Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Virol ; 94(8)2020 03 31.
Article in English | MEDLINE | ID: mdl-31996431

ABSTRACT

Ross River virus (RRV) belongs to the genus Alphavirus and is prevalent in Australia. RRV infection can cause arthritic symptoms in patients and may include rash, fever, arthralgia, and myalgia. Type I interferons (IFN) are the primary antiviral cytokines and trigger activation of the host innate immune system to suppress the replication of invading viruses. Alphaviruses are able to subvert the type I IFN system, but the mechanisms used are ill defined. In this study, seven RRV field strains were analyzed for induction of and sensitivity to type I IFN. The sensitivities of these strains to human IFN-ß varied significantly and were highest for the RRV 2548 strain. Compared to prototype laboratory strain RRV-T48, RRV 2548 also induced higher type I IFN levels both in vitro and in vivo and caused milder disease. To identify the determinants involved in type I IFN modulation, the region encoding the nonstructural proteins (nsPs) of RRV 2548 was sequenced, and 42 amino acid differences from RRV-T48 were identified. Using fragment swapping and site-directed mutagenesis, we discovered that substitutions E402A and R522Q in nsP1 as well as Q619R in nsP2 were responsible for increased sensitivity of RRV 2548 to type I IFN. In contrast, substitutions A31T, N219T, S580L, and Q619R in nsP2 led to induction of higher levels of type I IFN. With exception of E402A, all these variations are common for naturally occurring RRV strains. However, they are different from all known determinants of type I IFN modulation reported previously in nsPs of alphaviruses.IMPORTANCE By identifying natural Ross River virus (RRV) amino acid determinants for type I interferon (IFN) modulation, this study gives further insight into the mechanism of type I IFN modulation by alphaviruses. Here, the crucial role of type I IFN in the early stages of RRV disease pathogenesis is further demonstrated. This study also provides a comparison of the roles of different parts of the RRV nonstructural region in type I IFN modulation, highlighting the importance of nonstructural protein 1 (nsP1) and nsP2 in this process. Three substitutions in nsP1 and nsP2 were found to be independently associated with enhanced type I IFN sensitivity, and four independent substitutions in nsP2 were important in elevated type I IFN induction. Such evidence has clear implications for RRV immunobiology, persistence, and pathology. The identification of viral proteins that modulate type I IFN may also have importance for the pathogenesis of other alphaviruses.


Subject(s)
Antiviral Agents/pharmacology , Interferon Type I/immunology , Interferon Type I/pharmacology , Ross River virus/drug effects , Ross River virus/immunology , Alphavirus/genetics , Alphavirus/immunology , Alphavirus Infections/virology , Animals , Base Sequence , Cell Line , Chlorocebus aethiops , Cytokines , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Ross River virus/genetics , Vero Cells , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Viral Proteins/genetics , Viral Proteins/immunology , Virulence , Virus Replication/drug effects
2.
Article in English | MEDLINE | ID: mdl-29437628

ABSTRACT

Recently we reported on the efficacy of pentosan polysulfate (PPS), a heparan sulfate mimetic, to reduce the recruitment of inflammatory infiltrates and protect the cartilage matrix from degradation in Ross River virus (RRV)-infected PPS-treated mice. Here, we describe both prophylactic and therapeutic treatment with PG545, a low-molecular-weight heparan sulfate mimetic, for arthritogenic alphaviral infection. We first assessed antiviral activity in vitro through a 50% plaque reduction assay. Increasing concentrations of PG545 inhibited plaque formation prior to viral adsorption in viral strains RRV T48, Barmah Forest virus 2193, East/Central/South African chikungunya virus (CHIKV), and Asian CHIKV, suggesting a strong antiviral mode of action. The viral particle-compound dissociation constant was then evaluated through isothermal titration calorimetry. Furthermore, prophylactic RRV-infected PG545-treated mice had reduced viral titers in target organs corresponding to lower clinical scores of limb weakness and immune infiltrate recruitment. At peak disease, PG545-treated RRV-infected mice had lower concentrations of the matrix-degrading enzyme heparanase in conjunction with a protective effect on tissue morphology, as seen in the histopathology of skeletal muscle. Enzyme-linked immunosorbent assay quantification of cartilage oligomeric matrix protein and cross-linked C-telopeptides of type II collagen as well as knee histopathology showed increased matrix protein degradation and cartilage erosion in RRV-infected phosphate-buffered saline-treated mice compared to their PG545-treated RRV-infected counterparts. Taken together, these findings suggest that PG545 has a direct antiviral effect on arthritogenic alphaviral infection and curtails RRV-induced inflammatory disease when administered as a prophylaxis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Ross River virus/drug effects , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Glucuronidase/genetics , Glucuronidase/metabolism , Mice , Ross River virus/enzymology , Ross River virus/pathogenicity , Saponins/therapeutic use , Viral Load/drug effects
3.
J Gen Virol ; 99(8): 953-969, 2018 08.
Article in English | MEDLINE | ID: mdl-29939125

ABSTRACT

Up to 75 % of emerging human diseases are zoonoses, spread from animals to humans. Although bacteria, fungi and parasites can be causative agents, the majority of zoonotic infections are caused by viral pathogens. During the past 20 years many factors have converged to cause a dramatic resurgence or emergence of zoonotic diseases. Some of these factors include demographics, social changes, urban sprawl, changes in agricultural practices and global climate changes. In the period between 2014-2017 zoonotic viruses including ebola virus (EBOV), chikungunya virus (CHIKV), dengue virus (DENV) and zika virus (ZIKV), caused prominent outbreaks resulting in significant public health and economic burdens, especially in developing areas where these diseases are most prevalent. When a viral pathogen invades a new human host, it is the innate immune system that serves as the first line of defence. Myeloid cells are especially important to help fight viral infections, including those of zoonotic origins. However, viruses such as EBOV, CHIKV, DENV and ZIKV have evolved mechanisms that allow circumvention of the host's innate immune response, avoiding eradication and leading to severe clinical disease. Herein, the importance of myeloid cells in host defence is discussed and the mechanisms by which these viruses exploit myeloid cells are highlighted. The insights provided in this review will be invaluable for future studies looking to identify potential therapeutic targets towards the treatment of these emerging diseases.


Subject(s)
Communicable Diseases, Emerging/immunology , Myeloid Cells/physiology , Virus Diseases/immunology , Zoonoses , Animals , Humans , Immunity, Innate
4.
J Virol ; 90(8): 4150-4159, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26865723

ABSTRACT

UNLABELLED: The alphaviral6kgene region encodes the two structural proteins 6K protein and, due to a ribosomal frameshift event, the transframe protein (TF). Here, we characterized the role of the6kproteins in the arthritogenic alphavirus Ross River virus (RRV) in infected cells and in mice, using a novel6kin-frame deletion mutant. Comprehensive microscopic analysis revealed that the6kproteins were predominantly localized at the endoplasmic reticulum of RRV-infected cells. RRV virions that lack the6kproteins 6K and TF [RRV-(Δ6K)] were more vulnerable to changes in pH, and the corresponding virus had increased sensitivity to a higher temperature. While the6kdeletion did not reduce RRV particle production in BHK-21 cells, it affected virion release from the host cell. Subsequentin vivostudies demonstrated that RRV-(Δ6K) caused a milder disease than wild-type virus, with viral titers being reduced in infected mice. Immunization of mice with RRV-(Δ6K) resulted in a reduced viral load and accelerated viral elimination upon secondary infection with wild-type RRV or another alphavirus, chikungunya virus (CHIKV). Our results show that the6kproteins may contribute to alphaviral disease manifestations and suggest that manipulation of the6kgene may be a potential strategy to facilitate viral vaccine development. IMPORTANCE: Arthritogenic alphaviruses, such as chikungunya virus (CHIKV) and Ross River virus (RRV), cause epidemics of debilitating rheumatic disease in areas where they are endemic and can emerge in new regions worldwide. RRV is of considerable medical significance in Australia, where it is the leading cause of arboviral disease. The mechanisms by which alphaviruses persist and cause disease in the host are ill defined. This paper describes the phenotypic properties of an RRV6kdeletion mutant. The absence of the6kgene reduced virion release from infected cells and also reduced the severity of disease and viral titers in infected mice. Immunization with the mutant virus protected mice against viremia not only upon exposure to RRV but also upon challenge with CHIKV. These findings could lead to the development of safer and more immunogenic alphavirus vectors for vaccine delivery.


Subject(s)
Alphavirus Infections/virology , Ross River virus/genetics , Ross River virus/immunology , Viral Structural Proteins/genetics , Alphavirus Infections/immunology , Alphavirus Infections/physiopathology , Animals , Cell Line , Cell Line, Tumor , Chikungunya virus/immunology , Chlorocebus aethiops , Cricetinae , Humans , Hydrogen-Ion Concentration , Mice , Mutation , Reading Frames , Ross River virus/pathogenicity , Sequence Deletion , Vero Cells , Viral Load , Viral Structural Proteins/analysis , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Viral Vaccines/immunology , Virus Replication
5.
PLoS Pathog ; 11(2): e1004649, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25695775

ABSTRACT

The rising prevalence of arthritogenic alphavirus infections, including chikungunya virus (CHIKV) and Ross River virus (RRV), and the lack of antiviral treatments highlight the potential threat of a global alphavirus pandemic. The immune responses underlying alphavirus virulence remain enigmatic. We found that pentraxin 3 (PTX3) was highly expressed in CHIKV and RRV patients during acute disease. Overt expression of PTX3 in CHIKV patients was associated with increased viral load and disease severity. PTX3-deficient (PTX3(-/-)) mice acutely infected with RRV exhibited delayed disease progression and rapid recovery through diminished inflammatory responses and viral replication. Furthermore, binding of the N-terminal domain of PTX3 to RRV facilitated viral entry and replication. Thus, our study demonstrates the pivotal role of PTX3 in shaping alphavirus-triggered immunity and disease and provides new insights into alphavirus pathogenesis.


Subject(s)
Alphavirus Infections/immunology , C-Reactive Protein/immunology , Nerve Tissue Proteins/immunology , Serum Amyloid P-Component/immunology , Virus Replication/immunology , Animals , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , Transcriptome , Transfection , Viral Load/immunology
6.
Proc Natl Acad Sci U S A ; 111(16): 6040-5, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24733914

ABSTRACT

Arthritogenic alphaviruses including Ross River virus (RRV), Sindbis virus, and chikungunya virus cause worldwide outbreaks of musculoskeletal disease. The ability of alphaviruses to induce bone pathologies remains poorly defined. Here we show that primary human osteoblasts (hOBs) can be productively infected by RRV. RRV-infected hOBs produced high levels of inflammatory cytokine including IL-6. The RANKL/OPG ratio was disrupted in the synovial fluid of RRV patients, and this was accompanied by an increase in serum Tartrate-resistant acid phosphatase 5b (TRAP5b) levels. Infection of bone cells with RRV was validated using an established RRV murine model. In wild-type mice, infectious virus was detected in the femur, tibia, patella, and foot, together with reduced bone volume in the tibial epiphysis and vertebrae detected by microcomputed tomographic (µCT) analysis. The RANKL/OPG ratio was also disrupted in mice infected with RRV; both this effect and the bone loss were blocked by treatment with an IL-6 neutralizing antibody. Collectively, these findings provide previously unidentified evidence that alphavirus infection induces bone loss and that OBs are capable of producing proinflammatory mediators during alphavirus-induced arthralgia. The perturbed RANKL/OPG ratio in RRV-infected OBs may therefore contribute to bone loss in alphavirus infection.


Subject(s)
Alphavirus Infections/pathology , Alphavirus Infections/virology , Arthritis/virology , Bone Resorption/pathology , Bone Resorption/virology , Osteoblasts/pathology , Ross River virus/physiology , Acid Phosphatase/blood , Adult , Alphavirus Infections/blood , Animals , Antibodies, Neutralizing/pharmacology , Arthritis/blood , Arthritis/pathology , Bone Resorption/blood , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Bone and Bones/virology , Female , Growth Plate/drug effects , Growth Plate/pathology , Growth Plate/virology , Humans , Inflammation Mediators/metabolism , Interleukin-6/biosynthesis , Isoenzymes/blood , Male , Mice , Mice, Inbred C57BL , Neutralization Tests , Osteoblasts/drug effects , Osteoblasts/virology , Osteoclasts/drug effects , Osteoclasts/pathology , Osteoclasts/virology , Osteogenesis/drug effects , Osteoprotegerin/metabolism , Phenotype , RANK Ligand/metabolism , Ross River virus/drug effects , Synovial Fluid/metabolism , Tartrate-Resistant Acid Phosphatase , Virus Replication/drug effects , X-Ray Microtomography
7.
J Gen Virol ; 97(5): 1094-1106, 2016 05.
Article in English | MEDLINE | ID: mdl-26813162

ABSTRACT

With an expanding geographical range and no specific treatments, human arthritogenic alphaviral disease poses a significant problem worldwide. Previous in vitro work with Ross River virus (RRV) demonstrated that alphaviral N-linked glycosylation contributes to type I IFN (IFN-αß) induction in myeloid dendritic cells. This study further evaluated the role of alphaviral N-linked glycans in vivo, assessing the effect of glycosylation on pathogenesis in a mouse model of RRV-induced disease and on viral infection and dissemination in a common mosquito vector, Aedes vigilax. A viral mutant lacking the E1-141 glycosylation site was attenuated for virus-induced disease, with reduced myositis and higher levels of IFN-γ induction at peak disease contributing to improved viral clearance, suggesting that glycosylation of the E1 glycoprotein plays a major role in the pathogenesis of RRV. Interestingly, RRV lacking E2-200 glycan had significantly reduced replication in the mosquito vector A. vigilax, whereas loss of either of the E1 or E2-262 glycans had little effect on the competence of the mosquito vector. Overall, these results indicate that glycosylation of the E1 and E2 glycoproteins of RRV provides important determinants of viral virulence and immunopathology in the mammalian host and replication in the mosquito vector.


Subject(s)
Alphavirus Infections/virology , Capsid Proteins/metabolism , Ross River virus/physiology , Ross River virus/pathogenicity , Viral Envelope Proteins/metabolism , Aedes/virology , Alphavirus Infections/transmission , Animals , Capsid Proteins/genetics , Cell Line , Gene Expression Regulation, Viral/physiology , Glycosylation , Insect Vectors/virology , Mice , Mutation , RNA, Viral , Ross River virus/genetics , Sheep/blood , Viral Envelope Proteins/genetics , Virulence , Virus Replication/genetics
8.
J Virol ; 89(15): 8063-76, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26018160

ABSTRACT

UNLABELLED: Arthritogenic alphaviruses such as Ross River virus (RRV) and chikungunya virus (CHIKV) cause large-scale epidemics of severe musculoskeletal disease and have been progressively expanding their global distribution. Since its introduction in July 2014, CHIKV now circulates in the United States. The hallmark of alphavirus disease is crippling pain and inflammation of the joints, a similar immunopathology to rheumatoid arthritis. The use of glycans as novel therapeutics is an area of research that has increased in recent years. Here, we describe the promising therapeutic potential of the glycosaminoglycan (GAG)-like molecule pentosan polysulfate (PPS) to alleviate virus-induced arthritis. Mouse models of RRV and CHIKV disease were used to characterize the extent of cartilage damage in infection and investigate the potential of PPS to treat disease. This was assessed using histological analysis, real-time PCR, and fluorescence-activated cell sorting (FACS). Alphaviral infection resulted in cartilage destruction, the severity of which was alleviated by PPS therapy during RRV and CHIKV clinical disease. The reduction in cartilage damage corresponded with a significant reduction in immune infiltrates. Using multiplex bead arrays, PPS treatment was found to have significantly increased the anti-inflammatory cytokine interleukin-10 and reduced proinflammatory cytokines, typically correlated with disease severity. Furthermore, we reveal that the severe RRV-induced joint pathology, including thinning of articular cartilage and loss of proteoglycans in the cartilage matrix, was diminished with treatment. PPS is a promising new therapy for alphavirus-induced arthritis, acting to preserve the cartilage matrix, which is damaged during alphavirus infection. Overall, the data demonstrate the potential of glycotherapeutics as a new class of treatment for infectious arthritis. IMPORTANCE: The hallmark of alphavirus disease is crippling pain and joint arthritis, which often has an extended duration. In the past year, CHIKV has expanded into the Americas, with approximately 1 million cases reported to date, whereas RRV continues to circulate in the South Pacific. Currently, there is no licensed specific treatment for alphavirus disease, and the increasing spread of infection highlights an urgent need for therapeutic intervention strategies. Pentosan polysulfate (PPS) is a glycan derivative that is orally bioavailable, has few toxic side effects, and is currently licensed under the name Elmiron for the treatment of cystitis in the United States. Our findings show that RRV infection damages the articular cartilage, including a loss of proteoglycans within the joint. Furthermore, treatment with PPS reduced the severity of both RRV- and CHIKV-induced musculoskeletal disease, including a reduction in inflammation and joint swelling, suggesting that PPS is a promising candidate for drug repurposing for the treatment of alphavirus-induced arthritis.


Subject(s)
Cartilage/immunology , Chikungunya Fever/drug therapy , Chikungunya virus/physiology , Glycosaminoglycans/administration & dosage , Joint Diseases/drug therapy , Pentosan Sulfuric Polyester/administration & dosage , Animals , Cartilage/drug effects , Cartilage/virology , Chikungunya Fever/immunology , Chikungunya Fever/virology , Disease Models, Animal , Humans , Joint Diseases/immunology , Joint Diseases/virology , Mice , Mice, Inbred C57BL
9.
J Virol ; 89(1): 581-93, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25339772

ABSTRACT

UNLABELLED: The recent global resurgence of arthritogenic alphaviruses, in particular chikungunya virus (CHIKV), highlights an urgent need for the development of therapeutic intervention strategies. While there has been significant progress in defining the pathophysiology of alphaviral disease, relatively little is known about the mechanisms involved in CHIKV-induced arthritis or potential therapeutic options to treat the severe arthritic symptoms associated with infection. Here, we used microcomputed tomographic (µCT) and histomorphometric analyses to provide previously undescribed evidence of reduced bone volume in the proximal tibial epiphysis of CHIKV-infected mice compared to the results for mock controls. This was associated with a significant increase in the receptor activator of nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG) ratio in infected murine joints and in the serum of CHIKV patients. The expression levels of the monocyte chemoattractant proteins (MCPs), including MCP-1/CCL2, MCP-2/CCL8, and MCP-3/CCL7, were also highly elevated in joints of CHIKV-infected mice, accompanied by increased cellularity within the bone marrow in tibial epiphysis and ankle joints. Both this effect and CHIKV-induced bone loss were significantly reduced by treatment with the MCP inhibitor bindarit. Collectively, these findings demonstrate a unique role for MCPs in promoting CHIKV-induced osteoclastogenesis and bone loss during disease and suggest that inhibition of MCPs with bindarit may be an effective therapy for patients affected with alphavirus-induced bone loss. IMPORTANCE: Arthritogenic alphaviruses, including chikungunya virus (CHIKV) and Ross River virus (RRV), cause worldwide outbreaks of polyarthritis, which can persist in patients for months following infection. Previous studies have shown that host proinflammatory soluble factors are associated with CHIKV disease severity. Furthermore, it is established that chemokine (C-C motif) ligand 2 (CCL2/MCP-1) is important in cellular recruitment and inducing bone-resorbing osteoclast (OC) formation. Here, we show that CHIKV replicates in bone and triggers bone loss by increasing the RANKL/OPG ratio. CHIKV infection results in MCP-induced cellular infiltration in the inflamed joints, and bone loss can be ameliorated by treatment with an MCP-inhibiting drug, bindarit. Taken together, our data reveal a previously undescribed role for MCPs in CHIKV-induced bone loss: one of recruiting monocytes/OC precursors to joint sites and thereby favoring a pro-osteoclastic microenvironment. This suggests that bindarit may be an effective treatment for alphavirus-induced bone loss and arthritis in humans.


Subject(s)
Bone Density Conservation Agents/administration & dosage , Bone Resorption/prevention & control , Chemokine CCL2/antagonists & inhibitors , Chikungunya Fever/complications , Indazoles/administration & dosage , Propionates/administration & dosage , Adult , Aged , Animals , Disease Models, Animal , Female , Humans , Male , Mice, Inbred C57BL , Middle Aged
10.
J Virol ; 89(3): 1564-78, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25410867

ABSTRACT

UNLABELLED: Human respiratory syncytial virus (RSV) is a major cause of morbidity and severe lower respiratory tract disease in the elderly and very young, with some infants developing bronchiolitis, recurrent wheezing, and asthma following infection. Previous studies in humans and animal models have shown that vaccination with formalin-inactivated RSV (FI-RSV) leads to prominent airway eosinophilic inflammation following RSV challenge; however, the roles of pulmonary eosinophilia in the antiviral response and in disease pathogenesis are inadequately understood. In vivo studies in mice with eotaxin and/or interleukin 5 (IL-5) deficiency showed that FI-RSV vaccination did not lead to enhanced pulmonary disease, where following challenge there were reduced pulmonary eosinophilia, inflammation, Th2-type cytokine responses, and altered chemokine (TARC and CCL17) responses. In contrast to wild-type mice, RSV was recovered at high titers from the lungs of eotaxin- and/or IL-5-deficient mice. Adoptive transfer of eosinophils to FI-RSV-immunized eotaxin- and IL-5-deficient (double-deficient) mice challenged with RSV was associated with potent viral clearance that was mediated at least partly through nitric oxide. These studies show that pulmonary eosinophilia has dual outcomes: one linked to RSV-induced airway inflammation and pulmonary pathology and one with innate features that contribute to a reduction in the viral load. IMPORTANCE: This study is critical to understanding the mechanisms attributable to RSV vaccine-enhanced disease. This study addresses the hypothesis that IL-5 and eotaxin are critical in pulmonary eosinophil response related to FI-RSV vaccine-enhanced disease. The findings suggest that in addition to mediating tissue pathology, eosinophils within a Th2 environment also have antiviral activity.


Subject(s)
Eosinophils/immunology , Lung/immunology , Lung/pathology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Animals , Female , Lung/virology , Mice, Inbred BALB C , Mice, Knockout , Mice, Transgenic , Vaccines, Inactivated/immunology , Viral Load
11.
J Gen Virol ; 96(Pt 2): 221-238, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25351726

ABSTRACT

Part of the Togaviridae family, alphaviruses are arthropod-borne viruses that are widely distributed throughout the globe. Alphaviruses are able to infect a variety of vertebrate hosts, but in humans, infection can result in extensive morbidity and mortality. Symptomatic infection can manifest as fever, an erythematous rash and/or significant inflammatory pathologies such as arthritis and encephalitis. Recent overwhelming outbreaks of alphaviral disease have highlighted the void in our understanding of alphavirus pathogenesis and the re-emergence of alphaviruses has given new impetus to anti-alphaviral drug design. In this review, the development of viable mouse models of Old Word and New World alphaviruses is examined. How mouse models that best replicate human disease have been used to elucidate the immunopathology of alphavirus pathogenesis and trial novel therapeutic discoveries is also discussed.


Subject(s)
Alphavirus Infections/pathology , Alphavirus/physiology , Disease Models, Animal , Host-Pathogen Interactions , Alphavirus/immunology , Alphavirus Infections/immunology , Alphavirus Infections/virology , Animals , Humans , Mice
12.
J Gen Virol ; 95(Pt 10): 2146-2154, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24934444

ABSTRACT

Alphaviruses including Barmah Forest virus (BFV) and Ross River virus (RRV) cause arthritis, arthralgia and myalgia in humans. The rheumatic symptoms in human BFV infection are very similar to those of RRV. Although RRV disease has been studied extensively, little is known about the pathogenesis of BFV infection. We sought to establish a mouse model for BFV to facilitate our understanding of BFV infectivity, tropism and pathogenesis, and to identify key pathological and immunological mechanisms of BFV infection that may distinguish between infections with BFV and RRV. Here, to the best of our knowledge, we report the first study assessing the virulence and replication of several BFV isolates in a mouse model. We infected newborn Swiss outbred mice with BFV and established that the BFV2193 prototype was the most virulent strain. BFV2193 infection resulted in the highest mortality among all BFV variant isolates, comparable to that of RRV. In comparison with RRV, C57BL/6 mice infected with BFV showed delayed onset, moderate disease scores and early recovery of the disease. BFV replicated poorly in muscle and did not cause the severe myositis seen in RRV-infected mice. The mRNAs for the inflammatory mediators TNF-α, IL-6, CCL2 and arginase-1 were highly upregulated in RRV- but not BFV-infected muscle. To our knowledge, this is the first report of a mouse model of BFV infection, which we have used to demonstrate differences between BFV and RRV infections and to further understand disease pathogenesis. With an increasing number of BFV cases occurring annually, a better understanding of the disease mechanisms is essential for future therapeutic development.


Subject(s)
Alphavirus Infections/pathology , Alphavirus Infections/virology , Alphavirus/physiology , Alphavirus/immunology , Alphavirus/pathogenicity , Alphavirus Infections/immunology , Animals , Animals, Newborn , Cytokines/biosynthesis , Disease Models, Animal , Female , Gene Expression Profiling , Mice , Mice, Inbred C57BL , Survival Analysis , Virulence , Virus Replication
13.
PLoS Pathog ; 8(3): e1002586, 2012.
Article in English | MEDLINE | ID: mdl-22457620

ABSTRACT

Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3(-/-) mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis.


Subject(s)
Alphavirus Infections/complications , Arthritis, Reactive/virology , Mannose-Binding Lectin/metabolism , Myositis/virology , Ross River virus/physiology , Alphavirus Infections/metabolism , Alphavirus Infections/pathology , Animals , Arthritis, Reactive/metabolism , Arthritis, Reactive/pathology , Complement Activation , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/virology , Myositis/metabolism , Myositis/pathology , Ross River virus/pathogenicity , Synovial Fluid/metabolism , Virus Replication
14.
Arthritis Rheum ; 65(10): 2724-36, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23896945

ABSTRACT

OBJECTIVE: Arthrogenic alphaviruses such as Ross River virus (RRV) and chikungunya virus (CHIKV) circulate worldwide. This virus class causes debilitating illnesses that are characterized by arthritis, arthralgia, and myalgia. In previous studies, we identified macrophage migration inhibitory factor (MIF) as a critical inflammatory factor in the pathogenesis of alphaviral diseases. The present study was undertaken to characterize the role of CD74, a cell surface receptor of MIF, in both RRV- and CHIKV-induced alphavirus arthritides. METHODS: Mouse models of RRV and CHIKV infection were used to investigate the immunopathogenesis of arthritic alphavirus infection. The role of CD74 was assessed using histologic analysis, real-time polymerase chain reaction, flow cytometry, and plaque assay. RESULTS: In comparison to wild-type mice, CD74-/- mice developed only mild clinical features and had low levels of tissue damage. Leukocyte infiltration, characterized predominantly by inflammatory monocytes and natural killer cells, was substantially reduced in the infected tissue of CD74-/- mice, but production of proinflammatory cytokines and chemokines was not decreased. CD74 deficiency was associated with increased monocyte apoptosis, but had no effect on monocyte migratory capacity. Consistent with these findings, alphaviral infection resulted in a dose-dependent up-regulation of CD74 expression in human peripheral blood mononuclear cells, and serum MIF levels were significantly elevated in patients with RRV or CHIKV infection. CONCLUSION: CD74 appears to regulate immune responses to alphaviral infection through its effects on cellular recruitment and survival. These findings suggest that both MIF and CD74 play a critical role in mediating alphaviral disease, and blocking these factors with novel therapeutic agents could substantially ameliorate the pathologic manifestations.


Subject(s)
Alphavirus Infections/complications , Antigens, Differentiation, B-Lymphocyte/physiology , Arthritis, Infectious/etiology , Arthritis, Infectious/physiopathology , Histocompatibility Antigens Class II/physiology , Myositis/physiopathology , Myositis/virology , Receptors, Immunologic/physiology , Alphavirus Infections/pathology , Animals , Antigens, Differentiation, B-Lymphocyte/genetics , Apoptosis/physiology , Arthritis, Infectious/pathology , Cells, Cultured , Chemokines/metabolism , Chikungunya virus/physiology , Cytokines/metabolism , Disease Models, Animal , Female , Histocompatibility Antigens Class II/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/pathology , Myositis/pathology , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Ross River virus/physiology , Severity of Illness Index
15.
Proc Natl Acad Sci U S A ; 108(29): 12048-53, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21730129

ABSTRACT

Arthrogenic alphaviruses, such as Ross River virus (RRV), chikungunya, Sindbis, mayaro and o'nyong-nyong viruses circulate endemically worldwide, frequently causing outbreaks of polyarthritis. The exact mechanisms of how alphaviruses induce polyarthritis remain ill defined, although macrophages are known to play a key role. Macrophage migration inhibitory factor (MIF) is an important cytokine involved in rheumatoid arthritis pathogenesis. Here, we characterize the role of MIF in alphavirus-induced arthritides using a mouse model of RRV-induced arthritis, which has many characteristics of RRV disease in humans. RRV-infected WT mice developed severe disease associated with up-regulated MIF expression in serum and tissues, which corresponded to severe inflammation and tissue damage. MIF-deficient (MIF(-/-)) mice developed mild disease accompanied by a reduction in inflammatory infiltrates and muscle destruction in the tissues, despite having viral titers similar to WT mice. In addition, reconstitution of MIF into MIF(-/-) mice exacerbated RRV disease and treatment of mice with MIF antagonist ameliorated disease in WT mice. Collectively, these findings suggest that MIF plays a critical role in determining the clinical severity of alphavirus-induced musculoskeletal disease and may provide a target for the development of antiviral pharmaceuticals. The prospect being that early treatment with MIF-blocking pharmaceuticals may curtail the debilitating arthritis associated with alphaviral infections.


Subject(s)
Arthritis/virology , Gene Expression Regulation/physiology , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Myositis/virology , Ross River virus/metabolism , Analysis of Variance , Animals , Arthritis/metabolism , Arthritis/physiopathology , Chemokine CCL2/metabolism , Enzyme-Linked Immunosorbent Assay , Histological Techniques , Interferon-gamma/metabolism , Intramolecular Oxidoreductases/antagonists & inhibitors , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Mice, Knockout , Myositis/metabolism , Myositis/physiopathology , Reverse Transcriptase Polymerase Chain Reaction
16.
Indian J Med Res ; 138(5): 762-5, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24434329

ABSTRACT

Chikungunya virus, a re-emerging mosquito-borne alphavirus, causes fever, rash and persistent arthralgia/arthritis in humans. Severe outbreaks have occurred resulting in infections of millions of people in Southeast Asia and Africa. Currently there are no antiviral drugs or vaccines for prevention and treatment of chikungunya infections. Herein we report the current status of research on antiviral drugs and vaccines for chikungunya virus infections.


Subject(s)
Alphavirus Infections/drug therapy , Antiviral Agents/therapeutic use , Chikungunya virus/immunology , Vaccines/therapeutic use , Aedes/virology , Africa/epidemiology , Alphavirus Infections/epidemiology , Alphavirus Infections/immunology , Alphavirus Infections/transmission , Animals , Asia, Southeastern , Chikungunya Fever , Chikungunya virus/pathogenicity , Disease Outbreaks , Fever/drug therapy , Fever/epidemiology , Fever/virology , Humans , Insect Vectors
17.
Int J Infect Dis ; 130: 42-47, 2023 May.
Article in English | MEDLINE | ID: mdl-36241162

ABSTRACT

OBJECTIVES: The Australian Leishmania (Mundinia) macropodum parasite causes cutaneous leishmaniasis among marsupial species. Although cutaneous leishmaniasis is a major public health burden worldwide, it is not clear if humans are naturally exposed to the unique L. macropodum. To assess whether humans have an immunoglobulin (Ig) G response to L. macropodum, we examined anti-Leishmania antibodies among humans residing in a region of marsupial Leishmania endemicity in Australia. METHODS: Using a serological enzyme-linked immunosorbent assay, we characterized Leishmania-specific IgG and IgG subclass responses to soluble Leishmania antigen from L. macropodum, and other Leishmania species (L. donovani, L. major, and L. mexicana) in 282 blood donor samples. RESULTS: We found that 20.57% of individuals demonstrated a positive total IgG response to L. macropodum. For individuals with antibodies to soluble Leishmania antigen from one Leishmania species, there was no increased likelihood of recognition to other Leishmania species. For samples with detectable L. macropodum IgG, IgG1 and IgG2 were the prevalent subclasses detected. CONCLUSION: It is not yet clear whether the IgG antibody detection in this study reflects exposure to Leishmania parasites or a cross-reactive immune response that was induced against an unrelated immunogen. Future studies should investigate whether L. macropodum can result in a viable infection in humans.


Subject(s)
Kinetoplastida , Leishmania , Leishmaniasis, Cutaneous , Humans , Blood Donors , Australia/epidemiology , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/veterinary , Leishmaniasis, Cutaneous/diagnosis , Immunoglobulin G
18.
Antiviral Res ; 217: 105678, 2023 09.
Article in English | MEDLINE | ID: mdl-37494979

ABSTRACT

The 36th International Conference on Antiviral Research (ICAR), sponsored by the International Society for Antiviral Research (ISAR), was held March 13-17, 2023, in Lyon, France, and concurrently through an interactive remote meeting platform. Here we provide a report summarizing the presentations at the 36th ICAR, including the ISAR speaker awards. We also detail special events, sessions, and additional awards conferred at the meeting. ICAR returned to in-person meetings in 2022, convening in Seattle, WA, USA. The 36th ICAR is the first in-person meeting of the society in Europe since the beginning of the COVID-19 pandemic, which restricted most events to virtual attendance to help mitigate the spread and subsequent public health impact of SARS-CoV-2. An exceptionally high number of registrants and record attendance at this year's ICAR, along with a vast array of demonstrable expertise in a variety of antiviral research-related fields, reflected a strong and growing antiviral research community committed to improving health outcomes from viral diseases, including SARS-CoV-2, and to future pandemic preparedness. This report highlights the breadth of expertise, quality of research, and notable advancements that were contributed by members of ISAR and other participants at the meeting. ICAR aims to continue to provide a platform for sharing information, fostering collaborations, and supporting trainees in the field of antiviral research. The 37th ICAR will be held in Gold Coast, Australia, May 20-24, 2024.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Iron-Dextran Complex , Pandemics , SARS-CoV-2
19.
Viruses ; 15(1)2022 12 31.
Article in English | MEDLINE | ID: mdl-36680176

ABSTRACT

Old world alphaviruses, such as Ross River virus (RRV), cause debilitating arthralgia during acute and chronic stages of the disease. RRV-induced cartilage degradation has been implicated as a cause of joint pain felt by RRV patients. Chondrocytes are a major cell type of cartilage and are involved in the production and maintenance of the cartilage matrix. It is thought that these cells may play a vital role in RRV disease pathogenesis. In this study, we used RNA-sequencing (RNA-Seq) to examine the transcriptomes of RRV-infected and bystander chondrocytes in the same environment. RRV containing green fluorescent protein (GFP) allowed for the separation of RRV-infected (GFP+) and bystander uninfected cells (GFP-). We found that whereas GFP+ and GFP- populations commonly presented similar gene expression profiles during infection, there were also unique signatures. For example, RIMS2 and FOXJ1 were unique to GFP+ cells, whilst Aim2 and CCL8 were only found in bystander chondrocytes. This indicates that careful selection of potential therapeutic targets is important to minimise adverse effects to the neighbouring uninfected cell populations. Our study serves as a resource to provide more information about the pathways and responses elicited by RRV in cells which are both infected and stimulated because of neighbouring infected cells.


Subject(s)
Alphavirus Infections , Alphavirus , Humans , Chondrocytes/metabolism , Alphavirus/genetics , Ross River virus/genetics , Ross River virus/metabolism
20.
PLoS Negl Trop Dis ; 16(4): e0010314, 2022 04.
Article in English | MEDLINE | ID: mdl-35486651

ABSTRACT

BACKGROUND: Dengue (DENV), Ross River (RRV) and Barmah Forest viruses (BFV) are the most common human arboviral infections in Australia and the Pacific Island Countries and Territories (PICTs) and are associated with debilitating symptoms. All are nationally notifiable in Australia, but routine surveillance is limited to a few locations in the PICTs. Understanding the level of human exposure to these viruses can inform disease management and mitigation strategies. To assess the historic and current seroprevalence of DENV, RRV and BFV in Australia and the PICTs we conducted a systematic literature review of all published quantitative serosurveys. METHODOLOGY AND PRINCIPAL FINDINGS: The Preferred Reporting of Items for Systematic Reviews and Meta-Analyses procedures were adopted to produce a protocol to systematically search for published studies reporting the seroprevalence of DENV, RRV and BFV in Australia and the PICTs. Data for author, research year, location, study population, serosurvey methods and positive tests were extracted. A total of 41 papers, reporting 78 serosurveys of DENV, RRV and BFV including 62,327 samples met the inclusion criteria for this review. Seroprevalence varied depending on the assay used, strategy of sample collection and location of the study population. Significant differences were observed in reported seropositivity depending on the sample collection strategy with clinically targeted sampling reporting the highest seroprevalence across all three viruses. Non-stratified seroprevalence showed wide ranges in reported positivity with DENV 0.0% - 95.6%, RRV 0.0% - 100.0%, and BFV 0.3% - 12.5%. We discuss some of the causes of variation including serological methods used, selection bias in sample collection including clinical or environmental associations, and location of study site. We consider the extent to which serosurveys reflect the epidemiology of the viruses and provide broad recommendations regarding the conduct and reporting of arbovirus serosurveys. CONCLUSIONS AND SIGNIFICANCE: Human serosurveys provide important information on the extent of human exposure to arboviruses across: (1) time, (2) place, and (3) person (e.g., age, gender, clinical presentation etc). Interpreting results obtained at these scales has the potential to inform us about transmission cycles, improve diagnostic surveillance, and mitigate future outbreaks. Future research should streamline methods and reduce bias to allow a better understanding of the burden of these diseases and the factors associated with seroprevalence. Greater consideration should be given to the interpretation of seroprevalence in studies, and increased rigour applied in linking seroprevalence to transmission dynamics.


Subject(s)
Alphavirus , Arboviruses , Culicidae , Dengue , Animals , Australia/epidemiology , Chickens , Dengue/epidemiology , Forests , Humans , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL