ABSTRACT
Histone replacement by transition proteins (TPs) and protamines (Prms) constitutes an essential step for the successful production of functional male gametes, yet nothing is known on the underlying functional interplay between histones, TPs, and Prms. Here, by studying spermatogenesis in the absence of a spermatid-specific histone variant, H2A.L.2, we discover a fundamental mechanism involved in the transformation of nucleosomes into nucleoprotamines. H2A.L.2 is synthesized at the same time as TPs and enables their loading onto the nucleosomes. TPs do not displace histones but rather drive the recruitment and processing of Prms, which are themselves responsible for histone eviction. Altogether, the incorporation of H2A.L.2 initiates and orchestrates a series of successive transitional states that ultimately shift to the fully compacted genome of the mature spermatozoa. Hence, the current view of histone-to-nucleoprotamine transition should be revisited and include an additional step with H2A.L.2 assembly prior to the action of TPs and Prms.
Subject(s)
Chromatin Assembly and Disassembly , Chromatin/metabolism , Histones/metabolism , Nucleosomes/metabolism , Protamines/metabolism , Spermatogenesis , Spermatozoa/metabolism , Animals , COS Cells , Chlorocebus aethiops , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Computational Biology , Databases, Genetic , Fertility , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Genome , Histones/deficiency , Histones/genetics , Infertility, Male/genetics , Infertility, Male/metabolism , Infertility, Male/pathology , Infertility, Male/physiopathology , Male , Mice, 129 Strain , Mice, Knockout , Nucleosomes/genetics , Phenotype , Spermatogenesis/genetics , Spermatozoa/pathology , TransfectionABSTRACT
The histone variant H3.3 is encoded by two distinct genes, H3f3a and H3f3b, exhibiting identical amino-acid sequence. H3.3 is required for spermatogenesis, but the molecular mechanism of its spermatogenic function remains obscure. Here, we have studied the role of each one of H3.3A and H3.3B proteins in spermatogenesis. We have generated transgenic conditional knock-out/knock-in (cKO/KI) epitope-tagged FLAG-FLAG-HA-H3.3B (H3.3BHA) and FLAG-FLAG-HA-H3.3A (H3.3AHA) mouse lines. We show that H3.3B, but not H3.3A, is required for spermatogenesis and male fertility. Analysis of the molecular mechanism unveils that the absence of H3.3B led to alterations in the meiotic/post-meiotic transition. Genome-wide RNA-seq reveals that the depletion of H3.3B in meiotic cells is associated with increased expression of the whole sex X and Y chromosomes as well as of both RLTR10B and RLTR10B2 retrotransposons. In contrast, the absence of H3.3B resulted in down-regulation of the expression of piRNA clusters. ChIP-seq experiments uncover that RLTR10B and RLTR10B2 retrotransposons, the whole sex chromosomes and the piRNA clusters are markedly enriched of H3.3. Taken together, our data dissect the molecular mechanism of H3.3B functions during spermatogenesis and demonstrate that H3.3B, depending on its chromatin localization, is involved in either up-regulation or down-regulation of expression of defined large chromatin regions.
Subject(s)
Histones , RNA, Small Interfering/metabolism , Retroelements , Spermatogenesis , Animals , Chromatin/genetics , Histones/genetics , Histones/metabolism , Male , Mice , Sex Chromosomes/metabolismABSTRACT
The conversion of male germ cell chromatin to a nucleoprotamine structure is fundamental to the life cycle, yet the underlying molecular details remain obscure. Here we show that an essential step is the genome-wide incorporation of TH2B, a histone H2B variant of hitherto unknown function. Using mouse models in which TH2B is depleted or C-terminally modified, we show that TH2B directs the final transformation of dissociating nucleosomes into protamine-packed structures. Depletion of TH2B induces compensatory mechanisms that permit histone removal by up-regulating H2B and programming nucleosome instability through targeted histone modifications, including lysine crotonylation and arginine methylation. Furthermore, after fertilization, TH2B reassembles onto the male genome during protamine-to-histone exchange. Thus, TH2B is a unique histone variant that plays a key role in the histone-to-protamine packing of the male genome and guides genome-wide chromatin transitions that both precede and follow transmission of the male genome to the egg.
Subject(s)
Chromatin/metabolism , Histones/metabolism , Protamines/metabolism , Animals , Epigenesis, Genetic , Female , Fertilization/physiology , Gene Expression Regulation, Developmental , Genome , Histones/genetics , Male , Meiosis , Mice , Nucleosomes , Spermatogenesis/genetics , Testis/metabolismABSTRACT
Male germ cell differentiation is a highly regulated multistep process initiated by the commitment of progenitor cells into meiosis and characterized by major chromatin reorganizations in haploid spermatids. We report here that a single member of the double bromodomain BET factors, Brdt, is a master regulator of both meiotic divisions and post-meiotic genome repackaging. Upon its activation at the onset of meiosis, Brdt drives and determines the developmental timing of a testis-specific gene expression program. In meiotic and post-meiotic cells, Brdt initiates a genuine histone acetylation-guided programming of the genome by activating essential genes and repressing a 'progenitor cells' gene expression program. At post-meiotic stages, a global chromatin hyperacetylation gives the signal for Brdt's first bromodomain to direct the genome-wide replacement of histones by transition proteins. Brdt is therefore a unique and essential regulator of male germ cell differentiation, which, by using various domains in a developmentally controlled manner, first drives a specific spermatogenic gene expression program, and later controls the tight packaging of the male genome.
Subject(s)
Nuclear Proteins/metabolism , Spermatogenesis/physiology , Animals , Gene Expression Profiling , Genome/physiology , Histone Acetyltransferases/metabolism , Histones/metabolism , Male , Meiosis/physiology , Mice , Spermatozoa/growth & development , Spermatozoa/metabolismABSTRACT
The mammalian genome contains numerous regions known as facultative heterochromatin, which contribute to transcriptional silencing during development and cell differentiation. We have analyzed the pattern of histone modifications associated with facultative heterochromatin within the mouse imprinted Snurf-Snrpn cluster, which is homologous to the human Prader-Willi syndrome genomic region. We show here that the maternally inherited Snurf-Snrpn 3-Mb region, which is silenced by a potent transcription repressive mechanism, is uniformly enriched in histone methylation marks usually found in constitutive heterochromatin, such as H4K20me3, H3K9me3, and H3K79me3. Strikingly, we found that trimethylated histone H3 at lysine 36 (H3K36me3), which was previously identified as a hallmark of actively transcribed regions, is deposited onto the silenced, maternally contributed 3-Mb imprinted region. We show that H3K36me3 deposition within this large heterochromatin domain does not correlate with transcription events, suggesting the existence of an alternative pathway for the deposition of this histone modification. In addition, we demonstrate that H3K36me3 is markedly enriched at the level of pericentromeric heterochromatin in mouse embryonic stem cells and fibroblasts. This result indicates that H3K36me3 is associated with both facultative and constitutive heterochromatin. Our data suggest that H3K36me3 function is not restricted to actively transcribed regions only and may contribute to the composition of heterochromatin, in combination with other histone modifications.
Subject(s)
Heterochromatin/genetics , Heterochromatin/metabolism , Histones/metabolism , Lysine/metabolism , Animals , Chromosomes, Mammalian , Epigenomics , Female , Gene Expression Regulation , Gene Silencing , Male , Methylation , Mice , Mice, Inbred C57BL , Nuclear Proteins/genetics , Transcription, GeneticABSTRACT
We recently designed the CIME cocktail consisting of 10 drugs to assess the activity of the major human CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A), a phase II enzyme (UGT1A1/6/9), two drug transporters (P-gp and OATP1B1) and a component of the renal function ( Videau et al. 2010 ). The present work aimed at studying the usefulness of the CIME cocktail in the rat.The CIME cocktail was given per os to three male and three female rats, or incubated with rat liver microsomes. Parent substrates and metabolites were quantified by LC-MS/MS in plasma, urine and hepatic microsomal media, and phenotyping index were subsequently calculated.The CIME cocktail could therefore be used in the rat to phenotype rapidly and simultaneously CYP3A1/2 with omeprazole/omeprazole-sulfone, midazolam/1'-hydroxymidazolam or 4-hydroxymidazolam and/or dextromethorphan/3-methoxymorphinan, CYP2C6/11 with tolbutamide/4-hydroxytolbutamide, CYP2D1/2 with omeprazole/5-hydroxyomeprazole or dextromethorphan/dextrorphan, and UGT1A6/7 with acetaminophen/acetaminophen-glucuronide. Our results confirmed also several known gender differences and brought new information on the urinary excretion of rosuvastatin. However, the major rat CYPs, CYP2C11 and CYP2C12, are not specifically assessed. An optimized version of the CIME cocktail should therefore be designed and would be of major importance to more largely phenotype DMPK enzymes in rats to study DMPK variability factors such as disease, age, or to exposure to inductors or inhibitors.
Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Membrane Transport Proteins/metabolism , Pharmacokinetics , Phenotype , Animals , Female , Humans , Male , Rats , Sex Factors , Species Specificity , Tandem Mass SpectrometryABSTRACT
During mammalian development, chromatin dynamics and epigenetic marking are important for genome reprogramming. Recent data suggest an important role for the chromatin assembly machinery in this process. To analyze the role of chromatin assembly factor 1 (CAF-1) during pre-implantation development, we generated a mouse line carrying a targeted mutation in the gene encoding its large subunit, p150CAF-1. Loss of p150CAF-1 in homozygous mutants leads to developmental arrest at the 16-cell stage. Absence of p150CAF-1 in these embryos results in severe alterations in the nuclear organization of constitutive heterochromatin. We provide evidence that in wild-type embryos, heterochromatin domains are extensively reorganized between the two-cell and blastocyst stages. In p150CAF-1 mutant 16-cell stage embryos, the altered organization of heterochromatin displays similarities to the structure of heterochromatin in two- to four-cell stage wild-type embryos, suggesting that CAF-1 is required for the maturation of heterochromatin during preimplantation development. In embryonic stem cells, depletion of p150CAF-1 using RNA interference results in the mislocalization, loss of clustering, and decondensation of pericentric heterochromatin domains. Furthermore, loss of CAF-1 in these cells results in the alteration of epigenetic histone methylation marks at the level of pericentric heterochromatin. These alterations of heterochromatin are not found in p150CAF-1-depleted mouse embryonic fibroblasts, which are cells that are already lineage committed, suggesting that CAF-1 is specifically required for heterochromatin organization in pluripotent embryonic cells. Our findings underline the role of the chromatin assembly machinery in controlling the spatial organization and epigenetic marking of the genome in early embryos and embryonic stem cells.
Subject(s)
Embryonic Stem Cells/physiology , Heterochromatin/metabolism , Pluripotent Stem Cells/physiology , Proteins/genetics , Proteins/physiology , Animals , Blastocyst/physiology , Embryonic Development , Epigenesis, Genetic , Exons , Exoribonucleases , Female , Gene Targeting , Male , Mice , Mice, Inbred C57BL , Repressor Proteins , RibonucleasesABSTRACT
Genes selectively expressed in the striatum may be involved in the preferential vulnerability of striatal neurons to Huntington's disease (HD). Here, we investigated whether perturbations of Capucin expression, which is enriched in the striatum and downregulated in Huntington's disease models, could modify the neurotoxicity induced by the injection of a lentiviral vector encoding a short N-terminal fragment of mutant Huntingtin (mHtt) into the mouse striatum. Neither constitutive Capucin deficiency in knockout mice nor lentiviral vector-mediated Capucin overexpression in the striatum of adult wild type mice significantly modified vulnerability to the mHtt fragment in vivo, suggesting that Capucin has no impact on mHtt toxicity.
Subject(s)
Corpus Striatum/metabolism , Corpus Striatum/pathology , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Animals , Huntingtin Protein , Membrane Proteins/genetics , Mice , Mice, Knockout , MutationABSTRACT
Acetylation is a post-translational modification that influences the activity of numerous proteins in vitro. Among them, the myogenic transcription factor MyoD shows an increased transcriptional activity in vitro when acetylated on two lysines (K): lysines 99 and 102. Here, we have investigated the biological relevance of this acetylation in vivo. Using specific antibodies, we show that endogenous MyoD is acetylated on lysines 99 and 102 in myoblasts. Moreover, we show the functional importance of acetylation in live animals by using a mutant of MyoD in which lysines 99 and 102 were replaced by arginines (R). Knock-in embryos homozygous for the MyoD(R99,102) allele expressed slightly reduced levels of MyoD but developed normally. However, the knock-in homozygous adult mice showed a phenotype that was almost identical to that of MyoD-knockout animals, including delayed muscle regeneration in vivo and an increased number of myoblasts but with reduced differentiation potential in vitro. Together, these results show the importance of MyoD acetylation for adult myogenesis.