Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 325
Filter
Add more filters

Publication year range
1.
BMC Microbiol ; 24(1): 306, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152378

ABSTRACT

BACKGROUND: Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly found in cereals and grains worldwide. The presence of this fungal secondary-metabolite raises public-health concerns at both the agriculture and food industry level. Recently, we have shown that DON has a negative impact on gut integrity, a feature also noticed for Campylobacter (C.) jejuni. We further demonstrated that DON increased the load of C. jejuni in the gut and inner organs. In contrast, feeding the less toxic DON metabolite deepoxy-deoxynivalenol (DOM-1) to broilers reduced the Campylobacter load in vivo. Consequently, it can be hypothesized that DON and DOM-1 have a direct effect on the growth profile of C. jejuni. The aim of the present study was to further resolve the nature of this interaction in vitro by co-incubation and RNA-sequencing. RESULTS: The co-incubation of C. jejuni with DON resulted in significantly higher bacterial growth rates from 30 h of incubation onwards. On the contrary, the co-incubation of C. jejuni with DOM-1 reduced the CFU counts, indicating that this DON metabolite might contribute to reduce the burden of C. jejuni in birds, altogether confirming in vivo data. Furthermore, the transcriptomic profile of C. jejuni following incubation with either DON or DOM-1 differed. Co-incubation of C. jejuni with DON significantly increased the expression of multiple genes which are critical for Campylobacter growth, particularly members of the Flagella gene family, frr (ribosome-recycling factor), PBP2 futA-like (Fe3+ periplasmic binding family) and PotA (ATP-binding subunit). Flagella are responsible for motility, biofilm formation and host colonization, which may explain the high Campylobacter load in the gut of DON-fed broiler chickens. On the contrary, DOM-1 downregulated the Flagella gene family and upregulated ribosomal proteins. CONCLUSION: The results highlight the adaptive mechanisms involved in the transcriptional response of C. jejuni to DON and its metabolite DOM-1, based on the following effects: (a) ribosomal proteins; (b) flagellar proteins; (c) engagement of different metabolic pathways. The results provide insight into the response of an important intestinal microbial pathogen against DON and lead to a better understanding of the luminal or environmental acclimation mechanisms in chickens.


Subject(s)
Campylobacter jejuni , Chickens , Transcriptome , Trichothecenes , Trichothecenes/metabolism , Campylobacter jejuni/drug effects , Campylobacter jejuni/genetics , Campylobacter jejuni/growth & development , Campylobacter jejuni/metabolism , Animals , Transcriptome/drug effects , Chickens/microbiology , Gene Expression Regulation, Bacterial/drug effects , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Animal Feed/microbiology
2.
Psychol Sci ; 35(3): 250-262, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38289294

ABSTRACT

Fundamental frequency ( fo) is the most perceptually salient vocal acoustic parameter, yet little is known about how its perceptual influence varies across societies. We examined how fo affects key social perceptions and how socioecological variables modulate these effects in 2,647 adult listeners sampled from 44 locations across 22 nations. Low male fo increased men's perceptions of formidability and prestige, especially in societies with higher homicide rates and greater relational mobility in which male intrasexual competition may be more intense and rapid identification of high-status competitors may be exigent. High female fo increased women's perceptions of flirtatiousness where relational mobility was lower and threats to mating relationships may be greater. These results indicate that the influence of fo on social perceptions depends on socioecological variables, including those related to competition for status and mates.


Subject(s)
Voice , Adult , Humans , Male , Female , Homicide , Social Perception , Sexual Partners
3.
Cell Biol Int ; 48(5): 682-694, 2024 May.
Article in English | MEDLINE | ID: mdl-38420874

ABSTRACT

Polycladida are the only free-living flatworms with a planktonic larval stage in some species. Currently, it is not clear if a larval stage is ancestral in polyclads, and which type of larva that would be. Known polyclad larvae are Müller's larva, Kato's larva and Goette's larva, differing by body shape and the number of lobes and eyes. A valuable character for the comparison and characterisation of polyclad larval types is the ultrastructural composition of the apical organ. This organ is situated at the anterior pole of the larva and is associated with at least one ciliary tuft. The larval apical organ of Theama mediterranea features two multiciliated apical tuft sensory cells. Six unfurcated apical tuft gland cell necks are sandwiched between the apical tuft sensory cells and two anchor cells and have their cell bodies located lateral to the brain. Another type of apical gland cell necks is embedded in the anchor cells. Ventral to the apical tuft, ciliated sensory neurons are present, which are neighbouring the cell necks of two furcated apical tuft gland cells. Based on the ultrastructural organisation of the apical organ and other morphological features, like a laterally flattened wedge-shaped body and three very small lobes, we recognise the larva of T. mediterranea as a new larval type, which we name Curini-Galletti's larva after its first discoverer. The ultrastructural similarities of the apical organ in different polyclad larvae support their possible homology, that is, all polyclad larvae have likely evolved from a common larva.


Subject(s)
Larva , Animals
4.
Avian Pathol ; : 1-12, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39114873

ABSTRACT

RESEARCH HIGHLIGHTS: Detection timepoints and patterns indicate horizontal introduction of various enteric viruses.Flock infection profiles were very heterogeneous; no dominating virus profile.Broiler production was negatively affected by the number of enteric viruses detected.Common biosecurity measures had a significant negative effect on virus prevalence.

5.
J Cell Sci ; 134(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34704600

ABSTRACT

Osteoclasts form special integrin-mediated adhesion structures called sealing zones that enable them to adhere to and resorb bone. Sealing zones consist of densely packed podosomes tightly interconnected by actin fibers. Their formation requires the presence of the hematopoietic integrin regulator kindlin-3 (also known as Fermt3). In this study, we investigated osteoclasts and their adhesion structures in kindlin-3 hypomorphic mice expressing only 5-10% of the kindlin-3 level of wild-type mice. Low kindlin-3 expression reduces integrin activity, results in impaired osteoclast adhesion and signaling, and delays cell spreading. Despite these defects, in vitro-generated kindlin-3-hypomorphic osteoclast-like cells arrange their podosomes into adhesion patches and belts, but their podosome and actin organization is abnormal. Remarkably, kindlin-3-hypomorphic osteoclasts form sealing zones when cultured on calcified matrix in vitro and on bone surface in vivo. However, functional assays, immunohistochemical staining and electron micrographs of bone sections showed that they fail to seal the resorption lacunae properly, which is required for secreted proteinases to digest bone matrix. This results in mild osteopetrosis. Our study reveals a new, hitherto understudied function of kindlin-3 as an essential organizer of integrin-mediated adhesion structures, such as sealing zones.


Subject(s)
Cytoskeletal Proteins , Osteoclasts , Osteopetrosis , Animals , Bone Matrix , Bone and Bones , Cytoskeletal Proteins/genetics , Integrins , Mice , Osteopetrosis/genetics
6.
Gastroenterology ; 162(6): 1690-1704, 2022 05.
Article in English | MEDLINE | ID: mdl-35031299

ABSTRACT

BACKGROUND & AIMS: Crohn's disease (CD) globally emerges with Westernization of lifestyle and nutritional habits. However, a specific dietary constituent that comprehensively evokes gut inflammation in human inflammatory bowel diseases remains elusive. We aimed to delineate how increased intake of polyunsaturated fatty acids (PUFAs) in a Western diet, known to impart risk for developing CD, affects gut inflammation and disease course. We hypothesized that the unfolded protein response and antioxidative activity of glutathione peroxidase 4 (GPX4), which are compromised in human CD epithelium, compensates for metabolic perturbation evoked by dietary PUFAs. METHODS: We phenotyped and mechanistically dissected enteritis evoked by a PUFA-enriched Western diet in 2 mouse models exhibiting endoplasmic reticulum (ER) stress consequent to intestinal epithelial cell (IEC)-specific deletion of X-box binding protein 1 (Xbp1) or Gpx4. We translated the findings to human CD epithelial organoids and correlated PUFA intake, as estimated by a dietary questionnaire or stool metabolomics, with clinical disease course in 2 independent CD cohorts. RESULTS: PUFA excess in a Western diet potently induced ER stress, driving enteritis in Xbp1-/-IEC and Gpx4+/-IEC mice. ω-3 and ω-6 PUFAs activated the epithelial endoplasmic reticulum sensor inositol-requiring enzyme 1α (IRE1α) by toll-like receptor 2 (TLR2) sensing of oxidation-specific epitopes. TLR2-controlled IRE1α activity governed PUFA-induced chemokine production and enteritis. In active human CD, ω-3 and ω-6 PUFAs instigated epithelial chemokine expression, and patients displayed a compatible inflammatory stress signature in the serum. Estimated PUFA intake correlated with clinical and biochemical disease activity in a cohort of 160 CD patients, which was similarly demonstrable in an independent metabolomic stool analysis from 199 CD patients. CONCLUSIONS: We provide evidence for the concept of PUFA-induced metabolic gut inflammation which may worsen the course of human CD. Our findings provide a basis for targeted nutritional therapy.


Subject(s)
Crohn Disease , Enteritis , Fatty Acids, Omega-3 , Animals , Crohn Disease/drug therapy , Endoribonucleases , Enteritis/chemically induced , Enteritis/drug therapy , Fatty Acids, Unsaturated , Humans , Inflammation/drug therapy , Mice , Protein Serine-Threonine Kinases , Toll-Like Receptor 2
7.
J Exp Bot ; 74(21): 6820-6835, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37668551

ABSTRACT

Plants often face simultaneous abiotic and biotic stress conditions; however, physiological and transcriptional responses under such combined stress conditions are still not fully understood. Spring barley (Hordeum vulgare) is susceptible to Fusarium head blight (FHB), which is strongly affected by weather conditions. We therefore studied the potential influence of drought on FHB severity and plant responses in three varieties of different susceptibility. We found strongly reduced FHB severity in susceptible varieties under drought. The number of differentially expressed genes (DEGs) and strength of transcriptomic regulation reflected the concentrations of physiological stress markers such as abscisic acid or fungal DNA contents. Infection-related gene expression was associated with susceptibility rather than resistance. Weighted gene co-expression network analysis revealed 18 modules of co-expressed genes that reflected the pathogen- or drought-response in the three varieties. A generally infection-related module contained co-expressed genes for defence, programmed cell death, and mycotoxin detoxification, indicating that the diverse genotypes used a similar defence strategy towards FHB, albeit with different degrees of success. Further, DEGs showed co-expression in drought- or genotype-associated modules that correlated with measured phytohormones or the osmolyte proline. The combination of drought stress with infection led to the highest numbers of DEGs and resulted in a modular composition of the single-stress responses rather than a specific transcriptional output.


Subject(s)
Fusarium , Hordeum , Hordeum/genetics , Hordeum/microbiology , Droughts , Fusarium/physiology , Gene Expression Profiling , Transcriptome , Plant Diseases/genetics , Plant Diseases/microbiology
8.
Avian Pathol ; 52(4): 277-282, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37416969

ABSTRACT

Inclusion body hepatitis (IBH) is a metabolic disease affecting chickens, associated with different serotypes of fowl adenovirus (FAdV). Experimentally tested vaccines against IBH include several capsid-based subunit vaccines, but not the penton base protein. In the present study, specific pathogen-free chickens were vaccinated with recombinant penton base expressed from each of two different FAdV serotypes (FAdV-7 and FAdV-8b), followed by challenge with a virulent IBH-causing strain. No protection was observed with either vaccine, possibly due to the low immunogenicity of each protein and their inability to induce neutralizing antibodies in the host.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Hepatitis , Poultry Diseases , Animals , Chickens , Adenoviridae Infections/prevention & control , Adenoviridae Infections/veterinary , Vaccines, Synthetic , Inclusion Bodies , Vaccination/veterinary , Serogroup
9.
Traffic ; 21(1): 60-75, 2020 01.
Article in English | MEDLINE | ID: mdl-31808235

ABSTRACT

Lysosomes are key cellular catabolic centers that also perform fundamental metabolic, signaling and quality control functions. Lysosomes are not static and they respond dynamically to intra- and extracellular stimuli triggering changes in organelle numbers, size and position. Such physical changes have a strong impact on lysosomal activity ultimately influencing cellular homeostasis. In this review, we summarize the current knowledge on lysosomal size regulation, on its physiological role(s) and association to several disease conditions.


Subject(s)
Lysosomes , Signal Transduction , Autophagy , Homeostasis
10.
J Gen Virol ; 103(3)2022 03.
Article in English | MEDLINE | ID: mdl-35262477

ABSTRACT

The family Adenoviridae includes non-enveloped viruses with linear dsDNA genomes of 25-48 kb and medium-sized icosahedral capsids. Adenoviruses have been discovered in vertebrates from fish to humans. The family is divided into six genera, each of which is more common in certain animal groups. The outcome of infection may vary from subclinical to lethal disease. This is a summary of the ICTV Report on the family Adenoviridae, which is available at ictv.global/report/adenoviridae.


Subject(s)
Adenoviridae , Vertebrates , Animals , Fishes , Genome, Viral , Virion , Virus Replication
11.
Microb Pathog ; 168: 105509, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35367310

ABSTRACT

Toxins, antigens, and harmful pathogens continuously challenge the intestinal mucosa. Therefore, regulation of the intestinal barrier is crucial for the maintenance of mucosal homeostasis and gut health. Intercellular complexes, namely, tight junctions (TJs), regulate paracellular permeability. TJs are mainly composed of claudins (CLDN), occludin (OCLN), tight junction associated MARVEL-domain proteins (TAMPS), the scaffolding zonula occludens (ZO) proteins and junction-adhesion molecules (JAMs). Different studies have shown that a Campylobacter infection can lead to a phenomenon so-called "leaky gut", including the translocation of luminal bacteria to the underlying tissue and internal organs. Based on the effects of C. jejuni on the chicken gut, we hypothesize that impacts on TJ proteins play a crucial role in the destructive effects of the intestinal barrier. Likewise, the mycotoxin deoxynivalenol (DON) can also alter gut permeability in chickens. Albeit DON and C. jejuni are widely distributed, no data are available on their effect on the tight junctions' barrier in the broiler intestine and consequences for permeability. Therefore, the aim of this study was to analyze the interaction between DON and C. jejuni on the gut barrier by linking permeability with gene expression of TJ proteins and to determine the relationships between the measurements. Following oral infection of birds with C. jejuni NCTC 12744 at 14 days of age, we demonstrate that the co-exposure with DON has considerable consequences on gut permeability as well as on gut TJ mRNA expression. Co-exposure of DON and C. jejuni enhanced the negative effect on paracellular permeability of the intestine, which was also noticed for the bacteria or the mycotoxin alone by the Ussing chamber technique at certain time points in both jejunum and caecum. Furthermore, the increased paracellular permeability was associated with significant changes in TJ mRNA expression in the small and large intestine. The actual study demonstrates that co-exposure of broiler chickens to DON and C. jejuni resulted in a decreased barrier function via up-regulation of pore-forming tight junctions (CLDN7 and CLDN10), as well as the cytosolic TJ protein occludin (OCLN) that can shift to various paracellular locations and are therefore able to alter the epithelial permeability. These findings indicate that the co-exposure of broiler chickens to DON and C. jejuni affects the paracellular permeability of the gut by altering the tight junction proteins. Furthermore, analysing of correlations between TJs revealed that the mRNA expression levels of most tight junctions were correlated with each other in both jejunum and caecum. Finally, the findings indicate that the molecular composition of tight junctions can be used as a marker for gut health and integrity.


Subject(s)
Mycotoxins , Tight Junctions , Animals , Chickens/metabolism , Intestinal Mucosa/microbiology , Occludin/genetics , Occludin/metabolism , Permeability , RNA, Messenger/metabolism , Tight Junctions/metabolism
12.
Proc Natl Acad Sci U S A ; 116(10): 4297-4306, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30782790

ABSTRACT

The flatworm Macrostomum lignano features a duo-gland adhesive system that allows it to repeatedly attach to and release from substrates in seawater within a minute. However, little is known about the molecules involved in this temporary adhesion. In this study, we show that the attachment of M. lignano relies on the secretion of two large adhesive proteins, M. lignano adhesion protein 1 (Mlig-ap1) and Mlig-ap2. We revealed that both proteins are expressed in the adhesive gland cells and that their distribution within the adhesive footprints was spatially restricted. RNA interference knockdown experiments demonstrated the essential function of these two proteins in flatworm adhesion. Negatively charged modified sugars in the surrounding water inhibited flatworm attachment, while positively charged molecules impeded detachment. In addition, we found that M. lignano could not adhere to strongly hydrated surfaces. We propose an attachment-release model where Mlig-ap2 attaches to the substrate and Mlig-ap1 exhibits a cohesive function. A small negatively charged molecule is secreted that interferes with Mlig-ap1, inducing detachment. These findings are of relevance for fundamental adhesion science and efforts to mitigate biofouling. Further, this model of flatworm temporary adhesion may serve as the starting point for the development of synthetic reversible adhesion systems for medicinal and industrial applications.


Subject(s)
Cell Adhesion/physiology , Gonads/metabolism , Helminth Proteins/metabolism , Platyhelminths/physiology , Adhesives , Animals , Female , Gene Knockdown Techniques , Gonads/cytology , Helminth Proteins/genetics , Intracellular Signaling Peptides and Proteins , Male , Platyhelminths/cytology , Platyhelminths/metabolism , RNA Interference , Signal Transduction
13.
Traffic ; 20(9): 674-696, 2019 09.
Article in English | MEDLINE | ID: mdl-31314175

ABSTRACT

Mechanisms that control lysosomal function are essential for cellular homeostasis. Lysosomes adapt in size and number to cellular needs but little is known about the underlying molecular mechanism. We demonstrate that the late endosomal/lysosomal multimeric BLOC-1-related complex (BORC) regulates the size of these organelles via PIKfyve-dependent phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2 ] production. Deletion of the core BORC component Diaskedin led to increased levels of PI(3,5)P2 , suggesting activation of PIKfyve, and resulted in enhanced lysosomal reformation and subsequent reduction in lysosomal size. This process required AMP-activated protein kinase (AMPK), a known PIKfyve activator, and was additionally dependent on the late endosomal/lysosomal adaptor, mitogen-activated protein kinases and mechanistic target of rapamycin activator (LAMTOR/Ragulator) complex. Consistently, in response to glucose limitation, AMPK activated PIKfyve, which induced lysosomal reformation with increased baseline autophagy and was coupled to a decrease in lysosomal size. These adaptations of the late endosomal/lysosomal system reversed under glucose replete growth conditions. In summary, our results demonstrate that BORC regulates lysosomal reformation and size in response to glucose availability.


Subject(s)
Endosomes/metabolism , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Phosphatidylinositol Phosphates/metabolism , AMP-Activated Protein Kinase Kinases , Animals , Autophagy , HEK293 Cells , HeLa Cells , Humans , Lysosomal-Associated Membrane Protein 1/metabolism , Lysosomal Membrane Proteins/genetics , MAP Kinase Signaling System , Mice , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinases/metabolism , Proteins/genetics , Proteins/metabolism
14.
J Biol Chem ; 295(34): 12028-12044, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32611771

ABSTRACT

The endosomal sorting complexes required for transport (ESCRT) mediate evolutionarily conserved membrane remodeling processes. Here, we used budding yeast (Saccharomyces cerevisiae) to explore how the ESCRT machinery contributes to plasma membrane (PM) homeostasis. We found that in response to reduced membrane tension and inhibition of TOR complex 2 (TORC2), ESCRT-III/Vps4 assemblies form at the PM and help maintain membrane integrity. In turn, the growth of ESCRT mutants strongly depended on TORC2-mediated homeostatic regulation of sphingolipid (SL) metabolism. This was caused by calcineurin-dependent dephosphorylation of Orm2, a repressor of SL biosynthesis. Calcineurin activity impaired Orm2 export from the endoplasmic reticulum (ER) and thereby hampered its subsequent endosome and Golgi-associated degradation (EGAD). The ensuing accumulation of Orm2 at the ER in ESCRT mutants necessitated TORC2 signaling through its downstream kinase Ypk1, which repressed Orm2 and prevented a detrimental imbalance of SL metabolism. Our findings reveal compensatory cross-talk between the ESCRT machinery, calcineurin/TORC2 signaling, and the EGAD pathway important for the regulation of SL biosynthesis and the maintenance of PM homeostasis.


Subject(s)
Cell Membrane/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Saccharomyces cerevisiae/metabolism , Signal Transduction , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cell Membrane/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
15.
BMC Genomics ; 22(1): 753, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34674644

ABSTRACT

BACKGROUND: Histomonas meleagridis is a protozoan parasite and the causative agent of histomonosis, an important poultry disease whose significance is underlined by the absence of any treatment and prophylaxis. The recent successful in vitro attenuation of the parasite urges questions about the underlying mechanisms. RESULTS: Whole genome sequence data from a virulent and an attenuated strain originating from the same parental lineage of H. meleagridis were recruited using Oxford Nanopore Technology (ONT) and Illumina platforms, which were combined to generate megabase-sized contigs with high base-level accuracy. Inspecting the genomes for differences identified two substantial deletions within a coding sequence of the attenuated strain. Additionally, one single nucleotide polymorphism (SNP) and indel targeting coding sequences caused the formation of premature stop codons, which resulted in the truncation of two genes in the attenuated strain. Furthermore, the genome of H. meleagridis was used for characterizing protein classes of clinical relevance for parasitic protists. The comparative analysis with the genomes of Trichomonas vaginalis, Tritrichomonas foetus and Entamoeba histolytica identified ~ 2700 lineage-specific gene losses and 9 gene family expansions in the H. meleagridis lineage. CONCLUSIONS: Taken as a whole, the obtained data provide the first hints to understand the molecular basis of attenuation in H. meleagridis and constitute a genomics platform for future research on this important poultry pathogen.


Subject(s)
Eukaryota , Parasites , Animals , Poultry , Sequence Analysis , Virulence/genetics
16.
Vet Res ; 52(1): 92, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34158121

ABSTRACT

Unlike in chickens, dynamics of the gut microbiome in turkeys is limitedly understood and no data were yet published in context of pathological changes following experimental infection. Thus, the impact of Histomonas meleagridis-associated inflammatory changes in the caecal microbiome, especially the Escherichia coli population and their caecal wall invasion in turkeys was investigated. Birds experimentally inoculated with attenuated and/or virulent H. meleagridis and non-inoculated negative controls were divided based on the severity of macroscopic caecal lesions. The high throughput amplicon sequencing of 16SrRNA showed that the species richness and diversity of microbial community significantly decreased in severely affected caeca. The relative abundances of operational taxonomic units belonging to Anaerotignum lactatifermentans, E. coli, and Faecalibacterium prausnitzii were higher and paralleled with a decreased abundances of those belonging to Alistipes putredinis, Streptococcus alactolyticus, Lactobacillus salivarius and Lactobacillus reuteri in birds with the highest lesion scores. Although the relative abundance of E. coli was higher, the absolute count was not affected by the severity of pathological lesions. Immunohistochemistry showed that E. coli was only present in the luminal content of caecum and did not penetrate even severely inflamed and necrotized caecal wall. Overall, it was demonstrated that the fundamental shift in caecal microbiota of turkeys infected with H. meleagridis was attributed to the pathology induced by the parasite, which only led to relative but not absolute changes in E. coli population. Furthermore, E. coli cells did not show tendency to penetrate the caecal tissue even when the intestinal mucosal barriers were severely compromised.


Subject(s)
Chickens , Gastrointestinal Microbiome , Poultry Diseases/parasitology , Protozoan Infections, Animal/parasitology , Trichomonadida/physiology , Typhlitis/veterinary , Animals , Colony Count, Microbial/veterinary , Escherichia coli/physiology , Typhlitis/parasitology
17.
Avian Pathol ; 50(1): 2-5, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32795192

ABSTRACT

Fowl adenovirus (FAdV) infections in chickens have undergone substantial changes in recent decades, driven by host and pathogen factors. Based on the pathogenesis of inclusion body hepatitis (IBH) and hepatitis-hydropericardium syndrome (HHS), modern broilers are much more inclined to have difficulties keeping the metabolic homeostasis, whereas adenoviral gizzard erosion (AGE) is noticed equally in broilers and egg-layers. Defining the importance of certain serotypes for specific FAdV diseases is a major achievement of recent years but the isolation of viruses from clinically healthy birds remains unexplained, as virulence factors are hardly known and continue to be a "black box". Together with further studies on pathogenesis of FAdV-induced diseases, such knowledge on virulence factors would help to improve protection strategies, which presently mainly concentrate on autogenous vaccines of breeders to prevent vertical transmission.


Subject(s)
Adenoviridae Infections/veterinary , Chickens/virology , Fowl adenovirus A/physiology , Host-Pathogen Interactions , Poultry Diseases/pathology , Viral Vaccines/immunology , Adenoviridae Infections/pathology , Adenoviridae Infections/prevention & control , Adenoviridae Infections/virology , Animals , Autovaccines/immunology , Female , Fowl adenovirus A/immunology , Fowl adenovirus A/pathogenicity , Gizzard, Avian/pathology , Gizzard, Avian/virology , Male , Poultry Diseases/prevention & control , Poultry Diseases/virology , Serogroup , Virulence , Virulence Factors
18.
Avian Pathol ; 50(5): 417-426, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34505551

ABSTRACT

Pathogenesis of colibacillosis caused by avian pathogenic Escherichia coli (APEC) in poultry is unclear and experimental studies reveal substantial inconsistency. In this study, the impact of three infection routes differing in the site of deposition of inoculum in the respiratory tract, were investigated. Two-weeks-old chickens were infected with a lux-tagged APEC strain via aerosol, intranasally or intratracheally, and sequentially sampled along with uninfected birds. At 1 and 3 days post infection (dpi), liver or spleen to body-weight ratios in all infected groups were significantly higher than in negative control, while at 7 dpi, such differences were significant in both organs in the aerosol-infected group. The infection-strain colonized tracheas and lungs in infected birds at 1 dpi and persisted until 7 dpi. Among infected groups, in lungs, bacterial load at 1 dpi was significantly lower in intranasally-inoculated birds. Histology revealed that, independent of infection route, lesions were mostly seen in the lower respiratory organs (lungs and air sacs) characterized by bronchitis/pneumonia and airsacculitis. Birds infected via aerosol showed the highest mean lesion score in lungs while intranasal application caused the mildest pathological changes, and difference between the two groups was significant at 1 dpi. In spleen, heterophilic infiltrations were prominent in affected birds. Interestingly, tracheas were pathologically unaffected. Altogether, the results demonstrated the importance of infection route, with aerosol being the most suitable to induce pathological lesions of colibacillosis without predisposing factors. Furthermore, the lux-tagged APEC strain was discriminated from native isolates enabling exact differentiation and enumeration.RESEARCH HIGHLIGHTS Lux-tagged APEC strain was used for infection to differentiate from native E. coli.Pathologically, lungs, air sacs and spleen but not trachea were affected.The route of infection strongly impacts the pathological outcome with APEC.The infection with APEC via aerosol caused the most severe lesions in chickens.


Subject(s)
Bird Diseases/microbiology , Escherichia coli , Respiratory Tract Infections , Aerosols , Animals , Chickens/microbiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/veterinary
19.
Vet Pathol ; 58(1): 71-79, 2021 01.
Article in English | MEDLINE | ID: mdl-33016240

ABSTRACT

Bacterial infections in chicken eggs often cause mortality of embryos and clinical consequences in chicks but the pathological mechanism is unclear. We investigated the pathological changes and bacterial growth kinetics in dead and live embryos following infection with 2 Escherichia coli strains with a different clinical background and with 1 Salmonella Enteritidis strain. In 2 experiments, 12-day-old embryos were infected via the allantoic sac with 100 µl of 1 to 5 × 102 CFU/ml of one of the bacteria. In experiment 1, only dead embryos were sampled until 4 days postinfection (dpi), and surviving embryos were sampled at 5 dpi. In experiment 2, sampling was performed in dead and killed embryos sequentially at 1, 2, 3, and 4 dpi. The bacteria showed varying pathogenicity in embryos. The yolk sacs of dead embryos showed congestion, inflammation, damaged blood vessels, and abnormal endodermal epithelial cells. Such lesions were absent in the yolk sacs of negative control embryos and in those of embryos that survived infection. The livers and hearts of dead embryos showed congestion and lysed erythrocytes with no morphological changes in hepatocytes or myocardial cells. All bacteria multiplied rapidly in the yolks of infected embryos, although this did not predict survival. However, the livers of dead embryos contained significantly higher bacterial loads than the livers of the embryos that survived infection. The results provide evidence that lesions in the yolk sac, which have been neglected to date, coincide with embryonic mortality, underlining the importance of healthy yolk sacs for embryo survival.


Subject(s)
Bacterial Infections , Chickens , Animals , Bacterial Infections/veterinary , Chick Embryo , Liver , Virulence , Yolk Sac
20.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830109

ABSTRACT

Many free-living flatworms have evolved a temporary adhesion system, which allows them to quickly attach to and release from diverse substrates. In the marine Macrostomum lignano, the morphology of the adhesive system and the adhesion-related proteins have been characterised. However, little is known about how temporary adhesion is performed in other aquatic environments. Here, we performed a 3D reconstruction of the M. lignano adhesive organ and compared it to the morphology of five selected Macrostomum, representing two marine, one brackish, and two freshwater species. We compared the protein domains of the two adhesive proteins, as well as an anchor cell-specific intermediate filament. We analysed the gene expression of these proteins by in situ hybridisation and performed functional knockdowns with RNA interference. Remarkably, there are almost no differences in terms of morphology, protein regions, and gene expression based on marine, brackish, and freshwater habitats. This implies that glue components produced by macrostomids are conserved among species, and this set of two-component glue functions from low to high salinity. These findings could contribute to the development of novel reversible biomimetic glues that work in all wet environments and could have applications in drug delivery systems, tissue adhesives, or wound dressings.


Subject(s)
Adhesives/chemistry , Biomimetic Materials/chemistry , Helminth Proteins , Platyhelminths , Animal Structures , Animals , Fresh Water , Helminth Proteins/chemistry , Helminth Proteins/genetics , Helminth Proteins/metabolism , Platyhelminths/chemistry , Platyhelminths/genetics , Platyhelminths/metabolism , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL