Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Exp Cell Res ; 333(1): 105-15, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25724901

ABSTRACT

The EphB4 receptor tyrosine kinase is over-expressed in a variety of different epithelial cancers including prostate where it has been shown to be involved in survival, migration and angiogenesis. We report here that EphB4 also resides in the nucleus of prostate cancer cell lines. We used in silico methods to identify a bipartite nuclear localisation signal (NLS) in the extracellular domain and a monopartite NLS sequence in the intracellular kinase domain of EphB4. To determine whether both putative NLS sequences were functional, fragments of the EphB4 sequence containing each NLS were cloned to create EphB4NLS-GFP fusion proteins. Localisation of both NLS-GFP proteins to the nuclei of transfected cells was observed, demonstrating that EphB4 contains two functional NLS sequences. Mutation of the key amino residues in both NLS sequences resulted in diminished nuclear accumulation. As nuclear translocation is often dependent on importins we confirmed that EphB4 and importin-α can interact. To assess if nuclear EphB4 could be implicated in gene regulatory functions potential EphB4-binding genomic loci were identified using chromatin immunoprecipitation and Lef1 was confirmed as a potential target of EphB4-mediated gene regulation. These novel findings add further complexity to the biology of this important cancer-associated receptor.


Subject(s)
Cell Nucleus/metabolism , Receptor, EphB4/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Cell Line, Tumor , DNA/metabolism , Gene Expression , Humans , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Male , Molecular Sequence Data , Nuclear Localization Signals , Prostatic Neoplasms , Protein Binding , Receptor, EphB4/chemistry , alpha Karyopherins/metabolism
2.
BMC Cancer ; 15: 164, 2015 Mar 22.
Article in English | MEDLINE | ID: mdl-25886373

ABSTRACT

BACKGROUND: The EphB4 receptor tyrosine kinase is overexpressed in many cancers including prostate cancer. The molecular mechanisms by which this ephrin receptor influences cancer progression are complex as there are tumor-promoting ligand-independent mechanisms in place as well as ligand-dependent tumor suppressive pathways. METHODS: We employed transient knockdown of EPHB4 in prostate cancer cells, coupled with gene microarray analysis, to identify genes that were regulated by EPHB4 and may represent linked tumor-promoting factors. We validated target genes using qRT-PCR and employed functional assays to determine their role in prostate cancer migration and invasion. RESULTS: We discovered that over 500 genes were deregulated upon EPHB4 siRNA knockdown, with integrin ß8 (ITGB8) being the top hit (29-fold down-regulated compared to negative non-silencing siRNA). Gene ontology analysis found that the process of cell adhesion was highly deregulated and two other integrin genes, ITGA3 and ITGA10, were also differentially expressed. In parallel, we also discovered that over-expression of EPHB4 led to a concomitant increase in ITGB8 expression. In silico analysis of a prostate cancer progression microarray publically available in the Oncomine database showed that both EPHB4 and ITGB8 are highly expressed in prostatic intraepithelial neoplasia, the precursor to prostate cancer. Knockdown of ITGB8 in PC-3 and 22Rv1 prostate cancer cells in vitro resulted in significant reduction of cell migration and invasion. CONCLUSIONS: These results reveal that EphB4 regulates integrin ß8 expression and that integrin ß8 plays a hitherto unrecognized role in the motility of prostate cancer cells and thus targeting integrin ß8 may be a new treatment strategy for prostate cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Integrin beta Chains/biosynthesis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptor, EphB4/physiology , Cell Line, Tumor , Humans , Male , Receptor Protein-Tyrosine Kinases/physiology
3.
Gen Comp Endocrinol ; 216: 98-102, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25500363

ABSTRACT

Ghrelin and leptin are key peripherally secreted appetite-regulating hormones in vertebrates. Here we consider the ghrelin gene (GHRL) of birds (class Aves), where it has been reported that ghrelin inhibits rather than augments feeding. Thirty-one bird species were compared, revealing that most species harbour a functional copy of GHRL and the coding region for its derived peptides ghrelin and obestatin. We provide evidence for loss of GHRL in saker and peregrine falcons, and this is likely to result from the insertion of an ERVK retrotransposon in intron 0. We hypothesise that the loss of anorexigenic ghrelin is a predatory adaptation that results in increased food-seeking behaviour and feeding in falcons.


Subject(s)
Appetite Regulation/physiology , Falconiformes/physiology , Ghrelin/metabolism , Peptide Hormones/metabolism , Amino Acid Sequence , Animals , Molecular Sequence Data , Phylogeny , Sequence Homology, Amino Acid
4.
Biochim Biophys Acta ; 1835(2): 243-57, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23396052

ABSTRACT

Although at present, there is a high incidence of prostate cancer, particularly in the Western world, mortality from this disease is declining and occurs primarily only from clinically significant late stage tumors with a poor prognosis. A major current focus of this field is the identification of new biomarkers which can detect earlier, and more effectively, clinically significant tumors from those deemed "low risk", as well as predict the prognostic course of a particular cancer. This strategy can in turn offer novel avenues for targeted therapies. The large family of Receptor Tyrosine Kinases, the Ephs, and their binding partners, the ephrins, has been implicated in many cancers of epithelial origin through stimulation of oncogenic transformation, tumor angiogenesis, and promotion of increased cell survival, invasion and migration. They also show promise as both biomarkers of diagnostic and prognostic value and as targeted therapies in cancer. This review will briefly discuss the complex roles and biological mechanisms of action of these receptors and ligands and, with regard to prostate cancer, highlight their potential as biomarkers for both diagnosis and prognosis, their application as imaging agents, and current approaches to assessing them as therapeutic targets. This review demonstrates the need for future studies into those particular family members that will prove helpful in understanding the biology and potential as targets for treatment of prostate cancer.


Subject(s)
Ephrins/physiology , Prostatic Neoplasms/drug therapy , Receptor, EphA1/physiology , Biomarkers , Ephrins/analysis , Humans , Male , Neoplastic Cells, Circulating/chemistry , Prostatic Neoplasms/etiology , Receptor, EphA1/analysis , Receptor, EphA1/antagonists & inhibitors , Signal Transduction
5.
Reprod Biol Endocrinol ; 11: 70, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23879975

ABSTRACT

BACKGROUND: Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. METHODS: We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. RESULTS: We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. CONCLUSIONS: This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific. The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function.


Subject(s)
Acyltransferases/genetics , Gene Expression Regulation, Neoplastic , Ghrelin/pharmacology , Prostatic Neoplasms/genetics , Acyltransferases/metabolism , Cell Line , Cell Line, Tumor , Furin/genetics , Furin/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Humans , Immunohistochemistry , Male , Proprotein Convertase 1/genetics , Proprotein Convertase 1/metabolism , Proprotein Convertase 2/genetics , Proprotein Convertase 2/metabolism , Prostate/enzymology , Prostate/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Reverse Transcriptase Polymerase Chain Reaction
6.
Int J Cancer ; 131(5): E614-24, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22161689

ABSTRACT

Overexpression of the receptor tyrosine kinase EphB4 is common in epithelial cancers and linked to tumor progression by promoting angiogenesis, increasing survival and facilitating invasion and migration. However, other studies have reported loss of EphB4 suggesting a tumor suppressor function in some cancers. These opposing roles may be regulated by (i) the presence of the primary ligand ephrin-B2 that regulates pathways involved in tumor suppression or (ii) the absence of ephrin-B2 that allows EphB4 signaling via ligand-independent pathways that contribute to tumor promotion. To explore this theory, EphB4 was overexpressed in the prostate cancer cell line 22Rv1 and the mammary epithelial cell line MCF-10A. Overexpressed EphB4 localized to lipid-rich regions of the plasma membrane and confirmed to be ligand-responsive as demonstrated by increased phosphorylation of ERK1/2 and internalization. EphB4 overexpressing cells demonstrated enhanced anchorage-independent growth, migration and invasion, all characteristics associated with an aggressive phenotype, and therefore supporting the hypothesis that overexpressed EphB4 facilitates tumor promotion. Importantly, these effects were reversed in the presence of ephrin-B2 which led to a reduction in EphB4 protein levels, demonstrating that ligand-dependent signaling is tumor suppressive. Furthermore, extended ligand stimulation caused a significant decrease in proliferation that correlated with a rise in caspase-3/7 and -8 activities. Together, these results demonstrate that overexpression of EphB4 confers a transformed phenotype in the case of MCF-10A cells and an increased metastatic phenotype in the case of 22Rv1 cancer cells and that both phenotypes can be restrained by stimulation with ephrin-B2, in part by reducing EphB4 levels.


Subject(s)
Apoptosis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Ephrin-B2/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptor, EphB4/metabolism , Blotting, Western , Cell Adhesion , Cell Movement , Cell Proliferation , Female , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Ligands , Male , Membrane Microdomains , Phosphorylation , Signal Transduction , Tumor Cells, Cultured
7.
Growth Factors ; 28(5): 359-69, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20569097

ABSTRACT

Numerous studies have reported links between insulin-like growth factors (IGFs) and the extra-cellular matrix protein vitronectin (VN). We ourselves have reported that IGF-I binds to VN via IGF-binding proteins (IGFBPs) to stimulate HaCaT and MCF-7 cell migration. Here, we detail the functional evaluation of IGFBP-1, -2, -3, -4 and -6 in the presence and absence of IGF-I and VN. The data presented here, combined with our prior data on IGFBP-5, suggest that IGFBP-3, -4 and -5 are the most effective at stimulating cell migration in combination with IGF-I and VN. In addition, we demonstrate that different regions within IGFBP-3 and -4 are critical for complex formation. Furthermore, we examine whether multi-protein complexes of IGF-I and IGFBPs associated with fibronectin and collagen IV are also able to enhance functional biological responses.


Subject(s)
Cell Movement/drug effects , Insulin-Like Growth Factor Binding Proteins/pharmacology , Insulin-Like Growth Factor I/pharmacology , Vitronectin/pharmacology , Cell Line , Cell Line, Tumor , Collagen Type IV/metabolism , Fibronectins/metabolism , Humans , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Protein Interaction Domains and Motifs , Vitronectin/metabolism
8.
Clin Exp Pharmacol Physiol ; 37(1): 125-31, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19566830

ABSTRACT

1. Ghrelin is a multifunctional peptide hormone that affects various processes, including growth hormone and insulin release, appetite regulation, gut motility, metabolism and cancer cell proliferation. Ghrelin is produced in the stomach and in other normal and pathological cell types. It may act as an endocrine or autocrine/paracrine factor. 2. The present article reviews recent findings in the study of ghrelin and its receptor that suggest that the ghrelin gene locus may give rise to a number of functional molecules (peptides and RNA transcripts) in addition to ghrelin. 3. The ghrelin gene encodes a precursor protein, preproghrelin, from which ghrelin and other potentially active peptides are derived by alternative mRNA splicing and/or proteolytic processing. The metabolic role of the peptide obestatin, derived from the preproghrelin C-terminal region, is contentious. However, obestatin has direct effects on cell proliferation. 4. The regulation of ghrelin expression and the mechanisms through which the peptide products arise are unclear. We have recently re-examined the organization of the ghrelin gene and identified several novel exons and transcripts. One transcript, which lacks the ghrelin-coding region of preproghrelin, contains the coding sequence of obestatin. 5. Furthermore, we have identified an overlapping gene on the antisense strand of ghrelin, namely GHRLOS, which generates transcripts that may function as non-coding regulatory RNAs or code for novel, short bioactive peptides. 6. The identification of these novel ghrelin-gene related transcripts and peptides raises critical questions regarding their physiological function and their potential role in obesity, diabetes and cancer.


Subject(s)
Gene Expression Regulation/physiology , Ghrelin , Neoplasms/drug therapy , Obesity/drug therapy , Peptide Hormones/therapeutic use , Alternative Splicing , Animals , Appetite Regulation/physiology , Eating/physiology , Ghrelin/analogs & derivatives , Ghrelin/genetics , Ghrelin/physiology , Ghrelin/therapeutic use , Humans , Peptide Hormones/genetics , Peptide Hormones/physiology , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism
9.
Endocrine ; 64(2): 393-405, 2019 05.
Article in English | MEDLINE | ID: mdl-30390209

ABSTRACT

PURPOSE: The ghrelin axis regulates many physiological functions (including appetite, metabolism, and energy balance) and plays a role in disease processes. As ghrelin stimulates prostate cancer proliferation, the ghrelin receptor antagonist [D-Lys3]-GHRP-6 is a potential treatment for castrate-resistant prostate cancer and for preventing the metabolic consequences of androgen-targeted therapies. We therefore explored the effect of [D-Lys3]-GHRP-6 on PC3 prostate cancer xenograft growth. METHODS: NOD/SCID mice with PC3 prostate cancer xenografts were administered 20 nmoles/mouse [D-Lys3]-GHRP-6 daily by intraperitoneal injection for 14 days and tumour volume and weight were measured. RNA sequencing of tumours was conducted to investigate expression changes following [D-Lys3]-GHRP-6 treatment. A second experiment, extending treatment time to 18 days and including a higher dose of [D-Lys3]-GHRP-6 (200 nmoles/mouse/day), was undertaken to ensure repeatability. RESULTS: We demonstrate here that daily intraperitoneal injection of 20 nmoles/mouse [D-Lys3]-GHRP-6 reduces PC3 prostate cancer xenograft tumour volume and weight in NOD/SCID mice at two weeks post treatment initiation. RNA-sequencing revealed reduced expression of epidermal growth factor receptor (EGFR) in these tumours. Further experiments demonstrated that the effects of [D-Lys3]-GHRP-6 are transitory and lost after 18 days of treatment. CONCLUSIONS: We show that [D-Lys3]-GHRP-6 has transitory effects on prostate xenograft tumours in mice, which rapidly develop an apparent resistance to the antagonist. Although further studies on [D-Lys3]-GHRP-6 are warranted, we suggest that daily treatment with the antagonist is not a suitable treatment for advanced prostate cancer.


Subject(s)
Cell Proliferation/drug effects , ErbB Receptors/genetics , Gene Expression/drug effects , Oligopeptides/pharmacology , Prostatic Neoplasms/pathology , Receptors, Ghrelin/antagonists & inhibitors , Animals , ErbB Receptors/metabolism , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , PC-3 Cells , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism
10.
Int J Oncol ; 55(6): 1223-1236, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31638176

ABSTRACT

Recent evidence suggests that numerous long non­coding RNAs (lncRNAs) are dysregulated in cancer, and have critical roles in tumour development and progression. The present study investigated the ghrelin receptor antisense lncRNA growth hormone secretagogue receptor opposite strand (GHSROS) in breast cancer. Reverse transcription­quantitative polymerase chain reaction revealed that GHSROS expression was significantly upregulated in breast tumour tissues compared with normal breast tissue. Induced overexpression of GHSROS in the MDA­MB­231 breast cancer cell line significantly increased cell migration in vitro, without affecting cell proliferation, a finding similar to our previous study on lung cancer cell lines. Microarray analysis revealed a significant repression of a small cluster of major histocompatibility class II genes and enrichment of immune response pathways; this phenomenon may allow tumour cells to better evade the immune system. Ectopic overexpression of GHSROS in the MDA­MB­231 cell line significantly increased orthotopic xenograft growth in mice, suggesting that in vitro culture does not fully capture the function of this lncRNA. This study demonstrated that GHSROS may serve a relevant role in breast cancer. Further studies are warranted to explore the function and therapeutic potential of this lncRNA in breast cancer progression.


Subject(s)
Breast Neoplasms/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/metabolism , Animals , Apoptosis/genetics , Breast/pathology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Disease Progression , Down-Regulation , Female , Gene Expression Profiling , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , MCF-7 Cells , Mice , Middle Aged , Oligonucleotide Array Sequence Analysis , Receptors, Ghrelin/genetics , Tumor Escape/genetics , Xenograft Model Antitumor Assays
11.
BMC Mol Biol ; 9: 95, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-18954468

ABSTRACT

BACKGROUND: The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS), which spans the promoter and untranslated regions of the ghrelin gene (GHRL). Here we further characterise GHRLOS. RESULTS: We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2). Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis), as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. CONCLUSION: GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA) genes, including 5' capping, polyadenylation, extensive splicing and short open reading frames. The gene is also non-conserved, with differential and tissue-restricted expression. The overlapping genomic arrangement of GHRLOS with the ghrelin gene indicates that it is likely to have interesting regulatory and functional roles in the ghrelin axis.


Subject(s)
Ghrelin/genetics , RNA, Antisense/genetics , Alternative Splicing , Cell Line , Exons/genetics , Gene Expression Regulation , Humans , Polymorphism, Genetic , RNA, Antisense/analysis , RNA, Messenger/analysis , RNA, Messenger/genetics
12.
PLoS One ; 13(11): e0198495, 2018.
Article in English | MEDLINE | ID: mdl-30458004

ABSTRACT

Ghrelin is a peptide hormone which, when acylated, regulates appetite, energy balance and a range of other biological processes. Ghrelin predominately circulates in its unacylated form (unacylated ghrelin; UAG). UAG has a number of functions independent of acylated ghrelin, including modulation of metabolic parameters and cancer progression. UAG has also been postulated to antagonise some of the metabolic effects of acyl-ghrelin, including its effects on glucose and insulin regulation. In this study, Rag1-/- mice with high-fat diet-induced obesity and hyperinsulinaemia were subcutaneously implanted with PC3 prostate cancer xenografts to investigate the effect of UAG treatment on metabolic parameters and xenograft growth. Daily intraperitoneal injection of 100 µg/kg UAG had no effect on xenograft tumour growth in mice fed normal rodent chow or 23% high-fat diet. UAG significantly improved glucose tolerance in host Rag1-/- mice on a high-fat diet, but did not significantly improve other metabolic parameters. We propose that UAG is not likely to be an effective treatment for prostate cancer, with or without associated metabolic syndrome.


Subject(s)
Ghrelin/pharmacology , Homeodomain Proteins/metabolism , Hyperinsulinism/complications , Obesity/complications , Prostatic Neoplasms/drug therapy , Animals , Blood Glucose , Cell Line, Tumor , Diet, High-Fat , Ghrelin/therapeutic use , Heterografts , Homeodomain Proteins/genetics , Humans , Hyperinsulinism/metabolism , Male , Mice , Mice, Knockout , Obesity/metabolism , Prostatic Neoplasms/complications , Prostatic Neoplasms/metabolism
13.
BMC Genomics ; 8: 298, 2007 Aug 30.
Article in English | MEDLINE | ID: mdl-17727735

ABSTRACT

BACKGROUND: Ghrelin is a multifunctional peptide hormone expressed in a range of normal tissues and pathologies. It has been reported that the human ghrelin gene consists of five exons which span 5 kb of genomic DNA on chromosome 3 and includes a 20 bp non-coding first exon (20 bp exon 0). The availability of bioinformatic tools enabling comparative analysis and the finalisation of the human genome prompted us to re-examine the genomic structure of the ghrelin locus. RESULTS: We have demonstrated the presence of an additional novel exon (exon -1) and 5' extensions to exon 0 and 1 using comparative in silico analysis and have demonstrated their existence experimentally using RT-PCR and 5' RACE. A revised exon-intron structure demonstrates that the human ghrelin gene spans 7.2 kb and consists of six rather than five exons. Several ghrelin gene-derived splice forms were detected in a range of human tissues and cell lines. We have demonstrated ghrelin gene-derived mRNA transcripts that do not code for ghrelin, but instead may encode the C-terminal region of full-length preproghrelin (C-ghrelin, which contains the coding region for obestatin) and a transcript encoding obestatin-only. Splice variants that differed in their 5' untranslated regions were also found, suggesting a role of these regions in the post-transcriptional regulation of preproghrelin translation. Finally, several natural antisense transcripts, termed ghrelinOS (ghrelin opposite strand) transcripts, were demonstrated via orientation-specific RT-PCR, 5' RACE and in silico analysis of ESTs and cloned amplicons. CONCLUSION: The sense and antisense alternative transcripts demonstrated in this study may function as non-coding regulatory RNA, or code for novel protein isoforms. This is the first demonstration of putative obestatin and C-ghrelin specific transcripts and these findings suggest that these ghrelin gene-derived peptides may also be produced independently of preproghrelin. This study reveals several novel aspects of the ghrelin gene and suggests that the ghrelin locus is far more complex than previously recognised.


Subject(s)
Alternative Splicing , Exons , Genome, Human , Peptide Hormones/genetics , RNA, Antisense/genetics , RNA, Messenger/genetics , Amino Acid Sequence , Animals , Ghrelin , Humans , Mice , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction
14.
Cytokine Growth Factor Rev ; 14(2): 113-22, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12651223

ABSTRACT

Ghrelin is a recently identified 28 amino acid peptide capable of stimulating pituitary growth hormone release in humans. The actions of ghrelin are mediated via the naturally occurring ghrelin receptor, also known as the growth hormone secretagogue receptor (GHS-R). Ghrelin and its receptors are now being recognized as components of the growth hormone axis and are therefore potentially involved in tissue growth and development. As is the case for other members of this axis, evidence is rapidly emerging to indicate that ghrelin/GHS-R may play an important autocrine/paracrine role in some cancers. This review highlights the evidence for the expression, regulation and potential functional role of ghrelin and its receptor in hormone-dependent cancers, such as prostate and breast cancer.


Subject(s)
Hormones/metabolism , Neoplasms/metabolism , Peptide Hormones/physiology , Receptors, G-Protein-Coupled/physiology , Alternative Splicing , Amino Acid Sequence , Animals , Cell Division , Ghrelin , Growth Hormone/metabolism , Humans , Models, Biological , Models, Genetic , Molecular Sequence Data , Peptide Hormones/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Ghrelin
15.
Sci Rep ; 7(1): 491, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28352127

ABSTRACT

Hyperinsulinaemia, obesity and dyslipidaemia are independent and collective risk factors for many cancers. Here, the long-term effects of a 23% Western high-fat diet (HFD) in two immunodeficient mouse strains (NOD/SCID and Rag1 -/-) suitable for engraftment with human-derived tissue xenografts, and the effect of diet-induced hyperinsulinaemia on human prostate cancer cell line xenograft growth, were investigated. Rag1 -/-and NOD/SCID HFD-fed mice demonstrated diet-induced impairments in glucose tolerance at 16 and 23 weeks post weaning. Rag1 -/- mice developed significantly higher fasting insulin levels (2.16 ± 1.01 ng/ml, P = 0.01) and increased insulin resistance (6.70 ± 1.68 HOMA-IR, P = 0.01) compared to low-fat chow-fed mice (0.71 ± 0.12 ng/ml and 2.91 ± 0.42 HOMA-IR). This was not observed in the NOD/SCID strain. Hepatic steatosis was more extensive in Rag1 -/- HFD-fed mice compared to NOD/SCID mice. Intramyocellular lipid storage was increased in Rag1 -/- HFD-fed mice, but not in NOD/SCID mice. In Rag1 -/- HFD-fed mice, LNCaP xenograft tumours grew more rapidly compared to low-fat chow-fed mice. This is the first characterisation of the metabolic effects of long-term Western HFD in two mouse strains suitable for xenograft studies. We conclude that Rag1 -/- mice are an appropriate and novel xenograft model for studying the relationship between cancer and hyperinsulinaemia.


Subject(s)
Disease Models, Animal , Disease Susceptibility , Hyperinsulinism/etiology , Hyperinsulinism/metabolism , Adipose Tissue/metabolism , Animals , Blood Glucose , Body Weight , Diet, High-Fat , Female , Heterografts , Homeodomain Proteins/genetics , Humans , Hyperinsulinism/immunology , Insulin/blood , Insulin/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Muscle, Skeletal/metabolism , Organ Specificity , Pancreas/metabolism
16.
Clin Cancer Res ; 11(23): 8295-303, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16322288

ABSTRACT

PURPOSE: There is evidence that the hormone ghrelin stimulates proliferation in the PC3 prostate cancer cell line although the underlying mechanism(s) remain to be determined. A novel, exon 3-deleted preproghrelin isoform has previously been detected in breast and prostate cancer cells; however, its characterization, expression, and potential function in prostate cancer tissues are unknown. EXPERIMENTAL DESIGN: Expression of ghrelin and exon 3-deleted preproghrelin was investigated in prostate cancer cell lines and tissues by reverse transcription-PCR and immunohistochemistry. Proliferation and apoptosis assays were done in the LNCaP prostate cancer cell line to determine if ghrelin stimulates proliferation and/or cell survival. Stimulation of mitogen-activated protein kinase (MAPK) pathway activation by ghrelin was determined in PC3 and LNCaP cells by immunoblotting with antibodies specific for phosphorylated MAPKs. RESULTS: Prostate cancer tissues display greater immunoreactivity for ghrelin and exon 3-deleted preproghrelin than normal prostate tissues, and prostate cancer cell lines secrete mature ghrelin into conditioned medium. Treatment with ghrelin (10 nmol/L), but not the unique COOH-terminal peptide derived from exon 3-deleted preproghrelin, stimulates proliferation in the LNCaP cells (45.0 +/- 1.7% above control, P < 0.01) and rapidly activates the extracellular signal-regulated kinase-1/2 MAPK pathway in both PC3 and LNCaP cell lines. Ghrelin, however, does not protect prostate cancer cells from apoptosis induced by actinomycin D (1 microg/mL). The MAPK inhibitors PD98059 and U0126 blocked ghrelin-induced MAPK activation, as well as proliferation, in both cell lines. CONCLUSIONS: These data suggest that these components of the ghrelin axis may have potential as novel biomarkers and/or adjunctive therapeutic targets for prostate cancer.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Motilin/genetics , Peptide Hormones/genetics , Peptide Hormones/pharmacology , Prostatic Neoplasms/genetics , Apoptosis , Cell Proliferation , Culture Media, Conditioned , Enzyme Activation/drug effects , Exons/genetics , Ghrelin , Humans , Male , Peptide Fragments/pharmacology , Prostatic Hyperplasia/enzymology , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Sequence Deletion , Tumor Cells, Cultured
17.
Oncotarget ; 7(31): 49677-49687, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27331623

ABSTRACT

We previously identified miR-4731-5p (miR-4731) as a melanoma-enriched microRNA following comparison of melanoma with other cell lines from solid malignancies. Additionally, miR-4731 has been found in serum from melanoma patients and expressed less abundantly in metastatic melanoma tissues from stage IV patients relative to stage III patients. As miR-4731 has no known function, we used biotin-labelled miRNA duplex pull-down to identify binding targets of miR-4731 in three melanoma cell lines (HT144, MM96L and MM253). Using the miRanda miRNA binding algorithm, all pulled-down transcripts common to the three cell lines (n=1092) had potential to be targets of miR-4731 and gene-set enrichment analysis of these (via STRING v9.1) highlighted significantly associated genes related to the 'cell cycle' pathway and the 'melanosome'. Following miR-4731 overexpression, a selection (n=81) of pull-down transcripts underwent validation using a custom qRT-PCR array. These data revealed that miR-4731 regulates multiple genes associated with the cell cycle (e.g. CCNA2, ORC5L, and PCNA) and the melanosome (e.g. RAB7A, CTSD, and GNA13). Furthermore, members of the synovial sarcoma X breakpoint family (SSX) (melanoma growth promoters) were also down-regulated (e.g. SSX2, SSX4, and SSX4B) as a result of miR-4731 overexpression. Moreover, this down-regulation of mRNA expression resulted in ablation or reduction of SSX4 protein, which, in keeping with previous studies, resulted in loss of 2D colony formation. We therefore speculate that loss of miR-4731 expression in stage IV patient tumours supports melanoma growth by, in part; reducing its regulatory control of SSX expression levels.


Subject(s)
Gene Expression Regulation, Neoplastic , Melanoma/metabolism , MicroRNAs/metabolism , Skin Neoplasms/metabolism , Algorithms , Biotin/chemistry , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Genes, Tumor Suppressor , Humans , Neoplasm Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Repressor Proteins/metabolism , Signal Transduction
18.
Endocrine ; 52(3): 609-17, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26792793

ABSTRACT

The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.


Subject(s)
Alternative Splicing , Ghrelin/genetics , Amino Acid Sequence , Animals , Appetite Regulation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Conserved Sequence , Ghrelin/pharmacology , Humans , Male , Mice , Mice, Inbred C57BL , Protein Isoforms/genetics , Protein Isoforms/pharmacology , Species Specificity
19.
Clin Cancer Res ; 10(1 Pt 1): 314-23, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14734484

ABSTRACT

PURPOSE: The disintegrin metalloprotease ADAM-10 is a multidomain metalloprotease that is potentially significant in tumor progression due to its extracellular matrix-degrading properties. Previously, ADAM-10 mRNA was detected in prostate cancer (PCa) cell lines; however, the presence of ADAM-10 protein and its cellular localization, regulation, and role have yet to be described. We hypothesized that ADAM-10 mRNA and protein may be regulated by growth factors such as 5alpha-dihydrotestosterone, insulin-like growth factor I, and epidermal growth factor, known modulators of PCa cell growth and invasion. EXPERIMENTAL DESIGN: ADAM-10 expression was analyzed by in situ hybridization and immunohistochemistry in prostate tissues obtained from 23 patients with prostate disease. ADAM-10 regulation was assessed using quantitative reverse transcription-PCR and Western blot analysis in the PCa cell line LNCaP. RESULTS: ADAM-10 expression was localized to the secretory cells of prostate glands, with additional basal cell expression in benign glands. ADAM-10 protein was predominantly membrane bound in benign glands but showed marked nuclear localization in cancer glands. By Western blot, the 100-kDa proform and the 60-kDa active form of ADAM-10 were synergistically up-regulated in LNCaP cells treated with insulin-like growth factor I plus 5alpha-dihydrotestosterone. Epidermal growth factor also up-regulated both ADAM-10 mRNA and protein. CONCLUSIONS: This study describes for the first time the expression, regulation, and cellular localization of ADAM-10 protein in PCa. The regulation and membrane localization of ADAM-10 support our hypothesis that ADAM-10 has a role in extracellular matrix maintenance and cell invasion, although the potential role of nuclear ADAM-10 is not yet known.


Subject(s)
Dihydrotestosterone/pharmacology , Epidermal Growth Factor/pharmacology , Gene Expression Regulation/drug effects , Insulin-Like Growth Factor I/pharmacology , Membrane Proteins/metabolism , Metalloendopeptidases/metabolism , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , ADAM Proteins , ADAM10 Protein , Amyloid Precursor Protein Secretases , Androgens/pharmacology , Blotting, Western , Cell Membrane/metabolism , Cell Nucleus/metabolism , Humans , Immunoenzyme Techniques , In Situ Hybridization , Male , Membrane Proteins/genetics , Metalloendopeptidases/genetics , Prostatic Hyperplasia/enzymology , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
20.
Oncotarget ; 6(10): 7554-69, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25831049

ABSTRACT

EphB4 is a membrane-bound receptor tyrosine kinase (RTK) commonly over-produced by many epithelial cancers but with low to no expression in most normal adult tissues. EphB4 over-production promotes ligand-independent signaling pathways that increase cancer cell viability and stimulate migration and invasion. Several studies have shown that normal ligand-dependent signaling is tumour suppressive and therefore novel therapeutics which block the tumour promoting ligand-independent signaling and/or stimulate tumour suppressive ligand-dependent signaling will find application in the treatment of cancer. An EphB4-specific polyclonal antibody, targeting a region of 200 amino acids in the extracellular portion of EphB4, showed potent in vitro anti-cancer effects measured by an increase in apoptosis and a decrease in anchorage independent growth. Peptide exclusion was used to identify the epitope targeted by this antibody within the cysteine-rich region of the EphB4 protein, a sequence defined as a potential ligand interacting interface. Addition of antibody to cancer cells resulted in phosphorylation and subsequent degradation of the EphB4 protein, suggesting a mechanism that is ligand mimetic and tumour suppressive. A monoclonal antibody which specifically targets this identified extracellular epitope of EphB4 significantly reduced breast cancer xenograft growth in vivo confirming that EphB4 is a useful target for ligand-mimicking antibody-based anti-cancer therapies.


Subject(s)
Antibodies, Monoclonal/genetics , Cysteine/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor, EphB4/metabolism , Antibodies, Monoclonal/pharmacology , Apoptosis , Cell Proliferation , Humans , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL