Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Glob Chang Biol ; 24(10): 4614-4625, 2018 10.
Article in English | MEDLINE | ID: mdl-29851235

ABSTRACT

The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities.


Subject(s)
Ants/physiology , Biodiversity , Animals , Climate , Ecosystem
2.
Ecology ; 98(3): 883-884, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27984661

ABSTRACT

What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set.


Subject(s)
Ants/physiology , Databases, Factual , Ecology , Animals , Ants/classification , Ecosystem
3.
Proc Biol Sci ; 282(1808): 20150418, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25994675

ABSTRACT

Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk.


Subject(s)
Ants/physiology , Biodiversity , Climate , Animals , Climate Change , Temperature
4.
Zookeys ; 829: 161-162, 2019.
Article in English | MEDLINE | ID: mdl-30914840

ABSTRACT

[This corrects the article DOI: 10.3897/zookeys.700.11784.].

5.
Zookeys ; (700): 1-420, 2017.
Article in English | MEDLINE | ID: mdl-29358897

ABSTRACT

The fauna of the purely Australian formicine ant genus Melophorus (Hymenoptera: Formicidae) is revised. This project involved integrated morphological and molecular taxonomy using one mitochondrial gene (COI) and four nuclear genes (AA, H3, LR and Wg). Seven major clades were identified and are here designated as the M. aeneovirens, M. anderseni, M. biroi, M. fulvihirtus, M. ludius, M. majeri and M. potteri species-groups. Within these clades, smaller complexes of similar species were also identified and designated species-complexes. The M. ludius species-group was identified purely on molecular grounds, as the morphology of its members is indistinguishable from typical members of the M. biroi species-complex within the M. biroi species-group. Most species-complexes sampled were also found to be monophyletic. Sequencing generally supported monophyly in taxa sampled but some species of the M. fieldi complex and M. biroi were not monophyletic and the implications arising from this are discussed in this monograph. Based on morphology, ninety-three species are recognized, 73 described as new. A further new species (here called 'Species K' [TERC Collection]) is noted in the taxonomic list, but is not described in this work. One species is removed from Melophorus: M. scipio Forel is here placed provisionally in Prolasius. Six species and five subspecies pass into synonymy. Of the full species, M. constans Santschi, M. iridescens (Emery) and M. insularis Wheeler are synonymized under M. aeneovirens (Lowne), M. pillipes Santschi is synonymized under M. turneri Forel, M. marius Forel is synonymized under M. biroi Forel, and M. omniparens Forel is synonymized under M. wheeleri Forel. Of the subspecies, M. iridescens fraudatrix and M. iridescens froggatti Forel are synonymized under M. aeneovirens (Lowne), M. turneri aesopus Forel and M. turneri candidus Santschi are synonymized under M. turneri Forel and M. fieldi propinqua Viehmeyer is synonymized under M. biroi. Camponotus cowlei Froggatt is reinstated as a junior synonym of Melophorus bagoti Lubbock. In addition, the subspecies M. fieldi major Forel, M. ludius sulla Forel and M. turneri perthensis Forel are raised to species. A key to workers of the genus is supplied. A lectotype is designated for M. curtus Forel, M. sulla, and M. turneri.

SELECTION OF CITATIONS
SEARCH DETAIL