Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Biomacromolecules ; 14(7): 2294-304, 2013 Jul 08.
Article in English | MEDLINE | ID: mdl-23738528

ABSTRACT

We report here the synthesis of a new class of hydrogels with an extremely wide range of mechanical properties suitable for cell studies. Mechanobiology has emerged as an important field in bioengineering, in part due to the development of synthetic polymer gels and fibrous protein biomaterials to control and quantify how cells sense and respond to mechanical forces in their microenvironment. To address the problem of limited availability of biomaterials, in terms of both mechanical range and optical clarity, we have prepared hydrogels that combine poly(ethylene glycol) (PEG) and phosphorylcholine (PC) zwitterions. Our goal was to create a hydrogel platform that exceeds the range of Young's moduli reported for similar hydrogels, while being simple to synthesize and manipulate. The Young's modulus of these "PEG-PC" hydrogels can be tuned over 4 orders of magnitude, much greater than commonly used hydrogels such as PEG-diacrylate, PEG-dimethacrylate, and polyacrylamide, with smaller average mesh sizes and optical clarity. We prepared PEG-PC hydrogels to study how substrate mechanical properties influence cell morphology, focal adhesion structure, and proliferation across multiple mammalian cell lines, as a proof of concept. These novel PEG-PC biomaterials represent a new and useful class of mechanically tunable hydrogels for mechanobiology.


Subject(s)
Elastic Modulus , Hydrogels/chemistry , Muscle, Smooth, Vascular/metabolism , Phosphorylcholine/chemistry , Polyethylene Glycols/chemistry , Biocompatible Materials , Biophysics , Cell Adhesion , Cell Line, Tumor , Cell Proliferation , Focal Adhesions , Humans , Hydrogels/chemical synthesis , Liver Neoplasms , Muscle, Smooth, Vascular/cytology , Tissue Engineering
2.
Redox Biol ; 61: 102650, 2023 05.
Article in English | MEDLINE | ID: mdl-36870109

ABSTRACT

Growing cancer cells effectively evade most programs of regulated cell death, particularly apoptosis. This necessitates a search for alternative therapeutic modalities to cause cancer cell's demise, among them - ferroptosis. One of the obstacles to using pro-ferroptotic agents to treat cancer is the lack of adequate biomarkers of ferroptosis. Ferroptosis is accompanied by peroxidation of polyunsaturated species of phosphatidylethanolamine (PE) to hydroperoxy- (-OOH) derivatives, which act as death signals. We demonstrate that RSL3-induced death of A375 melanoma cells in vitro was fully preventable by ferrostatin-1, suggesting their high susceptibility to ferroptosis. Treatment of A375 cells with RSL3 caused a significant accumulation of PE-(18:0/20:4-OOH) and PE-(18:0/22:4-OOH), the biomarkers of ferroptosis, as well as oxidatively truncated products - PE-(18:0/hydroxy-8-oxo-oct-6-enoic acid (HOOA) and PC-(18:0/HOOA). A significant suppressive effect of RSL3 on melanoma growth was observed in vivo (utilizing a xenograft model of inoculation of GFP-labeled A375 cells into immune-deficient athymic nude mice). Redox phospholipidomics revealed elevated levels of 18:0/20:4-OOH in RSL3-treated group vs controls. In addition, PE-(18:0/20:4-OOH) species were identified as major contributors to the separation of control and RSL3-treated groups, with the highest variable importance in projection predictive score. Pearson correlation analysis revealed an association between tumor weight and contents of PE-(18:0/20:4-OOH) (r = -0.505), PE-18:0/HOOA (r = -0.547) and PE 16:0-HOOA (r = -0.503). Thus, LC-MS/MS based redox lipidomics is a sensitive and precise approach for the detection and characterization of phospholipid biomarkers of ferroptosis induced in cancer cells by radio- and chemotherapy.


Subject(s)
Melanoma , Tandem Mass Spectrometry , Animals , Mice , Humans , Lipid Peroxidation , Cell Death , Mice, Nude , Chromatography, Liquid , Oxidation-Reduction
3.
Mol Cancer Ther ; 20(4): 749-760, 2021 04.
Article in English | MEDLINE | ID: mdl-33536190

ABSTRACT

Ras/Raf/MEK/ERK (MAPK) and PI3K/AKT signaling pathways influence several cell functions involved in oncogenesis, making them attractive drug targets. We describe a novel multiplex immunoassay to quantitate isoform-specific phosphorylation of proteins in the PI3K/AKT and MAPK pathways as a tool to assess pharmacodynamic changes. Isoform-specific assays measuring total protein and site-specific phosphorylation levels of ERK1/2, MEK1/2, AKT1/2/3, and rpS6 were developed on the Luminex platform with validated antibody reagents. The multiplex assay demonstrated satisfactory analytic performance. Fit-for-purpose validation was performed with xenograft models treated with selected agents. In PC3 and HCC70 xenograft tumors, the PI3Kß inhibitor AZD8186 suppressed phosphorylation of AKT1, AKT2, and rpS6 for 4 to 7 hours post single dose, but levels returned to baseline by 24 hours. AKT3 phosphorylation was suppressed in PC3 xenografts at all doses tested, but only at the highest dose in HCC70. The AKT inhibitor MK-2206 reduced AKT1/2/3 phosphorylation in SW620 xenograft tumors 2 to 4 hours postdose, and the MEK inhibitor selumetinib reduced MEK1/2 and ERK1/2 phosphorylation by up to 50% and >90%, respectively. Clinical utility was demonstrated by analyzing biopsies from untreated patients with plexiform neurofibromas enrolled in a clinical trial of selumetinib (NCT02407405). These biopsies showed MEK and ERK phosphorylation levels sufficient for measuring up to 90% inhibition, and low AKT and rpS6 phosphorylation. This validated multiplex immunoassay demonstrates the degree and duration of phosphorylation modulation for three distinct classes of drugs targeting the PI3K/AKT and MAPK pathways.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Female , Humans , Mice , Mice, Nude , Phosphorylation , Protein Isoforms , Signal Transduction , Xenograft Model Antitumor Assays
4.
Ann Transl Med ; 5(1): 3, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28164088

ABSTRACT

MET tyrosine kinase (TK) dysregulation is significantly implicated in many types of cancer. Despite over 20 years of drug development to target MET in cancers, a pure anti-MET therapeutic has not yet received market approval. The failure of two recently concluded phase III trials point to a major weakness in biomarker strategies to identify patients who will benefit most from MET therapies. The capability to interrogate oncogenic mutations in MET via circulating tumor DNA (ctDNA) provides an important advancement in identification and stratification of patients for MET therapy. However, a wide range in type and frequency of these mutations suggest there is a need to carefully link these mutations to MET dysregulation, at least in proof-of-concept studies. In this review, we elaborate how we can utilize recently developed and validated pharmacodynamic biomarkers of MET not only to show target engagement, but more importantly to quantitatively measure MET dysregulation in tumor tissues. The MET assay endpoints provide evidence of both canonical and non-canonical MET signaling, can be used as "effect markers" to define biologically effective doses (BEDs) for molecularly targeted drugs, confirm mechanism-of-action in testing combination of drugs, and establish whether a diagnostic test is reporting MET dysregulation. We have established standard operating procedures for tumor biopsy collections to control pre-analytical variables that have produced valid results in proof-of-concept studies. The reagents and procedures are made available to the research community for potential implementation on multiple platforms such as ELISA, quantitative immunofluorescence assay (qIFA), and immuno-MRM assays.

5.
Cell Mol Bioeng ; 8(3): 333-348, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26495043

ABSTRACT

Smooth muscle cell (SMC) invasion into plaques and subsequent proliferation is a major factor in the progression of atherosclerosis. During disease progression, SMCs experience major changes in their microenvironment, such as what integrin-binding sites are exposed, the portfolio of soluble factors available, and the elasticity and modulus of the surrounding vessel wall. We have developed a hydrogel biomaterial platform to examine the combined effect of these changes on SMC phenotype. We were particularly interested in how the chemical microenvironment affected the ability of SMCs to sense and respond to modulus. To our surprise, we observed that integrin binding and soluble factors are major drivers of several critical SMC behaviors, such as motility, proliferation, invasion, and differentiation marker expression, and these factors modulated the effect of stiffness on proliferation and migration. Overall, modulus only modestly affected behaviors other than proliferation, relative to integrin binding and soluble factors. Surprisingly, pathological behaviors (proliferation, motility) are not inversely related to SMC marker expression, in direct conflict with previous studies on substrates coupled with single extracellular matrix (ECM) proteins. A high-throughput bead-based ELISA approach and inhibitor studies revealed that differentiation marker expression is mediated chiefly via focal adhesion kinase (FAK) signaling, and we propose that integrin binding and FAK drive the transition from a migratory to a proliferative phenotype. We emphasize the importance of increasing the complexity of in vitro testing platforms to capture these subtleties in cell phenotypes and signaling, in order to better recapitulate important features of in vivo disease and elucidate potential context-dependent therapeutic targets.

6.
Biomaterials ; 35(22): 5749-59, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24726537

ABSTRACT

Tumor progression is coincident with mechanochemical changes in the extracellular matrix (ECM). We hypothesized that tumor stroma stiffening, alongside a shift in the ECM composition from a basement membrane-like microenvironment toward a dense network of collagen-rich fibers during tumorigenesis, confers resistance to otherwise powerful chemotherapeutics. To test this hypothesis, we created a high-throughput drug screening platform based on our poly(ethylene glycol)-phosphorylcholine (PEG-PC) hydrogel system, and customized it to capture the stiffness and integrin-binding profile of in vivo tumors. We report that the efficacy of a Raf kinase inhibitor, sorafenib, is reduced on stiff, collagen-rich microenvironments, independent of ROCK activity. Instead, sustained activation of JNK mediated this resistance, and combining a JNK inhibitor with sorafenib eliminated stiffness-mediated resistance in triple negative breast cancer cells. Surprisingly, neither ERK nor p38 appears to mediate sorafenib resistance, and instead, either ERK or p38 inhibition rescued sorafenib resistance during JNK inhibition, suggesting negative crosstalk between these signaling pathways on stiff, collagen-rich environments. Overall, we discovered that ß1 integrin and its downstream effector JNK mediate sorafenib resistance during tumor stiffening. These results also highlight the need for more advanced cell culture platforms, such as our high-throughput PEG-PC system, with which to screen chemotherapeutics.


Subject(s)
Breast Neoplasms/drug therapy , Carcinoma/drug therapy , Drug Resistance, Neoplasm , Extracellular Matrix/chemistry , MAP Kinase Signaling System , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Biomechanical Phenomena , Breast/chemistry , Breast/drug effects , Breast/enzymology , Breast Neoplasms/chemistry , Breast Neoplasms/enzymology , Carcinoma/chemistry , Carcinoma/enzymology , Cell Line, Tumor , Collagen/chemistry , Female , Humans , Niacinamide/pharmacology , Sorafenib
SELECTION OF CITATIONS
SEARCH DETAIL