Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Nature ; 619(7970): 606-615, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438521

ABSTRACT

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.


Subject(s)
Cell- and Tissue-Based Therapy , Dopaminergic Neurons , Graft Survival , Neuroinflammatory Diseases , Parkinson Disease , T-Lymphocytes, Regulatory , Tyrosine 3-Monooxygenase , Humans , Dopamine/analogs & derivatives , Dopamine/metabolism , Dopaminergic Neurons/immunology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/transplantation , Mesencephalon/pathology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/prevention & control , Neuroinflammatory Diseases/therapy , Parkinson Disease/complications , Parkinson Disease/pathology , Parkinson Disease/surgery , Parkinson Disease/therapy , Tyrosine 3-Monooxygenase/deficiency , Tyrosine 3-Monooxygenase/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/transplantation , Cell- and Tissue-Based Therapy/methods , Animals , Mice , Rats , Oxidopamine/metabolism , Graft Survival/immunology , Cell Death , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Neostriatum/metabolism , Time Factors , Cell Proliferation , Treatment Outcome
2.
N Engl J Med ; 382(20): 1926-1932, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32402162

ABSTRACT

We report the implantation of patient-derived midbrain dopaminergic progenitor cells, differentiated in vitro from autologous induced pluripotent stem cells (iPSCs), in a patient with idiopathic Parkinson's disease. The patient-specific progenitor cells were produced under Good Manufacturing Practice conditions and characterized as having the phenotypic properties of substantia nigra pars compacta neurons; testing in a humanized mouse model (involving peripheral-blood mononuclear cells) indicated an absence of immunogenicity to these cells. The cells were implanted into the putamen (left hemisphere followed by right hemisphere, 6 months apart) of a patient with Parkinson's disease, without the need for immunosuppression. Positron-emission tomography with the use of fluorine-18-L-dihydroxyphenylalanine suggested graft survival. Clinical measures of symptoms of Parkinson's disease after surgery stabilized or improved at 18 to 24 months after implantation. (Funded by the National Institutes of Health and others.).


Subject(s)
Dopaminergic Neurons/cytology , Induced Pluripotent Stem Cells/transplantation , Parkinson Disease/therapy , Pars Compacta/cytology , Aged , Animals , Basal Ganglia/diagnostic imaging , Basal Ganglia/metabolism , Cell Differentiation , Disease Models, Animal , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/transplantation , Follow-Up Studies , Humans , Induced Pluripotent Stem Cells/immunology , Male , Mice , Mice, SCID , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography , Putamen/diagnostic imaging , Tomography, X-Ray Computed , Transplantation, Autologous , Transplantation, Homologous
3.
Ann Neurol ; 91(5): 613-628, 2022 05.
Article in English | MEDLINE | ID: mdl-35165921

ABSTRACT

OBJECTIVE: With a growing appreciation for interindividual anatomical variability and patient-specific brain connectivity, advanced imaging sequences offer the opportunity to directly visualize anatomical targets for deep brain stimulation (DBS). The lack of quantitative evidence demonstrating their clinical utility, however, has hindered their broad implementation in clinical practice. METHODS: Using fast gray matter acquisition T1 inversion recovery (FGATIR) sequences, the present study identified a thalamic hypointensity that holds promise as a visual marker in DBS. To validate the clinical utility of the identified hypointensity, we retrospectively analyzed 65 patients (26 female, mean age = 69.1 ± 12.7 years) who underwent DBS in the treatment of essential tremor. We characterized its neuroanatomical substrates and evaluated the hypointensity's ability to predict clinical outcome using stimulation volume modeling and voxelwise mapping. Finally, we determined whether the hypointensity marker could predict symptom improvement on a patient-specific level. RESULTS: Anatomical characterization suggested that the identified hypointensity constituted the terminal part of the dentatorubrothalamic tract. Overlap between DBS stimulation volumes and the hypointensity in standard space significantly correlated with tremor improvement (R2  = 0.16, p = 0.017) and distance to hotspots previously reported in the literature (R2  = 0.49, p = 7.9e-4). In contrast, the amount of variance explained by other anatomical atlas structures was reduced. When accounting for interindividual neuroanatomical variability, the predictive power of the hypointensity increased further (R2  = 0.37, p = 0.002). INTERPRETATION: Our findings introduce and validate a novel imaging-based marker attainable from FGATIR sequences that has the potential to personalize and inform targeting and programming in DBS for essential tremor. ANN NEUROL 2022;91:613-628.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Aged , Aged, 80 and over , Deep Brain Stimulation/methods , Diffusion Tensor Imaging/methods , Essential Tremor/diagnostic imaging , Essential Tremor/therapy , Female , Humans , Male , Middle Aged , Retrospective Studies , Thalamus/diagnostic imaging
4.
Neuroimage ; 184: 586-598, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30267856

ABSTRACT

Nonlinear registration of individual brain MRI scans to standard brain templates is common practice in neuroimaging and multiple registration algorithms have been developed and refined over the last 20 years. However, little has been done to quantitatively compare the available algorithms and much of that work has exclusively focused on cortical structures given their importance in the fMRI literature. In contrast, for clinical applications such as functional neurosurgery and deep brain stimulation (DBS), proper alignment of subcortical structures between template and individual space is important. This allows for atlas-based segmentations of anatomical DBS targets such as the subthalamic nucleus (STN) and internal pallidum (GPi). Here, we systematically evaluated the performance of six modern and established algorithms on subcortical normalization and segmentation results by calculating over 11,000 nonlinear warps in over 100 subjects. For each algorithm, we evaluated its performance using T1-or T2-weighted acquisitions alone or a combination of T1-, T2-and PD-weighted acquisitions in parallel. Furthermore, we present optimized parameters for the best performing algorithms. We tested each algorithm on two datasets, a state-of-the-art MRI cohort of young subjects and a cohort of subjects age- and MR-quality-matched to a typical DBS Parkinson's Disease cohort. Our final pipeline is able to segment DBS targets with precision comparable to manual expert segmentations in both cohorts. Although the present study focuses on the two prominent DBS targets, STN and GPi, these methods may extend to other small subcortical structures like thalamic nuclei or the nucleus accumbens.


Subject(s)
Algorithms , Atlases as Topic , Brain Mapping/methods , Brain/diagnostic imaging , Deep Brain Stimulation/methods , Image Interpretation, Computer-Assisted/methods , Aged , Female , Humans , Male , Middle Aged
5.
Neuroimage ; 184: 293-316, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30179717

ABSTRACT

Deep brain stimulation (DBS) is a highly efficacious treatment option for movement disorders and a growing number of other indications are investigated in clinical trials. To ensure optimal treatment outcome, exact electrode placement is required. Moreover, to analyze the relationship between electrode location and clinical results, a precise reconstruction of electrode placement is required, posing specific challenges to the field of neuroimaging. Since 2014 the open source toolbox Lead-DBS is available, which aims at facilitating this process. The tool has since become a popular platform for DBS imaging. With support of a broad community of researchers worldwide, methods have been continuously updated and complemented by new tools for tasks such as multispectral nonlinear registration, structural/functional connectivity analyses, brain shift correction, reconstruction of microelectrode recordings and orientation detection of segmented DBS leads. The rapid development and emergence of these methods in DBS data analysis require us to revisit and revise the pipelines introduced in the original methods publication. Here we demonstrate the updated DBS and connectome pipelines of Lead-DBS using a single patient example with state-of-the-art high-field imaging as well as a retrospective cohort of patients scanned in a typical clinical setting at 1.5T. Imaging data of the 3T example patient is co-registered using five algorithms and nonlinearly warped into template space using ten approaches for comparative purposes. After reconstruction of DBS electrodes (which is possible using three methods and a specific refinement tool), the volume of tissue activated is calculated for two DBS settings using four distinct models and various parameters. Finally, four whole-brain tractography algorithms are applied to the patient's preoperative diffusion MRI data and structural as well as functional connectivity between the stimulation volume and other brain areas are estimated using a total of eight approaches and datasets. In addition, we demonstrate impact of selected preprocessing strategies on the retrospective sample of 51 PD patients. We compare the amount of variance in clinical improvement that can be explained by the computer model depending on the preprocessing method of choice. This work represents a multi-institutional collaborative effort to develop a comprehensive, open source pipeline for DBS imaging and connectomics, which has already empowered several studies, and may facilitate a variety of future studies in the field.


Subject(s)
Deep Brain Stimulation/methods , Electrodes, Implanted , Neuroimaging/methods , Aged , Female , Humans , Male , Middle Aged , Parkinson Disease/therapy , Software
6.
Neuroimage ; 170: 271-282, 2018 04 15.
Article in English | MEDLINE | ID: mdl-28536045

ABSTRACT

Three-dimensional atlases of subcortical brain structures are valuable tools to reference anatomy in neuroscience and neurology. For instance, they can be used to study the position and shape of the three most common deep brain stimulation (DBS) targets, the subthalamic nucleus (STN), internal part of the pallidum (GPi) and ventral intermediate nucleus of the thalamus (VIM) in spatial relationship to DBS electrodes. Here, we present a composite atlas based on manual segmentations of a multimodal high resolution brain template, histology and structural connectivity. In a first step, four key structures were defined on the template itself using a combination of multispectral image analysis and manual segmentation. Second, these structures were used as anchor points to coregister a detailed histological atlas into standard space. Results show that this approach significantly improved coregistration accuracy over previously published methods. Finally, a sub-segmentation of STN and GPi into functional zones was achieved based on structural connectivity. The result is a composite atlas that defines key nuclei on the template itself, fills the gaps between them using histology and further subdivides them using structural connectivity. We show that the atlas can be used to segment DBS targets in single subjects, yielding more accurate results compared to priorly published atlases. The atlas will be made publicly available and constitutes a resource to study DBS electrode localizations in combination with modern neuroimaging methods.


Subject(s)
Atlases as Topic , Deep Brain Stimulation , Globus Pallidus/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Subthalamic Nucleus/diagnostic imaging , Adult , Aged , Diffusion Magnetic Resonance Imaging/methods , Female , Globus Pallidus/anatomy & histology , Humans , Male , Middle Aged , Subthalamic Nucleus/anatomy & histology , Young Adult
8.
J Neurophysiol ; 115(1): 19-38, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26510756

ABSTRACT

Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS.


Subject(s)
Brain Waves , Deep Brain Stimulation , Dyskinesias/therapy , Parkinson Disease/therapy , Animals , Dyskinesias/physiopathology , Humans , Parkinson Disease/physiopathology
10.
Article in English | MEDLINE | ID: mdl-38401881

ABSTRACT

BACKGROUND: Deeper phenotyping may improve our understanding of depression. Because depression is heterogeneous, extracting cognitive signatures associated with severity of depressive symptoms, anhedonia, and affective states is a promising approach. METHODS: Sequential sampling models decomposed behavior from an adaptive approach-avoidance conflict task into computational parameters quantifying latent cognitive signatures. Fifty unselected participants completed clinical scales and the approach-avoidance conflict task by either approaching or avoiding trials offering monetary rewards and electric shocks. RESULTS: Decision dynamics were best captured by a sequential sampling model with linear collapsing boundaries varying by net offer values, and with drift rates varying by trial-specific reward and aversion, reflecting net evidence accumulation toward approach or avoidance. Unlike conventional behavioral measures, these computational parameters revealed distinct associations with self-reported symptoms. Specifically, passive avoidance tendencies, indexed by starting point biases, were associated with greater severity of depressive symptoms (R = 0.34, p = .019) and anhedonia (R = 0.49, p = .001). Depressive symptoms were also associated with slower encoding and response execution, indexed by nondecision time (R = 0.37, p = .011). Higher reward sensitivity for offers with negative net values, indexed by drift rates, was linked to more sadness (R = 0.29, p = .042) and lower positive affect (R = -0.33, p = .022). Conversely, higher aversion sensitivity was associated with more tension (R = 0.33, p = .025). Finally, less cautious response patterns, indexed by boundary separation, were linked to more negative affect (R = -0.40, p = .005). CONCLUSIONS: We demonstrated the utility of multidimensional computational phenotyping, which could be applied to clinical samples to improve characterization and treatment selection.


Subject(s)
Anhedonia , Depression , Reward , Humans , Anhedonia/physiology , Male , Female , Adult , Depression/physiopathology , Young Adult , Neuropsychological Tests , Decision Making/physiology , Computer Simulation , Cognition/physiology , Affect/physiology
11.
NPJ Parkinsons Dis ; 10(1): 174, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289373

ABSTRACT

Adaptive deep brain stimulation (aDBS) is an emerging advancement in DBS technology; however, local field potential (LFP) signal rate detection sufficient for aDBS algorithms and the methods to set-up aDBS have yet to be defined. Here we summarize sensing data and aDBS programming steps associated with the ongoing Adaptive DBS Algorithm for Personalized Therapy in Parkinson's Disease (ADAPT-PD) pivotal trial (NCT04547712). Sixty-eight patients were enrolled with either subthalamic nucleus or globus pallidus internus DBS leads connected to a Medtronic PerceptTM PC neurostimulator. During the enrollment and screening procedures, a LFP (8-30 Hz, ≥1.2 µVp) control signal was identified by clinicians in 84.8% of patients on medication (65% bilateral signal), and in 92% of patients off medication (78% bilateral signal). The ADAPT-PD trial sensing data indicate a high LFP signal presence in both on and off medication states of these patients, with bilateral signal in the majority, regardless of PD phenotype.

12.
Oper Neurosurg (Hagerstown) ; 24(5): 524-532, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36701668

ABSTRACT

BACKGROUND: Using electrocorticography for research (R-ECoG) during deep brain stimulation (DBS) surgery has advanced our understanding of human cortical-basal ganglia neurophysiology and mechanisms of therapeutic circuit modulation. The safety of R-ECoG has been established, but potential effects of temporary ECoG strip placement on targeting accuracy have not been reported. OBJECTIVE: To determine whether temporary subdural electrode strip placement during DBS implantation surgery affects lead implantation accuracy. METHODS: Twenty-four consecutive patients enrolled in a prospective database who underwent awake DBS surgery were identified. Ten of 24 subjects participated in R-ECoG. Lead locations were determined after fusing postoperative computed tomography scans into the surgical planning software. The effect of brain shift was quantified using Lead-DBS and analyzed in a mixed-effects model controlling for time interval to postoperative computed tomography. Targeting accuracy was reported as radial and Euclidean distance errors and compared with Mann-Whitney tests. RESULTS: Neither radial error nor Euclidean distance error differed significantly between R-ECoG participants and nonparticipants. Pneumocephalus volume did not differ between the 2 groups, but brain shift was slightly greater with R-ECoG. Pneumocephalus volume correlated with brain shift, but neither of these measures significantly correlated with Euclidean distance error. There were no complications in either group. CONCLUSION: In addition to an excellent general safety profile as has been reported previously, these results suggest that performing R-ECoG during DBS implantation surgery does not affect the accuracy of lead placement.


Subject(s)
Deep Brain Stimulation , Pneumocephalus , Humans , Electrocorticography , Deep Brain Stimulation/methods , Brain/surgery , Tomography, X-Ray Computed/methods
13.
J Neurophysiol ; 108(6): 1594-606, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22696540

ABSTRACT

Distinguishing which of the many proposed neural mechanisms of spatial attention actually underlies behavioral improvements in visually guided tasks has been difficult. One attractive hypothesis is that attention allows downstream neural circuits to selectively integrate responses from the most informative sensory neurons. This would allow behavioral performance to be based on the highest-quality signals available in visual cortex. We examined this hypothesis by asking how spatial attention affects both the stimulus sensitivity of middle temporal (MT) neurons and their corresponding correlation with behavior. Analyzing a data set pooled from two experiments involving four monkeys, we found that spatial attention did not appreciably affect either the stimulus sensitivity of the neurons or the correlation between their activity and behavior. However, for those sessions in which there was a robust behavioral effect of attention, focusing attention inside the neuron's receptive field significantly increased the correlation between these two metrics, an indication of selective integration. These results suggest that, similar to mechanisms proposed for the neural basis of perceptual learning, the behavioral benefits of focusing spatial attention are attributable to selective integration of neural activity from visual cortical areas by their downstream targets.


Subject(s)
Attention/physiology , Space Perception/physiology , Temporal Lobe/physiology , Animals , Cues , Evoked Potentials, Visual , Macaca mulatta , Male , Neurons/physiology , Photic Stimulation , Signal Detection, Psychological , Visual Cortex/physiology
15.
Nat Comput Sci ; 2(9): 605-616, 2022 Sep.
Article in English | MEDLINE | ID: mdl-38177466

ABSTRACT

The clinical presentation of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, varies widely across patients, making it challenging to determine if potential therapeutics slow progression. We sought to determine whether there were common patterns of disease progression that could aid in the design and analysis of clinical trials. We developed an approach based on a mixture of Gaussian processes to identify clusters of patients sharing similar disease progression patterns, modeling their average trajectories and the variability in each cluster. We show that ALS progression is frequently nonlinear, with periods of stable disease preceded or followed by rapid decline. We also show that our approach can be extended to Alzheimer's and Parkinson's diseases. Our results advance the characterization of disease progression of ALS and provide a flexible modeling approach that can be applied to other progressive diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Parkinson Disease , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Disease Progression , Parkinson Disease/diagnosis
16.
J Neurosci ; 30(9): 3287-96, 2010 Mar 03.
Article in English | MEDLINE | ID: mdl-20203188

ABSTRACT

In the visual system, spatial attention enhances sensory responses to stimuli at attended locations relative to unattended locations. Which brain structures direct the locus of attention, and how is attentional modulation delivered to structures in the visual system? We trained monkeys on an attention-switch task designed to precisely measure the onset of attentional modulation during rapid shifts of spatial attention. Here we show that attentional modulation appears substantially earlier in the lateral intraparietal area (LIP) than in an anatomically connected lower visual area, the middle temporal area. This temporal sequence of attentional latencies demonstrates that endogenous changes of state can occur in higher visual areas before lower visual areas and satisfies a critical prediction of the hypothesis that LIP is a source of top-down attentional signals to early visual cortex.


Subject(s)
Attention/physiology , Fixation, Ocular/physiology , Parietal Lobe/physiology , Psychomotor Performance/physiology , Temporal Lobe/physiology , Visual Cortex/physiology , Action Potentials/physiology , Animals , Behavior, Animal/physiology , Electrophysiology , Macaca mulatta , Male , Neurons/physiology , Neuropsychological Tests , Parietal Lobe/anatomy & histology , Photic Stimulation , Reaction Time/physiology , Saccades/physiology , Temporal Lobe/anatomy & histology , Time Factors , Visual Cortex/anatomy & histology , Visual Pathways/anatomy & histology , Visual Pathways/physiology , Visual Perception/physiology
17.
Sci Transl Med ; 13(579)2021 02 03.
Article in English | MEDLINE | ID: mdl-33536284

ABSTRACT

Longitudinal, remote monitoring of motor symptoms in Parkinson's disease (PD) could enable more precise treatment decisions. We developed the Motor fluctuations Monitor for Parkinson's Disease (MM4PD), an ambulatory monitoring system that used smartwatch inertial sensors to continuously track fluctuations in resting tremor and dyskinesia. We designed and validated MM4PD in 343 participants with PD, including a longitudinal study of up to 6 months in a 225-subject cohort. MM4PD measurements correlated to clinical evaluations of tremor severity (ρ = 0.80) and mapped to expert ratings of dyskinesia presence (P < 0.001) during in-clinic tasks. MM4PD captured symptom changes in response to treatment that matched the clinician's expectations in 94% of evaluated subjects. In the remaining 6% of cases, symptom data from MM4PD identified opportunities to make improvements in pharmacologic strategy. These results demonstrate the promise of MM4PD as a tool to support patient-clinician communication, medication titration, and clinical trial design.


Subject(s)
Parkinson Disease , Cohort Studies , Humans , Longitudinal Studies , Monitoring, Ambulatory , Tremor/diagnosis
18.
Nat Genet ; 53(6): 787-793, 2021 06.
Article in English | MEDLINE | ID: mdl-33958783

ABSTRACT

A key driver of patients' well-being and clinical trials for Parkinson's disease (PD) is the course that the disease takes over time (progression and prognosis). To assess how genetic variation influences the progression of PD over time to dementia, a major determinant for quality of life, we performed a longitudinal genome-wide survival study of 11.2 million variants in 3,821 patients with PD over 31,053 visits. We discover RIMS2 as a progression locus and confirm this in a replicate population (hazard ratio (HR) = 4.77, P = 2.78 × 10-11), identify suggestive evidence for TMEM108 (HR = 2.86, P = 2.09 × 10-8) and WWOX (HR = 2.12, P = 2.37 × 10-8) as progression loci, and confirm associations for GBA (HR = 1.93, P = 0.0002) and APOE (HR = 1.48, P = 0.001). Polygenic progression scores exhibit a substantial aggregate association with dementia risk, while polygenic susceptibility scores are not predictive. This study identifies a novel synaptic locus and polygenic score for cognitive disease progression in PD and proposes diverging genetic architectures of progression and susceptibility.


Subject(s)
Cognition , Disease Progression , Genetic Loci , Genome-Wide Association Study , Multifactorial Inheritance/genetics , Parkinson Disease/genetics , Parkinson Disease/pathology , Synapses/genetics , Apolipoprotein E4/genetics , Cognition Disorders/genetics , Genetic Predisposition to Disease , Glucosylceramidase/genetics , Humans , Longitudinal Studies , Mutation/genetics , Parkinson Disease/physiopathology , Proportional Hazards Models , Risk Factors , Survival Analysis
19.
J Neurosci ; 29(45): 14160-76, 2009 Nov 11.
Article in English | MEDLINE | ID: mdl-19906965

ABSTRACT

We measured the behavioral time course of endogenously cued attentional shifts while recording from neurons in the middle temporal area (MT) and lateral intraparietal area (LIP) of two macaque monkeys. The monkeys were required to detect a subtle speed change of one of two continuously moving stimuli. The likely location of the speed change was cued throughout each trial but could switch at an unpredictable time. Attention was evident as an improvement in detection ability and reaction time at the cued location, and the focus of attention shifted over a 400 ms period in response to a switch of the cued stimulus. Attention modulated the ongoing neural response in both MT and LIP, and the sign of this modulation also rapidly shifted after a cue switch. Our data provide a framework for understanding the link between the neural and behavioral effects of attention. The responses of single neurons to the test stimulus in MT and LIP were correlated with stimulus detection and reaction time and, at the population level, a spike-rate threshold model was able to account for the effect of attention on detection rate and reaction time. In this view, the time course of the attentional shift can be understood as an interaction between the emerging attentional modulation and the neural response to the test stimulus in LIP. We also present evidence that the threshold model is not wholly explained by sensory (feedforward) information but may also be influenced by cognitive (feedback) processes at the time of stimulus detection.


Subject(s)
Attention/physiology , Cues , Motion Perception/physiology , Neurons/physiology , Parietal Lobe/physiology , Temporal Lobe/physiology , Action Potentials , Animals , Feedback, Psychological/physiology , Macaca , Microelectrodes , Neuropsychological Tests , Reaction Time , Task Performance and Analysis , Time Factors
20.
J Neurosci ; 29(18): 5793-805, 2009 May 06.
Article in English | MEDLINE | ID: mdl-19420247

ABSTRACT

It is widely reported that the activity of single neurons in visual cortex is correlated with the perceptual decision of the subject. The strength of this correlation has implications for the neuronal populations generating the percepts. Here we asked whether microsaccades, which are small, involuntary eye movements, contribute to the correlation between neural activity and behavior. We analyzed data from three different visual detection experiments, with neural recordings from the middle temporal (MT), lateral intraparietal (LIP), and ventral intraparietal (VIP) areas. All three experiments used random dot motion stimuli, with the animals required to detect a transient or sustained change in the speed or strength of motion. We found that microsaccades suppressed neural activity and inhibited detection of the motion stimulus, contributing to the correlation between neural activity and detection behavior. Microsaccades accounted for as much as 19% of the correlation for area MT, 21% for area LIP, and 17% for VIP. While microsaccades only explain part of the correlation between neural activity and behavior, their effect has implications when considering the neuronal populations underlying perceptual decisions.


Subject(s)
Motion Perception/physiology , Neurons/physiology , Parietal Lobe/cytology , Saccades/physiology , Statistics as Topic , Temporal Lobe/cytology , Action Potentials/physiology , Animals , Behavior, Animal , Brain Mapping , Color Perception/physiology , Functional Laterality/physiology , Macaca mulatta , Neural Pathways/physiology , Neurons/classification , Photic Stimulation/methods , Psychophysics , Reaction Time/physiology , Signal Detection, Psychological , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL