Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Avian Pathol ; 43(3): 209-16, 2014.
Article in English | MEDLINE | ID: mdl-24601749

ABSTRACT

In this study, the effect of probiotic supplementation via drinking water or feed on the performance of broiler chickens experimentally infected with sporulated oocysts of Eimeria acervulina (5 × 10(4)), Eimeria maxima and Eimeria tenella (2 × 10(4) each one) at 14 days of age was evaluated. Two hundred and forty 1-day-old Ross 308 male chicks were separated into eight equal groups with three replicates. Two of the groups, one infected with mixed Eimeria oocysts and the other not, were given a basal diet and served as controls. The remaining groups were also challenged with mixed Eimeria species and received the basal diet and either water supplemented with probiotic (three groups) or probiotic via feed (two groups); the probiotic used consisted of Enterococcus faecium #589, Bifidobacterium animalis #503 and Lactobacillus salivarius #505 at a ratio of 6:3:1. Probiotic supplementation was applied either via drinking water in different inclusion rates (groups W1, W2 and W3) or via feed using uncoated (group FN) or coated strains (group FC). The last group was given the basal diet supplemented with the anticoccidial lasalocid at 75 mg/kg. Each experimental group was given the corresponding diet or drinking water from day 1 to day 42 of age. Throughout the experimental period of 42 days, body weight and feed intake were recorded weekly and feed conversion ratios were calculated. Seven days after infection, the infected control group presented the lowest weight gain values, while probiotics supplied via feed supported growth to a comparable level with that of the lasalocid group. Probiotic groups presented lesion score values and oocyst numbers that were lower than in control infected birds but higher than in the lasalocid group. In the duodenum, jejunum and ileum, the highest villous height values were presented by probiotic groups. In conclusion, a mixture of probiotic substances gave considerable improvement in both growth performance and intestinal health in comparison with infected control birds and fairly similar improvement to an approved anticoccidial during a mixed Eimeria infection.


Subject(s)
Chickens/growth & development , Coccidiosis/veterinary , Coccidiostats/pharmacology , Eimeria/physiology , Probiotics/pharmacology , Animal Feed , Animals , Bifidobacterium , Chickens/parasitology , Coccidiosis/drug therapy , Coccidiosis/pathology , Dietary Supplements , Enterococcus faecium , Feces/parasitology , Intestines/pathology , Lactobacillus , Lasalocid/pharmacology , Oocysts , Poultry Diseases/drug therapy , Poultry Diseases/parasitology , Poultry Diseases/pathology , Water , Weight Gain
2.
Vet Parasitol ; 229: 93-98, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27809987

ABSTRACT

The aim was to study the effects of probiotics isolated from the intestinal tract of livestock animals on Eimeria tenella invasion into Madin-Darby bovine kidney (MDBK) cells in vitro. E. tenella sporozoites were purified and labeled with 5(6)-carboxyfluorescein diacetate N-succinimidyl ester before seeding on cell cultures, and invasion was evaluated by fluorescence microscopy. Two protocols (A and B) were used. In protocol A, Enterococcus faecium # 589 or Lactobacillus salivarius subsp. salivarius # 505 were added together with sporozoites to MDBK cell cultures and invasion was evaluated after incubation for approximately 20h. Viable, dead, or spent culture supernatants of probiotics were tested. In protocol B, viable probiotics were incubated with MDBK cells for one hour before sporozoites were added and invasion was evaluated after two more hours of incubation. Parasite invasion of viable, dead, or spent culture supernatant of E. faecium # 589 was assessed. Using protocol A, it was shown that parasite invasion was inhibited by viable (80%) or dead (75%) E. faecium # 589. While inhibition by viable L. salivarius subsp. salivarius # 505 was not valid at the highest concentration and not significant at the other test concentrations, dead cells inhibited parasite invasion up to 45%. Spent culture supernatants of both probiotics had no influence on parasite invasion. Using protocol B, it was shown that viable Bifidobacterium animalis subsp. animalis # 503, E. faecium # 497, E. faecium # 589, L. reuteri # 514, L. salivarius subsp. salivarius # 505, and Bacillus subtilis # 588 inhibited parasite invasion into MDBK cells up to 80%. Anticoccidial activity was strain-specific for E. faecium strains, and the strongest effect was shown by E. faecium # 589. Anticoccidial effects of some of the tested probiotics have already been shown in vivo, which makes them candidates to prevent coccidiosis. These findings have now been confirmed in vitro. The used parasite invasion assay is a fast and inexpensive tool to screen probiotics for prevention of coccidiosis.


Subject(s)
Eimeria tenella/physiology , Kidney/cytology , Probiotics , Sporozoites/physiology , Animals , Bacteria/classification , Bacterial Physiological Phenomena , Cattle , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL