Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Int J Radiat Biol ; 97(9): 1261-1269, 2021.
Article in English | MEDLINE | ID: mdl-34043466

ABSTRACT

PURPOSE: Radiation therapy (RT) is a common nonsurgical treatment in the management of patients with cancer. While genetically engineered mouse models (GEMM) recapitulate human disease, conventional linear particle accelerator systems are not suited for state-of-the-art, imageguided targeted RT (IGRT) of these murine tumors. We employed the CyberKnife (CK; Accuray) platform for IGRT of GEMM-derived non-small cell lung cancer (NSCLC) lesions. MATERIAL AND METHODS: GEMM-derived KrasLSL-G12D/+/Trp53fl/fl -driven NSCLC flank tumors were irradiated using the CK RT platform. We applied IGRT of 2, 4, 6, and 8 Gy using field sizes of 5-12.5 mm to average gross tumor volumes (GTV) of 0.9 cm3 using Xsight Spine Tracking (Accuray). RESULTS: We found that 0 mm planning target volume (PTV) margin is sufficient for IGRT of murine tumors using the CK. We observed that higher RT doses (6-8 Gy) decreased absolute cell numbers of tumor infiltrating leukocytes (TIL) by approximately half compared to low doses (2-4 Gy) within 1 h, but even with low dose RT (2 Gy) TIL were found to be reduced after 8-24 h. CONCLUSION: We here demonstrate that the CK RT system allows for targeted IGRT of murine tumors with high precision and constitutes a novel promising platform for translational mouse RT studies.


Subject(s)
Radiosurgery , Translational Research, Biomedical , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Dose-Response Relationship, Radiation , Humans , Lung Neoplasms/pathology , Mice
3.
Oncotarget ; 9(60): 31572-31589, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30167080

ABSTRACT

CDK4 is emerging as a target in KRAS-mutant non-small cell lung cancer (NSCLC). We demonstrate that KRAS-mutant NSCLC cell lines are initially sensitive to the CDK4/6 inhibitor palbociclib, but readily acquire resistance associated with increased expression of CDK6, D-type cyclins and cyclin E. Resistant cells also demonstrated increased ERK1/2 activity and sensitivity to MEK and ERK inhibitors. Moreover, MEK inhibition reduced the expression and activity of cell cycle proteins mediating palbociclib resistance. In resistant cells, ERK activated mTOR, driven in part by upstream FGFR1 signaling resulting from the extracellular secretion of FGF ligands. A genetically-engineered mouse model of KRAS-mutant NSCLC initially sensitive to palbociclib similarly developed acquired resistance with increased expression of cell cycle mediators, ERK1/2 and FGFR1. In this model, resistance was delayed with combined palbociclib and MEK inhibitor treatment. These findings implicate an FGFR1-MAP kinase-mTOR pathway resulting in increased expression of D-cyclins and CDK6 that confers palbociclib resistance and indicate that CDK4/6 inhibition acts to promote MAP kinase dependence.

4.
Clin Cancer Res ; 24(19): 4854-4864, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29945997

ABSTRACT

Purpose: Despite the challenge to directly target mutant KRAS due to its high GTP affinity, some agents are under development against downstream signaling pathways, such as MEK inhibitors. However, it remains controversial whether MEK inhibitors can boost current chemotherapy in KRAS-mutant lung tumors in clinic. Considering the genomic heterogeneity among patients with lung cancer, it is valuable to test potential therapeutics in KRAS mutation-driven mouse models.Experimental Design: We first compared the pERK1/2 level in lung cancer samples with different KRAS substitutions and generated a new genetically engineered mouse model whose tumor was driven by KRAS G12C, the most common KRAS mutation in lung cancer. Next, we evaluated the efficacy of selumetinib or its combination with chemotherapy, in KRASG12C tumors compared with KRASG12D tumors. Moreover, we generated KRASG12C/p53R270H model to explore the role of a dominant negative p53 mutation detected in patients in responsiveness to MEK inhibition.Results: We determined higher pERK1/2 in KRASG12C lung tumors compared with KRASG12D Using mouse models, we further identified that KRASG12C tumors are significantly more sensitive to selumetinib compared with KrasG12D tumors. MEK inhibition significantly increased chemotherapeutic efficacy and progression-free survival of KRASG12C mice. Interestingly, p53 co-mutation rendered KRASG12C lung tumors less sensitive to combination treatment with selumetinib and chemotherapy.Conclusions: Our data demonstrate that unique KRAS mutations and concurrent mutations in tumor-suppressor genes are important factors for lung tumor responses to MEK inhibitor. Our preclinical study supports further clinical evaluation of combined MEK inhibition and chemotherapy for lung cancer patients harboring KRAS G12C and wild-type p53 status. Clin Cancer Res; 24(19); 4854-64. ©2018 AACR.


Subject(s)
Benzimidazoles/administration & dosage , Lung Neoplasms/drug therapy , MAP Kinase Kinase Kinase 1/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Suppressor Protein p53/genetics , Allografts , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MAP Kinase Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , Male , Mice , Middle Aged , Mutation , NIH 3T3 Cells , Protein Kinase Inhibitors/administration & dosage
5.
Cancer Discov ; 8(2): 216-233, 2018 02.
Article in English | MEDLINE | ID: mdl-29101163

ABSTRACT

Immune checkpoint blockade, exemplified by antibodies targeting the PD-1 receptor, can induce durable tumor regressions in some patients. To enhance the efficacy of existing immunotherapies, we screened for small molecules capable of increasing the activity of T cells suppressed by PD-1. Here, we show that short-term exposure to small-molecule inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) significantly enhances T-cell activation, contributing to antitumor effects in vivo, due in part to the derepression of NFAT family proteins and their target genes, critical regulators of T-cell function. Although CDK4/6 inhibitors decrease T-cell proliferation, they increase tumor infiltration and activation of effector T cells. Moreover, CDK4/6 inhibition augments the response to PD-1 blockade in a novel ex vivo organotypic tumor spheroid culture system and in multiple in vivo murine syngeneic models, thereby providing a rationale for combining CDK4/6 inhibitors and immunotherapies.Significance: Our results define previously unrecognized immunomodulatory functions of CDK4/6 and suggest that combining CDK4/6 inhibitors with immune checkpoint blockade may increase treatment efficacy in patients. Furthermore, our study highlights the critical importance of identifying complementary strategies to improve the efficacy of immunotherapy for patients with cancer. Cancer Discov; 8(2); 216-33. ©2017 AACR.See related commentary by Balko and Sosman, p. 143See related article by Jenkins et al., p. 196This article is highlighted in the In This Issue feature, p. 127.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Neoplasms/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays
7.
Nat Commun ; 8: 14922, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28387316

ABSTRACT

Adenosquamous lung tumours, which are extremely poor prognosis, may result from cellular plasticity. Here, we demonstrate lineage switching of KRAS+ lung adenocarcinomas (ADC) to squamous cell carcinoma (SCC) through deletion of Lkb1 (Stk11) in autochthonous and transplant models. Chromatin analysis reveals loss of H3K27me3 and gain of H3K27ac and H3K4me3 at squamous lineage genes, including Sox2, ΔNp63 and Ngfr. SCC lesions have higher levels of the H3K27 methyltransferase EZH2 than the ADC lesions, but there is a clear lack of the essential Polycomb Repressive Complex 2 (PRC2) subunit EED in the SCC lesions. The pattern of high EZH2, but low H3K27me3 mark, is also prevalent in human lung SCC and SCC regions within ADSCC tumours. Using FACS-isolated populations, we demonstrate that bronchioalveolar stem cells and club cells are the likely cells-of-origin for SCC transitioned tumours. These findings shed light on the epigenetics and cellular origins of lineage-specific lung tumours.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Polycomb Repressive Complex 2/genetics , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinases , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Histones/metabolism , Kaplan-Meier Estimate , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Methylation , Mice, 129 Strain , Mice, Knockout , Polycomb Repressive Complex 2/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Cells, Cultured
8.
JCI Insight ; 1(9): e87415, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27699275

ABSTRACT

Radiation therapy (RT), a critical modality in the treatment of lung cancer, induces direct tumor cell death and augments tumor-specific immunity. However, despite initial tumor control, most patients suffer from locoregional relapse and/or metastatic disease following RT. The use of immunotherapy in non-small-cell lung cancer (NSCLC) could potentially change this outcome by enhancing the effects of RT. Here, we report significant (up to 70% volume reduction of the target lesion) and durable (up to 12 weeks) tumor regressions in conditional Kras-driven genetically engineered mouse models (GEMMs) of NSCLC treated with radiotherapy and a programmed cell death 1 antibody (αPD-1). However, while αPD-1 therapy was beneficial when combined with RT in radiation-naive tumors, αPD-1 therapy had no antineoplastic efficacy in RT-relapsed tumors and further induced T cell inhibitory markers in this setting. Furthermore, there was differential efficacy of αPD-1 plus RT among Kras-driven GEMMs, with additional loss of the tumor suppressor serine/threonine kinase 11/liver kinase B1 (Stk11/Lkb1) resulting in no synergistic efficacy. Taken together, our data provide evidence for a close interaction among RT, T cells, and the PD-1/PD-L1 axis and underscore the rationale for clinical combinatorial therapy with immune modulators and radiotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/therapy , Immunotherapy , Lung Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , AMP-Activated Protein Kinases , Animals , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cell Line, Tumor , Female , Lung Neoplasms/radiotherapy , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasm Recurrence, Local , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins p21(ras)/genetics
9.
Cancer Discov ; 6(9): 1006-21, 2016 09.
Article in English | MEDLINE | ID: mdl-27312177

ABSTRACT

UNLABELLED: As a master regulator of chromatin function, the lysine methyltransferase EZH2 orchestrates transcriptional silencing of developmental gene networks. Overexpression of EZH2 is commonly observed in human epithelial cancers, such as non-small cell lung carcinoma (NSCLC), yet definitive demonstration of malignant transformation by deregulated EZH2 remains elusive. Here, we demonstrate the causal role of EZH2 overexpression in NSCLC with new genetically engineered mouse models of lung adenocarcinoma. Deregulated EZH2 silences normal developmental pathways, leading to epigenetic transformation independent of canonical growth factor pathway activation. As such, tumors feature a transcriptional program distinct from KRAS- and EGFR-mutant mouse lung cancers, but shared with human lung adenocarcinomas exhibiting high EZH2 expression. To target EZH2-dependent cancers, we developed a potent open-source EZH2 inhibitor, JQEZ5, that promoted the regression of EZH2-driven tumors in vivo, confirming oncogenic addiction to EZH2 in established tumors and providing the rationale for epigenetic therapy in a subset of lung cancer. SIGNIFICANCE: EZH2 overexpression induces murine lung cancers that are similar to human NSCLC with high EZH2 expression and low levels of phosphorylated AKT and ERK, implicating biomarkers for EZH2 inhibitor sensitivity. Our EZH2 inhibitor, JQEZ5, promotes regression of these tumors, revealing a potential role for anti-EZH2 therapy in lung cancer. Cancer Discov; 6(9); 1006-21. ©2016 AACR.See related commentary by Frankel et al., p. 949This article is highlighted in the In This Issue feature, p. 932.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Chromatin/genetics , Chromatin/metabolism , Disease Models, Animal , Drug Design , Enhancer Elements, Genetic , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Magnetic Resonance Imaging , Mice , Models, Molecular , Molecular Conformation , Molecular Targeted Therapy , Promoter Regions, Genetic , Structure-Activity Relationship , Xenograft Model Antitumor Assays
10.
Cancer Res ; 76(5): 999-1008, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26833127

ABSTRACT

STK11/LKB1 is among the most commonly inactivated tumor suppressors in non-small cell lung cancer (NSCLC), especially in tumors harboring KRAS mutations. Many oncogenes promote immune escape, undermining the effectiveness of immunotherapies, but it is unclear whether the inactivation of tumor suppressor genes, such as STK11/LKB1, exerts similar effects. In this study, we investigated the consequences of STK11/LKB1 loss on the immune microenvironment in a mouse model of KRAS-driven NSCLC. Genetic ablation of STK11/LKB1 resulted in accumulation of neutrophils with T-cell-suppressive effects, along with a corresponding increase in the expression of T-cell exhaustion markers and tumor-promoting cytokines. The number of tumor-infiltrating lymphocytes was also reduced in LKB1-deficient mouse and human tumors. Furthermore, STK11/LKB1-inactivating mutations were associated with reduced expression of PD-1 ligand PD-L1 in mouse and patient tumors as well as in tumor-derived cell lines. Consistent with these results, PD-1-targeting antibodies were ineffective against Lkb1-deficient tumors. In contrast, treating Lkb1-deficient mice with an IL6-neutralizing antibody or a neutrophil-depleting antibody yielded therapeutic benefits associated with reduced neutrophil accumulation and proinflammatory cytokine expression. Our findings illustrate how tumor suppressor mutations can modulate the immune milieu of the tumor microenvironment, and they offer specific implications for addressing STK11/LKB1-mutated tumors with PD-1-targeting antibody therapies.


Subject(s)
Cytokines/biosynthesis , Lung Neoplasms/immunology , Neutrophil Infiltration , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , T-Lymphocytes/immunology , Tumor Microenvironment , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Animals , B7-H1 Antigen/analysis , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mutation , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics
11.
Nat Commun ; 7: 10501, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26883990

ABSTRACT

Despite compelling antitumour activity of antibodies targeting the programmed death 1 (PD-1): programmed death ligand 1 (PD-L1) immune checkpoint in lung cancer, resistance to these therapies has increasingly been observed. In this study, to elucidate mechanisms of adaptive resistance, we analyse the tumour immune microenvironment in the context of anti-PD-1 therapy in two fully immunocompetent mouse models of lung adenocarcinoma. In tumours progressing following response to anti-PD-1 therapy, we observe upregulation of alternative immune checkpoints, notably T-cell immunoglobulin mucin-3 (TIM-3), in PD-1 antibody bound T cells and demonstrate a survival advantage with addition of a TIM-3 blocking antibody following failure of PD-1 blockade. Two patients who developed adaptive resistance to anti-PD-1 treatment also show a similar TIM-3 upregulation in blocking antibody-bound T cells at treatment failure. These data suggest that upregulation of TIM-3 and other immune checkpoints may be targetable biomarkers associated with adaptive resistance to PD-1 blockade.


Subject(s)
Adaptive Immunity , Lung Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Aged , Animals , B7-H1 Antigen/administration & dosage , B7-H1 Antigen/immunology , Hepatitis A Virus Cellular Receptor 2 , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Male , Mice , Middle Aged , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Receptors, Virus/genetics , Receptors, Virus/immunology
12.
JCI Insight ; 1(14): e89014, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27699239

ABSTRACT

BACKGROUND. Immune checkpoint blockade improves survival in a subset of patients with non-small-cell lung cancer (NSCLC), but robust biomarkers that predict response to PD-1 pathway inhibitors are lacking. Furthermore, our understanding of the diversity of the NSCLC tumor immune microenvironment remains limited. METHODS. We performed comprehensive flow cytometric immunoprofiling on both tumor and immune cells from 51 NSCLCs and integrated this analysis with clinical and histopathologic characteristics, next-generation sequencing, mRNA expression, and PD-L1 immunohistochemistry (IHC). RESULTS. Cytometric profiling identified an immunologically "hot" cluster with abundant CD8+ T cells expressing high levels of PD-1 and TIM-3 and an immunologically "cold" cluster with lower relative abundance of CD8+ T cells and expression of inhibitory markers. The "hot" cluster was highly enriched for expression of genes associated with T cell trafficking and cytotoxic function and high PD-L1 expression by IHC. There was no correlation between immunophenotype and KRAS or EGFR mutation, or patient smoking history, but we did observe an enrichment of squamous subtype and tumors with higher mutation burden in the "hot" cluster. Additionally, approximately 20% of cases had high B cell infiltrates with a subset producing IL-10. CONCLUSIONS. Our results support the use of immune-based metrics to study response and resistance to immunotherapy in lung cancer. FUNDING. The Robert A. and Renée E. Belfer Family Foundation, Expect Miracles Foundation, Starr Cancer Consortium, Stand Up to Cancer Foundation, Conquer Cancer Foundation, International Association for the Study of Lung Cancer, National Cancer Institute (R01 CA205150), and the Damon Runyon Cancer Research Foundation.


Subject(s)
Carcinoma, Non-Small-Cell Lung/classification , Immunophenotyping , Lung Neoplasms/classification , B7-H1 Antigen/immunology , Biomarkers, Tumor/immunology , CD8-Positive T-Lymphocytes/immunology , Humans , Immunohistochemistry , Lung , Mutation
13.
Cancer Immunol Res ; 4(12): 1038-1048, 2016 12.
Article in English | MEDLINE | ID: mdl-27856426

ABSTRACT

PD-L1 immunohistochemical staining does not always predict whether a cancer will respond to treatment with PD-1 inhibitors. We sought to characterize immune cell infiltrates and the expression of T-cell inhibitor markers in PD-L1-positive and PD-L1-negative malignant pleural mesothelioma samples. We developed a method for immune cell phenotyping using flow cytometry on solid tumors that have been dissociated into single-cell suspensions and applied this technique to analyze 43 resected malignant pleural mesothelioma specimens. Compared with PD-L1-negative tumors, PD-L1-positive tumors had significantly more infiltrating CD45+ immune cells, a significantly higher proportion of infiltrating CD3+ T cells, and a significantly higher percentage of CD3+ cells displaying the activated HLA-DR+/CD38+ phenotype. PD-L1-positive tumors also had a significantly higher proportion of proliferating CD8+ T cells, a higher fraction of FOXP3+/CD4+ Tregs, and increased expression of PD-1 and TIM-3 on CD4+ and CD8+ T cells. Double-positive PD-1+/TIM-3+ CD8+ T cells were more commonly found on PD-L1-positive tumors. Compared with epithelioid tumors, sarcomatoid and biphasic mesothelioma samples were significantly more likely to be PD-L1 positive and showed more infiltration with CD3+ T cells and PD-1+/TIM-3+ CD8+ T cells. Immunologic phenotypes in mesothelioma differ based on PD-L1 status and histologic subtype. Successful incorporation of comprehensive immune profiling by flow cytometry into prospective clinical trials could refine our ability to predict which patients will respond to specific immune checkpoint blockade strategies. Cancer Immunol Res; 4(12); 1038-48. ©2016 AACR.


Subject(s)
B7-H1 Antigen/immunology , Mesothelioma/immunology , Pleural Neoplasms/immunology , T-Lymphocytes, Cytotoxic/immunology , Female , Humans , Male
14.
Nat Commun ; 6: 10182, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26680259

ABSTRACT

The mechanisms driving T cell homing to lymph nodes and migration to tissue are well described but little is known about factors that affect T cell egress from tissues. Here, we generate mice with a T cell-specific deletion of the scaffold protein A kinase anchoring protein 9 (AKAP9) and use models of inflammatory disease to demonstrate that AKAP9 is dispensable for T cell priming and migration into tissues and lymph nodes, but is required for T cell retention in tissues. AKAP9 deficiency results in increased T cell egress to draining lymph nodes, which is associated with impaired T cell re-activation in tissues and protection from organ damage. AKAP9-deficient T cells exhibit reduced microtubule-dependent recycling of TCRs back to the cell surface and this affects antigen-dependent activation, primarily by non-classical antigen-presenting cells. Thus, AKAP9-dependent TCR trafficking drives efficient T cell re-activation and extends their retention at sites of inflammation with implications for disease pathogenesis.


Subject(s)
A Kinase Anchor Proteins/genetics , Cell Movement/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Lymph Nodes/immunology , Lymphocyte Activation/immunology , Microtubule-Associated Proteins/genetics , Nephritis/immunology , Reperfusion Injury/immunology , T-Lymphocytes/immunology , A Kinase Anchor Proteins/immunology , Animals , Antigen-Presenting Cells/immunology , Cell Adhesion/immunology , Cell Migration Assays, Leukocyte , Cells, Cultured , Endosomes , Gene Knockout Techniques , Glomerular Basement Membrane/immunology , In Vitro Techniques , Inflammation , Kidney/blood supply , Kidney/immunology , Mice , Microtubule-Associated Proteins/immunology , Receptors, Antigen, T-Cell , Transendothelial and Transepithelial Migration/immunology
15.
J Med Chem ; 58(16): 6589-606, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26258521

ABSTRACT

The Janus kinases (JAKs) and their downstream effectors, signal transducer and activator of transcription proteins (STATs), form a critical immune cell signaling circuit, which is of fundamental importance in innate immunity, inflammation, and hematopoiesis, and dysregulation is frequently observed in immune disease and cancer. The high degree of structural conservation of the JAK ATP binding pockets has posed a considerable challenge to medicinal chemists seeking to develop highly selective inhibitors as pharmacological probes and as clinical drugs. Here we report the discovery and optimization of 2,4-substituted pyrimidines as covalent JAK3 inhibitors that exploit a unique cysteine (Cys909) residue in JAK3. Investigation of structure-activity relationship (SAR) utilizing biochemical and transformed Ba/F3 cellular assays resulted in identification of potent and selective inhibitors such as compounds 9 and 45. A 2.9 Å cocrystal structure of JAK3 in complex with 9 confirms the covalent interaction. Compound 9 exhibited decent pharmacokinetic properties and is suitable for use in vivo. These inhibitors provide a set of useful tools to pharmacologically interrogate JAK3-dependent biology.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Biological Availability , Cell Line, Tumor , Cell Survival , Humans , Male , Mice , Models, Molecular , Protein Kinase Inhibitors/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
16.
Nat Commun ; 5: 5870, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25519892

ABSTRACT

Close resemblance of murine and human trials is essential to achieve the best predictive value of animal-based translational cancer research. Kras-driven genetically engineered mouse models of non-small-cell lung cancer faithfully predict the response of human lung cancers to systemic chemotherapy. Owing to development of multifocal disease, however, these models have not been usable in studies of outcomes following focal radiotherapy (RT). We report the development of a preclinical platform to deliver state-of-the-art image-guided RT in these models. Presence of a single tumour as usually diagnosed in patients is modelled by confined injection of adenoviral Cre recombinase. Furthermore, three-dimensional conformal planning and state-of-the-art image-guided dose delivery are performed as in humans. We evaluate treatment efficacies of two different radiation regimens and find that Kras-driven tumours can temporarily be stabilized upon RT, whereas additional loss of either Lkb1 or p53 renders these lesions less responsive to RT.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Proto-Oncogene Proteins p21(ras)/genetics , Radiotherapy, Image-Guided/methods , AMP-Activated Protein Kinases , Adenoviridae/genetics , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Disease Models, Animal , Female , Gene Expression , Genetic Vectors , Humans , Integrases/genetics , Integrases/metabolism , Lentivirus/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Radiation Dosage , Radiation Tolerance , Treatment Outcome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
17.
Cancer Cell ; 25(5): 590-604, 2014 May 12.
Article in English | MEDLINE | ID: mdl-24794706

ABSTRACT

Lung squamous cell carcinoma (SCC) is a deadly disease for which current treatments are inadequate. We demonstrate that biallelic inactivation of Lkb1 and Pten in the mouse lung leads to SCC that recapitulates the histology, gene expression, and microenvironment found in human disease. Lkb1;Pten null (LP) tumors expressed the squamous markers KRT5, p63 and SOX2, and transcriptionally resembled the basal subtype of human SCC. In contrast to mouse adenocarcinomas, the LP tumors contained immune populations enriched for tumor-associated neutrophils. SCA1(+)NGFR(+) fractions were enriched for tumor-propagating cells (TPCs) that could serially transplant the disease in orthotopic assays. TPCs in the LP model and NGFR(+) cells in human SCCs highly expressed Pd-ligand-1 (PD-L1), suggesting a mechanism of immune escape for TPCs.


Subject(s)
B7-H1 Antigen/biosynthesis , Carcinoma, Squamous Cell/immunology , Lung Neoplasms/immunology , PTEN Phosphohydrolase/genetics , Protein Serine-Threonine Kinases/genetics , Tumor Escape/immunology , AMP-Activated Protein Kinases , Animals , Antigens, Ly/biosynthesis , B-Lymphocytes/immunology , Carcinoma, Squamous Cell/genetics , Disease Models, Animal , Immune Tolerance/immunology , Keratin-15 , Keratin-5/biosynthesis , Killer Cells, Natural/immunology , Lung/metabolism , Lung Neoplasms/genetics , Lymphocyte Activation/immunology , Macrophages/immunology , Membrane Proteins/biosynthesis , Metabolome , Mice , Neutrophils/immunology , Phosphoproteins/biosynthesis , Receptor, Nerve Growth Factor/biosynthesis , SOXB1 Transcription Factors/biosynthesis , T-Lymphocytes/immunology , Trans-Activators/biosynthesis , Transcription, Genetic , Tumor Cells, Cultured
18.
Cancer Cell ; 26(6): 909-922, 2014 Dec 08.
Article in English | MEDLINE | ID: mdl-25490451

ABSTRACT

Small cell lung cancer (SCLC) is an aggressive disease with high mortality, and the identification of effective pharmacological strategies to target SCLC biology represents an urgent need. Using a high-throughput cellular screen of a diverse chemical library, we observe that SCLC is sensitive to transcription-targeting drugs, in particular to THZ1, a recently identified covalent inhibitor of cyclin-dependent kinase 7. We find that expression of super-enhancer-associated transcription factor genes, including MYC family proto-oncogenes and neuroendocrine lineage-specific factors, is highly vulnerability to THZ1 treatment. We propose that downregulation of these transcription factors contributes, in part, to SCLC sensitivity to transcriptional inhibitors and that THZ1 represents a prototype drug for tailored SCLC therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Enzyme Inhibitors/administration & dosage , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Transcription Factors/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Humans , Mice , Molecular Sequence Data , Neoplasms, Experimental , Sequence Analysis, DNA , Small Cell Lung Carcinoma , Transcription, Genetic/drug effects , Xenograft Model Antitumor Assays
19.
Front Oncol ; 3: 86, 2013.
Article in English | MEDLINE | ID: mdl-23630663

ABSTRACT

Despite the ongoing "war on cancer," cancer remains one of the major causes of human morbidity and mortality. A new paradigm of targeted therapies holds the most promise for the future, making identification of tumor-specific therapeutic targets of prime importance. ERBB2/HER2, best known for its role in breast cancer tumorigenesis, can be targeted by two types of pharmacological manipulation: antibody therapy against the extracellular receptor domain and small molecule compounds against the intracellular tyrosine kinase domain. Aberrant activation of ERBB2 by gene amplification has been shown to participate in the pathophysiology of breast, ovarian, gastric, colorectal, lung, brain, and head and neck tumors. However, the advent of next-generation sequencing technologies has enabled efficient identification of activating molecular alterations of ERBB2. In this review, we will focus on the functional role of these somatic mutations that cause ERBB2 receptor activation. We will additionally discuss the current preclinical and clinical therapeutic strategies for targeting mutationally activated ERBB2.

20.
J Clin Invest ; 123(9): 3639-45, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23999436

ABSTRACT

Molecularly targeted agents promise to revolutionize therapeutics by reducing morbidity and mortality in patients with cancer. However, despite an urgent need for more effective anticancer compounds, current preclinical drug evaluations largely fail to satisfy the demand. New preclinical strategies, including the improvement of sophisticated mouse models and co-clinical study designs, are being used to augment the predictive value of animal-based translational cancer research. Here, we review the development of successful preclinical antineoplastic agents, their associated limitations, and alternative methods to predict clinical outcomes.


Subject(s)
Drug Screening Assays, Antitumor , Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Clinical Trials as Topic , Disease Models, Animal , Drug Discovery , Humans , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL