Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neurol Neurosurg Psychiatry ; 95(4): 356-359, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-37833041

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is associated with the tauopathies Alzheimer's disease and chronic traumatic encephalopathy. Advanced immunoassays show significant elevations in plasma total tau (t-tau) early post-TBI, but concentrations subsequently normalise rapidly. Tau phosphorylated at serine-181 (p-tau181) is a well-validated Alzheimer's disease marker that could potentially seed progressive neurodegeneration. We tested whether post-traumatic p-tau181 concentrations are elevated and relate to progressive brain atrophy. METHODS: Plasma p-tau181 and other post-traumatic biomarkers, including total-tau (t-tau), neurofilament light (NfL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP), were assessed after moderate-to-severe TBI in the BIO-AX-TBI cohort (first sample mean 2.7 days, second sample within 10 days, then 6 weeks, 6 months and 12 months, n=42). Brain atrophy rates were assessed in aligned serial MRI (n=40). Concentrations were compared patients with and without Alzheimer's disease, with healthy controls. RESULTS: Plasma p-tau181 concentrations were significantly raised in patients with Alzheimer's disease but not after TBI, where concentrations were non-elevated, and remained stable over one year. P-tau181 after TBI was not predictive of brain atrophy rates in either grey or white matter. In contrast, substantial trauma-associated elevations in t-tau, NfL, GFAP and UCH-L1 were seen, with concentrations of NfL and t-tau predictive of brain atrophy rates. CONCLUSIONS: Plasma p-tau181 is not significantly elevated during the first year after moderate-to-severe TBI and levels do not relate to neuroimaging measures of neurodegeneration.


Subject(s)
Alzheimer Disease , Brain Injuries, Traumatic , Chronic Traumatic Encephalopathy , Humans , Biomarkers , tau Proteins , Magnetic Resonance Imaging , Ubiquitin Thiolesterase , Atrophy , Amyloid beta-Peptides
2.
Brain ; 146(8): 3232-3242, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36975168

ABSTRACT

The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points. In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer's disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type. Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 ± 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific. In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.


Subject(s)
Multiple System Atrophy , Parkinsonian Disorders , Supranuclear Palsy, Progressive , Male , Humans , Middle Aged , Aged , Female , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/drug therapy , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/pathology , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Magnetic Resonance Imaging , United Kingdom
3.
Article in English | MEDLINE | ID: mdl-37979968

ABSTRACT

BACKGROUND: Lower limb muscle magnetic resonance imaging (MRI) obtained fat fraction (FF) can detect disease progression in patients with Charcot-Marie-Tooth disease 1A (CMT1A). However, analysis is time-consuming and requires manual segmentation of lower limb muscles. We aimed to assess the responsiveness, efficiency and accuracy of acquiring FF MRI using an artificial intelligence-enabled automated segmentation technique. METHODS: We recruited 20 CMT1A patients and 7 controls for assessment at baseline and 12 months. The three-point-Dixon fat water separation technique was used to determine thigh-level and calf-level muscle FF at a single slice using regions of interest defined using Musclesense, a trained artificial neural network for lower limb muscle image segmentation. A quality control (QC) check and correction of the automated segmentations was undertaken by a trained observer. RESULTS: The QC check took on average 30 seconds per slice to complete. Using QC checked segmentations, the mean calf-level FF increased significantly in CMT1A patients from baseline over an average follow-up of 12.5 months (1.15%±1.77%, paired t-test p=0.016). Standardised response mean (SRM) in patients was 0.65. Without QC checks, the mean FF change between baseline and follow-up, at 1.15%±1.68% (paired t-test p=0.01), was almost identical to that seen in the corrected data, with a similar overall SRM at 0.69. CONCLUSIONS: Using automated image segmentation for the first time in a longitudinal study in CMT, we have demonstrated that calf FF has similar responsiveness to previously published data, is efficient with minimal time needed for QC checks and is accurate with minimal corrections needed.

4.
Brain ; 145(12): 4398-4408, 2022 12 19.
Article in English | MEDLINE | ID: mdl-35903017

ABSTRACT

Disease-modifying treatments are currently being trialled in multiple system atrophy. Approaches based solely on clinical measures are challenged by heterogeneity of phenotype and pathogenic complexity. Neurofilament light chain protein has been explored as a reliable biomarker in several neurodegenerative disorders but data on multiple system atrophy have been limited. Therefore, neurofilament light chain is not yet routinely used as an outcome measure in multiple system atrophy. We aimed to comprehensively investigate the role and dynamics of neurofilament light chain in multiple system atrophy combined with cross-sectional and longitudinal clinical and imaging scales and for subject trial selection. In this cohort study, we recruited cross-sectional and longitudinal cases in a multicentre European set-up. Plasma and CSF neurofilament light chain concentrations were measured at baseline from 212 multiple system atrophy cases, annually for a mean period of 2 years in 44 multiple system atrophy patients in conjunction with clinical, neuropsychological and MRI brain assessments. Baseline neurofilament light chain characteristics were compared between groups. Cox regression was used to assess survival; receiver operating characteristic analysis to assess the ability of neurofilament light chain to distinguish between multiple system atrophy patients and healthy controls. Multivariate linear mixed-effects models were used to analyse longitudinal neurofilament light chain changes and correlated with clinical and imaging parameters. Polynomial models were used to determine the differential trajectories of neurofilament light chain in multiple system atrophy. We estimated sample sizes for trials aiming to decrease neurofilament light chain levels. We show that in multiple system atrophy, baseline plasma neurofilament light chain levels were better predictors of clinical progression, survival and degree of brain atrophy than the neurofilament light chain rate of change. Comparative analysis of multiple system atrophy progression over the course of disease, using plasma neurofilament light chain and clinical rating scales, indicated that neurofilament light chain levels rise as the motor symptoms progress, followed by deceleration in advanced stages. Sample size prediction suggested that significantly lower trial participant numbers would be needed to demonstrate treatment effects when incorporating plasma neurofilament light chain values into multiple system atrophy clinical trials in comparison to clinical measures alone. In conclusion, neurofilament light chain correlates with clinical disease severity, progression and prognosis in multiple system atrophy. Combined with clinical and imaging analysis, neurofilament light chain can inform patient stratification and serve as a reliable biomarker of treatment response in future multiple system atrophy trials of putative disease-modifying agents.


Subject(s)
Multiple System Atrophy , Humans , Cohort Studies , Cross-Sectional Studies , Intermediate Filaments , Neurofilament Proteins , Biomarkers , Disease Progression
5.
J Neurochem ; 161(2): 146-157, 2022 04.
Article in English | MEDLINE | ID: mdl-35137414

ABSTRACT

SARS-CoV-2 infection can damage the nervous system with multiple neurological manifestations described. However, there is limited understanding of the mechanisms underlying COVID-19 neurological injury. This is a cross-sectional exploratory prospective biomarker cohort study of 21 patients with COVID-19 neurological syndromes (Guillain-Barre Syndrome [GBS], encephalitis, encephalopathy, acute disseminated encephalomyelitis [ADEM], intracranial hypertension, and central pain syndrome) and 23 healthy COVID-19 negative controls. We measured cerebrospinal fluid (CSF) and serum biomarkers of amyloid processing, neuronal injury (neurofilament light), astrocyte activation (GFAp), and neuroinflammation (tissue necrosis factor [TNF] ɑ, interleukin [IL]-6, IL-1ß, IL-8). Patients with COVID-19 neurological syndromes had significantly reduced CSF soluble amyloid precursor protein (sAPP)-ɑ (p = 0.004) and sAPPß (p = 0.03) as well as amyloid ß (Aß) 40 (p = 5.2 × 10-8 ), Aß42 (p = 3.5 × 10-7 ), and Aß42/Aß40 ratio (p = 0.005) compared to controls. Patients with COVID-19 neurological syndromes showed significantly increased neurofilament light (NfL, p = 0.001) and this negatively correlated with sAPPɑ and sAPPß. Conversely, GFAp was significantly reduced in COVID-19 neurological syndromes (p = 0.0001) and this positively correlated with sAPPɑ and sAPPß. COVID-19 neurological patients also displayed significantly increased CSF proinflammatory cytokines and these negatively correlated with sAPPɑ and sAPPß. A sensitivity analysis of COVID-19-associated GBS revealed a non-significant trend toward greater impairment of amyloid processing in COVID-19 central than peripheral neurological syndromes. This pilot study raises the possibility that patients with COVID-19-associated neurological syndromes exhibit impaired amyloid processing. Altered amyloid processing was linked to neuronal injury and neuroinflammation but reduced astrocyte activation.


Subject(s)
Alzheimer Disease , Amyloidosis , COVID-19 , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , COVID-19/complications , Cohort Studies , Cross-Sectional Studies , Humans , Pilot Projects , Prospective Studies , SARS-CoV-2
6.
J Neurol Neurosurg Psychiatry ; 93(6): 651-658, 2022 06.
Article in English | MEDLINE | ID: mdl-35078917

ABSTRACT

OBJECTIVES: This longitudinal study compared emerging plasma biomarkers for neurodegenerative disease between controls, patients with Alzheimer's disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP). METHODS: Plasma phosphorylated tau at threonine-181 (p-tau181), amyloid beta (Αß)42, Aß40, neurofilament light (NfL) and glial fibrillar acidic protein (GFAP) were measured using highly sensitive single molecule immunoassays (Simoa) in a multicentre cohort of 300 participants (controls=73, amyloid positive mild cognitive impairment (MCI+) and AD dementia=63, LBD=117, FTD=28, PSP=19). LBD participants had known positron emission tomography (PET)-Aß status. RESULTS: P-tau181 was elevated in MCI+AD compared with all other groups. Aß42/40 was lower in MCI+AD compared with controls and FTD. NfL was elevated in all dementias compared with controls while GFAP was elevated in MCI+AD and LBD. Plasma biomarkers could classify between MCI+AD and controls, FTD and PSP with high accuracy but showed limited ability in differentiating MCI+AD from LBD. No differences were detected in the levels of plasma biomarkers when comparing PET-Aß positive and negative LBD. P-tau181, NfL and GFAP were associated with baseline and longitudinal cognitive decline in a disease specific pattern. CONCLUSION: This large study shows the role of plasma biomarkers in differentiating patients with different dementias, and at monitoring longitudinal change. We confirm that p-tau181 is elevated in MCI+AD, versus controls, FTD and PSP, but is less accurate in the classification between MCI+AD and LBD or detecting amyloid brain pathology in LBD. NfL was elevated in all dementia groups, while GFAP was elevated in MCI+AD and LBD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Frontotemporal Dementia , Lewy Body Disease , Neurodegenerative Diseases , Supranuclear Palsy, Progressive , Alzheimer Disease/diagnosis , Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction/diagnosis , Frontotemporal Dementia/diagnosis , Glial Fibrillary Acidic Protein , Humans , Lewy Body Disease/diagnosis , Longitudinal Studies , Supranuclear Palsy, Progressive/diagnosis , tau Proteins
7.
Article in English | MEDLINE | ID: mdl-35577512

ABSTRACT

BACKGROUND: Patients with Parkinson's disease (PD) have variable rates of progression. More accurate prediction of progression could improve selection for clinical trials. Although some variance in clinical progression can be predicted by age at onset and phenotype, we hypothesise that this can be further improved by blood biomarkers. OBJECTIVE: To determine if blood biomarkers (serum neurofilament light (NfL) and genetic status (glucocerebrosidase, GBA and apolipoprotein E (APOE))) are useful in addition to clinical measures for prognostic modelling in PD. METHODS: We evaluated the relationship between serum NfL and baseline and longitudinal clinical measures as well as patients' genetic (GBA and APOE) status. We classified patients as having a favourable or an unfavourable outcome based on a previously validated model, and explored how blood biomarkers compared with clinical variables in distinguishing prognostic phenotypes . RESULTS: 291 patients were assessed in this study. Baseline serum NfL was associated with baseline cognitive status. Nfl predicted a shorter time to dementia, postural instability and death (dementia-HR 2.64; postural instability-HR 1.32; mortality-HR 1.89) whereas APOEe4 status was associated with progression to dementia (dementia-HR 3.12, 95% CI 1.63 to 6.00). NfL levels and genetic variables predicted unfavourable progression to a similar extent as clinical predictors. The combination of clinical, NfL and genetic data produced a stronger prediction of unfavourable outcomes compared with age and gender (area under the curve: 0.74-age/gender vs 0.84-ALL p=0.0103). CONCLUSIONS: Clinical trials of disease-modifying therapies might usefully stratify patients using clinical, genetic and NfL status at the time of recruitment.

8.
J Neurol Neurosurg Psychiatry ; 93(7): 761-771, 2022 07.
Article in English | MEDLINE | ID: mdl-35379698

ABSTRACT

OBJECTIVE: A GGGGCC repeat expansion in the C9orf72 gene is the most common cause of genetic frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). As potential therapies targeting the repeat expansion are now entering clinical trials, sensitive biomarker assays of target engagement are urgently required. Our objective was to develop such an assay. METHODS: We used the single molecule array (Simoa) platform to develop an immunoassay for measuring poly(GP) dipeptide repeat proteins (DPRs) generated by the C9orf72 repeat expansion in cerebrospinal fluid (CSF) of people with C9orf72-associated FTD/ALS. RESULTS AND CONCLUSIONS: We show the assay to be highly sensitive and robust, passing extensive qualification criteria including low intraplate and interplate variability, a high precision and accuracy in measuring both calibrators and samples, dilutional parallelism, tolerance to sample and standard freeze-thaw and no haemoglobin interference. We used this assay to measure poly(GP) in CSF samples collected through the Genetic FTD Initiative (N=40 C9orf72 and 15 controls). We found it had 100% specificity and 100% sensitivity and a large window for detecting target engagement, as the C9orf72 CSF sample with the lowest poly(GP) signal had eightfold higher signal than controls and on average values from C9orf72 samples were 38-fold higher than controls, which all fell below the lower limit of quantification of the assay. These data indicate that a Simoa-based poly(GP) DPR assay is suitable for use in clinical trials to determine target engagement of therapeutics aimed at reducing C9orf72 repeat-containing transcripts.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Biomarkers/cerebrospinal fluid , C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Humans
9.
Mol Psychiatry ; 26(10): 5967-5976, 2021 10.
Article in English | MEDLINE | ID: mdl-32665603

ABSTRACT

Blood biomarkers have great potential to advance clinical care and accelerate trials in Alzheimer's disease (AD). Plasma phospho-tau181 (p-tau181) is a promising blood biomarker however, it is unknown if levels increase in presymptomatic AD. Therefore, we investigated the timing of p-tau181 changes using 153 blood samples from 70 individuals in a longitudinal study of familial AD (FAD). Plasma p-tau181 was measured, using an in-house single molecule array assay. We compared p-tau181 between symptomatic carriers, presymptomatic carriers, and non-carriers, adjusting for age and sex. We examined the relationship between p-tau181 and neurofilament light and estimated years to/from symptom onset (EYO), as well as years to/from actual onset in a symptomatic subgroup. In addition, we studied associations between p-tau181 and clinical severity, as well testing for differences between genetic subgroups. Twenty-four were presymptomatic carriers (mean baseline EYO -9.6 years) while 27 were non-carriers. Compared with non-carriers, plasma p-tau181 concentration was higher in both symptomatic (p < 0.001) and presymptomatic mutation carriers (p < 0.001). Plasma p-tau181 showed considerable intra-individual variability but individual values discriminated symptomatic (AUC 0.93 [95% CI 0.85-0.98]) and presymptomatic (EYO ≥ -7 years) (AUC 0.86 [95% CI 0.72-0.94]) carriers from non-carriers of the same age and sex. From a fitted model there was evidence (p = 0.050) that p-tau181 concentrations were higher in mutation carriers than non-carriers from 16 years prior to estimated symptom onset. Our finding that plasma p-tau181 concentration is increased in symptomatic and presymptomatic FAD suggests potential utility as an easily accessible biomarker of AD pathology.


Subject(s)
Alzheimer Disease , Alzheimer Disease/genetics , Biomarkers , Cohort Studies , Humans , Longitudinal Studies , tau Proteins/genetics
10.
Brain ; 144(3): 761-768, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33517369

ABSTRACT

To improve outcome prediction following subarachnoid haemorrhage (SAH), we sought a biomarker integrating early brain injury and multiple secondary pathological processes in a prospective study of 42 non-traumatic SAH patients and 19 control individuals. Neurofilament light (NF-L) was elevated in CSF and serum following SAH. CSF and serum NF-L on Days 1-3 post-SAH strongly predicted modified Rankin score at 6 months, independent of World Federation of Neurosurgical Societies (WFNS) score. NF-L from Day 4 onwards also had a profound impact on outcome. To link NF-L to a SAH-specific pathological process, we investigated NF-L's relationship with extracellular haemoglobin. Most CSF haemoglobin was not complexed with haptoglobin, yet was able to be bound by exogenous haptoglobin i.e. haemoglobin was scavengeable. CSF scavengeable haemoglobin was strongly predictive of subsequent CSF NF-L. Next, we investigated NF-L efflux from the brain after SAH. Serum and CSF NF-L correlated positively. The serum/CSF NF-L ratio was lower in SAH versus control subjects, in keeping with glymphatic efflux dysfunction after SAH. CSF/serum albumin ratio was increased following SAH versus controls. The serum/CSF NF-L ratio correlated negatively with the CSF/serum albumin ratio, indicating that transfer of the two proteins across the blood-brain interface is dissociated. In summary, NF-L is a strong predictive marker for SAH clinical outcome, adding value to the WFNS score, and is a promising surrogate end point in clinical trials.


Subject(s)
Biomarkers/metabolism , Neurofilament Proteins/metabolism , Recovery of Function , Subarachnoid Hemorrhage/metabolism , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
11.
Brain ; 144(10): 2964-2970, 2021 11 29.
Article in English | MEDLINE | ID: mdl-33892504

ABSTRACT

In vitro studies of autosomal dominant Alzheimer's disease implicate longer amyloid-ß peptides in disease pathogenesis; however, less is known about the behaviour of these mutations in vivo. In this cross-sectional cohort study, we used liquid chromatography-tandem mass spectrometry to analyse 66 plasma samples from individuals who were at risk of inheriting a mutation or were symptomatic. We tested for differences in amyloid-ß (Aß)42:38, Aß42:40 and Aß38:40 ratios between presenilin 1 (PSEN1) and amyloid precursor protein (APP) carriers. We examined the relationship between plasma and in vitro models of amyloid-ß processing and tested for associations with parental age at onset. Thirty-nine participants were mutation carriers (28 PSEN1 and 11 APP). Age- and sex-adjusted models showed marked differences in plasma amyloid-ß between genotypes: higher Aß42:38 in PSEN1 versus APP (P < 0.001) and non-carriers (P < 0.001); higher Aß38:40 in APP versus PSEN1 (P < 0.001) and non-carriers (P < 0.001); while Aß42:40 was higher in both mutation groups compared to non-carriers (both P < 0.001). Amyloid-ß profiles were reasonably consistent in plasma and cell lines. Within the PSEN1 group, models demonstrated associations between Aß42:38, Aß42:40 and Aß38:40 ratios and parental age at onset. In vivo differences in amyloid-ß processing between PSEN1 and APP carriers provide insights into disease pathophysiology, which can inform therapy development.


Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/genetics , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/genetics , Presenilin-1/blood , Presenilin-1/genetics , Adult , Alzheimer Disease/diagnosis , Biomarkers/blood , Cohort Studies , Cross-Sectional Studies , Female , Genotype , Humans , Induced Pluripotent Stem Cells/metabolism , Longitudinal Studies , Male , Middle Aged
12.
Gene Ther ; 28(10-11): 659-675, 2021 11.
Article in English | MEDLINE | ID: mdl-33692503

ABSTRACT

Mutations in the GJB1 gene, encoding the gap junction (GJ) protein connexin32 (Cx32), cause X-linked Charcot-Marie-Tooth disease (CMT1X), an inherited demyelinating neuropathy. We developed a gene therapy approach for CMT1X using an AAV9 vector to deliver the GJB1/Cx32 gene under the myelin protein zero (Mpz) promoter for targeted expression in Schwann cells. Lumbar intrathecal injection of the AAV9-Mpz.GJB1 resulted in widespread biodistribution in the peripheral nervous system including lumbar roots, sciatic and femoral nerves, as well as in Cx32 expression in the paranodal non-compact myelin areas of myelinated fibers. A pre-, as well as post-onset treatment trial in Gjb1-null mice, demonstrated improved motor performance and sciatic nerve conduction velocities along with improved myelination and reduced inflammation in peripheral nerve tissues. Blood biomarker levels were also significantly ameliorated in treated mice. This study provides evidence that a clinically translatable AAV9-mediated gene therapy approach targeting Schwann cells could potentially treat CMT1X.


Subject(s)
Charcot-Marie-Tooth Disease , Schwann Cells , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/therapy , Connexins/genetics , Connexins/metabolism , Genetic Therapy/methods , Mice , Mice, Knockout , Schwann Cells/metabolism , Tissue Distribution
13.
J Neurol Neurosurg Psychiatry ; 92(2): 204-215, 2021 02.
Article in English | MEDLINE | ID: mdl-33188134

ABSTRACT

The frontotemporal dementia (FTD) spectrum of neurodegenerative disorders includes a heterogeneous group of conditions. However, following on from a series of important molecular studies in the early 2000s, major advances have now been made in the understanding of the pathological and genetic underpinnings of the disease. In turn, alongside the development of novel methodologies for measuring proteins and other molecules in biological fluids, the last 10 years have seen a huge increase in biomarker studies within FTD. This recent past has focused on attempting to develop markers that will help differentiate FTD from other dementias (particularly Alzheimer's disease (AD)), as well as from non-neurodegenerative conditions such as primary psychiatric disorders. While cerebrospinal fluid, and more recently blood, markers of AD have been successfully developed, specific markers identifying primary tauopathies or TDP-43 proteinopathies are still lacking. More focus at the moment has been on non-specific markers of neurodegeneration, and in particular, multiple studies of neurofilament light chain have highlighted its importance as a diagnostic, prognostic and staging marker of FTD. As clinical trials get under way in specific genetic forms of FTD, measures of progranulin and dipeptide repeat proteins in biofluids have become important potential measures of therapeutic response. However, understanding of whether drugs restore cellular function will also be important, and studies of key pathophysiological processes, including neuroinflammation, lysosomal function and synaptic health, are also now becoming more common. There is much still to learn in the fluid biomarker field in FTD, but the creation of large multinational cohorts is facilitating better powered studies and will pave the way for larger omics studies, including proteomics, metabolomics and lipidomics, as well as investigations of multimodal biomarker combinations across fluids, brain imaging and other domains. Here we provide an overview of the past, present and future of fluid biomarkers within the FTD field.


Subject(s)
Frontotemporal Dementia/diagnosis , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Diagnosis, Differential , Forecasting , Frontotemporal Dementia/blood , Frontotemporal Dementia/cerebrospinal fluid , Humans
14.
J Neurol Neurosurg Psychiatry ; 91(3): 263-270, 2020 03.
Article in English | MEDLINE | ID: mdl-31937580

ABSTRACT

BACKGROUND: There are few validated fluid biomarkers in frontotemporal dementia (FTD). Glial fibrillary acidic protein (GFAP) is a measure of astrogliosis, a known pathological process of FTD, but has yet to be explored as potential biomarker. METHODS: Plasma GFAP and neurofilament light chain (NfL) concentration were measured in 469 individuals enrolled in the Genetic FTD Initiative: 114 C9orf72 expansion carriers (74 presymptomatic, 40 symptomatic), 119 GRN mutation carriers (88 presymptomatic, 31 symptomatic), 53 MAPT mutation carriers (34 presymptomatic, 19 symptomatic) and 183 non-carrier controls. Biomarker measures were compared between groups using linear regression models adjusted for age and sex with family membership included as random effect. Participants underwent standardised clinical assessments including the Mini-Mental State Examination (MMSE), Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale and MRI. Spearman's correlation coefficient was used to investigate the relationship of plasma GFAP to clinical and imaging measures. RESULTS: Plasma GFAP concentration was significantly increased in symptomatic GRN mutation carriers (adjusted mean difference from controls 192.3 pg/mL, 95% CI 126.5 to 445.6), but not in those with C9orf72 expansions (9.0, -61.3 to 54.6), MAPT mutations (12.7, -33.3 to 90.4) or the presymptomatic groups. GFAP concentration was significantly positively correlated with age in both controls and the majority of the disease groups, as well as with NfL concentration. In the presymptomatic period, higher GFAP concentrations were correlated with a lower cognitive score (MMSE) and lower brain volume, while in the symptomatic period, higher concentrations were associated with faster rates of atrophy in the temporal lobe. CONCLUSIONS: Raised GFAP concentrations appear to be unique to GRN-related FTD, with levels potentially increasing just prior to symptom onset, suggesting that GFAP may be an important marker of proximity to onset, and helpful for forthcoming therapeutic prevention trials.


Subject(s)
C9orf72 Protein/genetics , Frontotemporal Dementia/blood , Frontotemporal Dementia/genetics , Glial Fibrillary Acidic Protein/blood , Progranulins/genetics , tau Proteins/genetics , Adult , Aged , Biomarkers/blood , Case-Control Studies , Female , Humans , Male , Middle Aged , Mutation/genetics , Neurofilament Proteins/blood
15.
Brain ; 142(5): 1227-1241, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30907403

ABSTRACT

Charcot-Marie-Tooth disease type 4C is the most common recessively inherited demyelinating neuropathy that results from loss of function mutations in the SH3TC2 gene. Sh3tc2-/- mice represent a well characterized disease model developing early onset progressive peripheral neuropathy with hypo- and demyelination, slowing of nerve conduction velocities and disturbed nodal architecture. The aim of this project was to develop a gene replacement therapy for treating Charcot-Marie-Tooth disease type 4C to rescue the phenotype of the Sh3tc2-/- mouse model. We generated a lentiviral vector LV-Mpz.SH3TC2.myc to drive expression of the human SH3TC2 cDNA under the control of the Mpz promoter specifically in myelinating Schwann cells. The vector was delivered into 3-week-old Sh3tc2-/- mice by lumbar intrathecal injection and gene expression was assessed 4-8 weeks after injection. Immunofluorescence analysis showed presence of myc-tagged human SH3TC2 in sciatic nerves and lumbar roots in the perinuclear cytoplasm of a subset of Schwann cells, in a dotted pattern co-localizing with physiologically interacting protein Rab11. Quantitative PCR analysis confirmed SH3TC2 mRNA expression in different peripheral nervous system tissues. A treatment trial was initiated in 3 weeks old randomized Sh3tc2-/- littermate mice which received either the full or mock (LV-Mpz.Egfp) vector. Behavioural analysis 8 weeks after injection showed improved motor performance in rotarod and foot grip tests in treated Sh3tc2-/- mice compared to mock vector-treated animals. Moreover, motor nerve conduction velocities were increased in treated Sh3tc2-/- mice. On a structural level, morphological analysis revealed significant improvement in g-ratios, myelin thickness, and ratios of demyelinated fibres in lumbar roots and sciatic nerves of treated Sh3tc2-/- mice. Finally, treated mice also showed improved nodal molecular architecture and reduction of blood neurofilament light levels, a clinically relevant biomarker for axonal injury/degeneration. This study provides a proof of principle for viral gene replacement therapy targeted to Schwann cells to treat Charcot-Marie-Tooth disease type 4C and potentially other similar demyelinating inherited neuropathies.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/therapy , Disease Models, Animal , Genetic Therapy/methods , Intracellular Signaling Peptides and Proteins/genetics , Animals , Charcot-Marie-Tooth Disease/metabolism , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/deficiency , Mice , Mice, Knockout , Mice, Transgenic
16.
J Neurol Neurosurg Psychiatry ; 90(7): 740-746, 2019 07.
Article in English | MEDLINE | ID: mdl-30981993

ABSTRACT

BACKGROUND: Frontotemporal dementia (FTD) is a pathologically heterogeneous neurodegenerative disorder associated usually with tau or TDP-43 pathology, although some phenotypes such as logopenic variant primary progressive aphasia are more commonly associated with Alzheimer's disease pathology. Currently, there are no biomarkers able to diagnose the underlying pathology during life. In this study, we aimed to investigate the potential of novel tau species within cerebrospinal fluid (CSF) as biomarkers for tau pathology in FTD. METHODS: 86 participants were included: 66 with a clinical diagnosis within the FTD spectrum and 20 healthy controls. Immunoassays targeting tau fragments N-123, N-mid-region, N-224 and X-368, as well as a non-phosphorylated form of tau were measured in CSF, along with total-tau (T-tau) and phospho-tau (P-tau(181)). Patients with FTD were grouped based on their Aß42 level into those likely to have underlying Alzheimer's disease (AD) pathology (n=21) and those with likely frontotemporal lobar degeneration (FTLD) pathology (n=45). The FTLD group was then subgrouped based on their underlying clinical and genetic diagnoses into those with likely tau (n=7) or TDP-43 (n=18) pathology. RESULTS: Significantly higher concentrations of tau N-mid-region, tau N-224 and non-phosphorylated tau were seen in both the AD group and FTLD group compared with controls. However, none of the novel tau species showed a significant difference between the AD and FTLD groups, nor between the TDP-43 and tau pathology groups. In a subanalysis, normalising for total-tau, none of the novel tau species provided a higher sensitivity and specificity to distinguish between tau and TDP-43 pathology than P-tau(181)/T-tau, which itself only had a sensitivity of 61.1% and specificity of 85.7% with a cut-off of <0.109. CONCLUSIONS: Despite investigating multiple novel CSF tau fragments, none show promise as an FTD biomarker and so the quest for in vivo markers of FTLD-tau pathology continues.


Subject(s)
Frontotemporal Dementia/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Biomarkers/cerebrospinal fluid , Case-Control Studies , Female , Frontotemporal Dementia/diagnosis , Humans , Male , Middle Aged
17.
J Neurol Neurosurg Psychiatry ; 89(9): 955-961, 2018 09.
Article in English | MEDLINE | ID: mdl-29487167

ABSTRACT

OBJECTIVES: A blood-based biomarker of neuronal damage in sporadic Creutzfeldt-Jakob disease (sCJD) will be extremely valuable for both clinical practice and research aiming to develop effective therapies. METHODS: We used an ultrasensitive immunoassay to measure two candidate biomarkers, tau and neurofilament light (NfL), in serum from patients with sCJD and healthy controls. We tested longitudinal sample sets from six patients to investigate changes over time, and examined correlations with rate of disease progression and associations with known phenotype modifiers. RESULTS: Serum concentrations of both tau and NfL were increased in patients with sCJD. NfL distinguished patients from controls with 100% sensitivity and 100% specificity. Tau did so with 91% sensitivity and 83% specificity. Both tau and NfL appeared to increase over time in individual patients, particularly in those with several samples tested late in their disease. Tau, but not NfL, was positively correlated with rate of disease progression, and was particularly increased in patients homozygous for methionine at codon 129 of PRNP. CONCLUSIONS: These findings independently replicate other recent studies using similar methods and offer novel insights. They show clear promise for these blood-based biomarkers in prion disease. Future work should aim to fully establish their potential roles for monitoring disease progression and response to therapies.


Subject(s)
Creutzfeldt-Jakob Syndrome/blood , Neurofilament Proteins/blood , tau Proteins/blood , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Case-Control Studies , Disease Progression , Female , Humans , Male , Middle Aged , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL