaniline Dyes/chemistry
16.
J Neuroinflammation ; 11: 180, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25391297

ABSTRACT

BACKGROUND: Theiler's murine encephalomyelitis virus (TMEV) infection represents a commonly used infectious animal model to study various aspects of the pathogenesis of multiple sclerosis (MS). In susceptible SJL mice, dominant activity of Foxp3(+) CD4(+) regulatory T cells (Tregs) in the CNS partly contributes to viral persistence and progressive demyelination. On the other hand, resistant C57BL/6 mice rapidly clear the virus by mounting a strong antiviral immune response. However, very little is known about the role of Tregs in regulating antiviral responses during acute encephalitis in resistant mouse strains. METHODS: In this study, we used DEREG mice that express the diphtheria toxin (DT) receptor under control of the foxp3 locus to selectively deplete Foxp3(+) Tregs by injection of DT prior to infection and studied the effect of Treg depletion on the course of acute Theiler's murine encephalomyelitis (TME). RESULTS: As expected, DEREG mice that are on a C57BL/6 background were resistant to TMEV infection and cleared the virus within days of infection, regardless of the presence or absence of Tregs. Nevertheless, in the absence of Tregs we observed priming of stronger effector T cell responses in the periphery, which subsequently resulted in a transient increase in the frequency of IFNγ-producing T cells in the brain at an early stage of infection. Histological and flow cytometric analysis revealed that this transiently increased frequency of brain-infiltrating IFNγ-producing T cells in Treg-depleted mice neither led to an augmented antiviral response nor enhanced inflammation-mediated tissue damage. Intriguingly, Treg depletion did not change the expression of IL-10 in the infected brain, which might play a role for dampening the inflammatory damage caused by the increased number of effector T cells. CONCLUSION: We therefore propose that unlike susceptible mice strains, interfering with the Treg compartment of resistant mice only has negligible effects on virus-induced pathologies in the CNS. Furthermore, in the absence of Tregs, local anti-inflammatory mechanisms might limit the extent of damage caused by strong anti-viral response in the CNS.


Subject(s)
Cardiovirus Infections/immunology , Disease Resistance/immunology , Encephalitis, Viral/immunology , T-Lymphocytes, Regulatory/physiology , Theilovirus/immunology , Acute Disease , Animals , Cardiovirus Infections/prevention & control , Encephalitis, Viral/prevention & control , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
17.
Sci Rep ; 13(1): 14086, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37640791

ABSTRACT

COVID-19, caused by SARS-CoV-2, is a respiratory disease associated with inflammation and endotheliitis. Mechanisms underling inflammatory processes are unclear, but angiotensin converting enzyme 2 (ACE2), the receptor which binds the spike protein of SARS-CoV-2 may be important. Here we investigated whether spike protein binding to ACE2 induces inflammation in endothelial cells and determined the role of ACE2 in this process. Human endothelial cells were exposed to SARS-CoV-2 spike protein, S1 subunit (rS1p) and pro-inflammatory signaling and inflammatory mediators assessed. ACE2 was modulated pharmacologically and by siRNA. Endothelial cells were also exposed to SARS-CoV-2. rSP1 increased production of IL-6, MCP-1, ICAM-1 and PAI-1, and induced NFkB activation via ACE2 in endothelial cells. rS1p increased microparticle formation, a functional marker of endothelial injury. ACE2 interacting proteins involved in inflammation and RNA biology were identified in rS1p-treated cells. Neither ACE2 expression nor ACE2 enzymatic function were affected by rSP1. Endothelial cells exposed to SARS-CoV-2 virus did not exhibit viral replication. We demonstrate that rSP1 induces endothelial inflammation via ACE2 through processes that are independent of ACE2 enzymatic activity and viral replication. We define a novel role for ACE2 in COVID-19- associated endotheliitis.


Subject(s)
COVID-19 , Endothelial Cells , Humans , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Inflammation , Virus Replication , RNA, Double-Stranded
18.
Acta Neuropathol ; 124(1): 127-42, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22271152

ABSTRACT

Matrix metalloproteinases (MMPs) are a family of extracellular proteases involved in the pathogenesis of demyelinating diseases like multiple sclerosis (MS). The aim of the present study was to investigate whether MMPs induce direct myelin degradation, leukocyte infiltration, disruption of the blood-brain barrier (BBB), and/or extracellular matrix remodeling in the pathogenesis of Theiler's murine encephalomyelitis (TME), a virus-induced model of MS. During the demyelinating phase of TME, the highest transcriptional upregulation was detected for Mmp12, followed by Mmp3. Mmp12 (-/-) mice showed reduced demyelination, macrophage infiltration, and motor deficits compared with wild-type- and Mmp3 knock-out mice. However, BBB remained unaltered, and the amount of extracellular matrix deposition was similar in knock-out mice and wild-type mice. Furthermore, stereotaxic injection of activated MMP-3, -9, and -12 into the caudal cerebellar peduncle of adult mice induced a focally extensive primary demyelination prior to infiltration of inflammatory cells, as well as a reduction in the number of oligodendrocytes and a leakage of BBB. All these results demonstrate that MMP-12 plays an essential role in the pathogenesis of TME, most likely due to its primary myelin- or oligodendrocyte-toxic potential and its role in macrophage extravasation, whereas there was no sign of BBB damage or alterations to extracellular matrix remodeling/deposition. Thus, interrupting the MMP-12 cascade may be a relevant therapeutic approach for preventing chronic progressive demyelination.


Subject(s)
Demyelinating Diseases/etiology , Demyelinating Diseases/metabolism , Encephalomyelitis/complications , Matrix Metalloproteinase 12/deficiency , Theilovirus/pathogenicity , Animals , Blood-Brain Barrier/physiopathology , Brain Stem/pathology , Brain Stem/ultrastructure , Demyelinating Diseases/drug therapy , Disease Models, Animal , Electron Microscope Tomography , Encephalomyelitis/virology , Glial Fibrillary Acidic Protein/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Matrix Metalloproteinase 12/genetics , Matrix Metalloproteinase 3/deficiency , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 9/administration & dosage , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout , Microarray Analysis , Myelin Proteins/metabolism , Nogo Proteins , Tegmentum Mesencephali/pathology , Tegmentum Mesencephali/ultrastructure , Time Factors
19.
Intervirology ; 55(6): 401-16, 2012.
Article in English | MEDLINE | ID: mdl-22538300

ABSTRACT

OBJECTIVES: Theiler's murine encephalomyelitis virus (TMEV) infection of mice is a widely used animal model for demyelinating disorders, such as multiple sclerosis (MS). The aim of the present study was to identify topographical differences of TMEV spread and demyelination in the brain of experimentally infected susceptible SJL/J mice and resistant C57BL/6 mice. METHODS: Demyelination was confirmed by Luxol fast blue and cresyl violet staining and axonal damage by neurofilament-specific and ß-amyloid precursor protein-specific immunohistochemistry. Viral dissemination within the central nervous system (CNS) was quantified by immunohistochemistry and in situ hybridization. Further, the phenotype of infected cells was determined by confocal laser scanning microscopy. RESULTS: An early transient infection of periventricular cells followed by demyelination and axonopathies around the fourth ventricle in SJL/J mice was noticed. Periventricular and brain stem demyelination was associated with a predominant infection of microglia/macrophages and oligodendrocytes. CONCLUSIONS: Summarized, the demonstration of ependymal infection and subjacent spread into the brain parenchyma as well as regional virus clearance despite ongoing demyelination and axonal damage in other CNS compartments allows new insights into TME pathogenesis. This novel aspect of TMEV CNS interaction will enhance the understanding of region-specific susceptibilities to injury and regenerative capacities of the brain in this MS model.


Subject(s)
Cardiovirus Infections/pathology , Demyelinating Diseases/pathology , Disease Models, Animal , Ependyma/pathology , Multiple Sclerosis/pathology , Theilovirus/pathogenicity , Amyloid beta-Protein Precursor/chemistry , Animals , Axons/pathology , Brain/pathology , Brain/virology , Cardiovirus Infections/virology , Demyelinating Diseases/virology , Ependyma/virology , Female , Macrophages/virology , Mice , Mice, Inbred C57BL , Oligodendroglia/virology
SELECTION OF CITATIONS
SEARCH DETAIL