Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 156(3): 590-602, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24485462

ABSTRACT

Therapy-resistant microenvironments represent a major barrier toward effective elimination of disseminated malignancies. Here, we show that select microenvironments can underlie resistance to antibody-based therapy. Using a humanized model of treatment refractory B cell leukemia, we find that infiltration of leukemia cells into the bone marrow rewires the tumor microenvironment to inhibit engulfment of antibody-targeted tumor cells. Resistance to macrophage-mediated killing can be overcome by combination regimens involving therapeutic antibodies and chemotherapy. Specifically, the nitrogen mustard cyclophosphamide induces an acute secretory activating phenotype (ASAP), releasing CCL4, IL8, VEGF, and TNFα from treated tumor cells. These factors induce macrophage infiltration and phagocytic activity in the bone marrow. Thus, the acute induction of stress-related cytokines can effectively target cancer cells for removal by the innate immune system. This synergistic chemoimmunotherapeutic regimen represents a potent strategy for using conventional anticancer agents to alter the tumor microenvironment and promote the efficacy of targeted therapeutics.


Subject(s)
Disease Models, Animal , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Tumor Microenvironment , Animals , Cyclophosphamide/therapeutic use , Cytokines/immunology , Drug Resistance, Neoplasm , Heterografts , Humans , Immunity, Innate , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Macrophages/immunology , Mice , Neoplasm Transplantation
3.
Cell ; 143(2): 201-11, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20946980

ABSTRACT

Signaling by ErbB receptors requires the activation of their cytoplasmic kinase domains, which is initiated by ligand binding to the receptor ectodomains. Cytoplasmic factors contributing to the activation are unknown. Here we identify members of the cytohesin protein family as such factors. Cytohesin inhibition decreased ErbB receptor autophosphorylation and signaling, whereas cytohesin overexpression stimulated receptor activation. Monitoring epidermal growth factor receptor (EGFR) conformation by anisotropy microscopy together with cell-free reconstitution of cytohesin-dependent receptor autophosphorylation indicate that cytohesins facilitate conformational rearrangements in the intracellular domains of dimerized receptors. Consistent with cytohesins playing a prominent role in ErbB receptor signaling, we found that cytohesin overexpression correlated with EGF signaling pathway activation in human lung adenocarcinomas. Chemical inhibition of cytohesins resulted in reduced proliferation of EGFR-dependent lung cancer cells in vitro and in vivo. Our results establish cytohesins as cytoplasmic conformational activators of ErbB receptors that are of pathophysiological relevance.


Subject(s)
Adenocarcinoma/pathology , ErbB Receptors/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Lung Neoplasms/pathology , Receptor Protein-Tyrosine Kinases/metabolism , Adenocarcinoma/metabolism , Animals , Dimerization , GTPase-Activating Proteins/antagonists & inhibitors , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Knockdown Techniques , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/genetics , Humans , Lung Neoplasms/metabolism , Mice , Neoplasm Transplantation , Protein Structure, Tertiary , Signal Transduction , Transplantation, Heterologous , Triazoles/pharmacology
4.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34769006

ABSTRACT

Myeloid cells play an essential role in the maintenance of liver homeostasis, as well as the initiation and termination of innate and adaptive immune responses. In chronic hepatic inflammation, the production of transforming growth factor beta (TGF-ß) is pivotal for scarring and fibrosis induction and progression. TGF-ß signalling is tightly regulated via the Smad protein family. Smad7 acts as an inhibitor of the TGF-ß-signalling pathway, rendering cells that express high levels of it resistant to TGF-ß-dependent signal transduction. In hepatocytes, the absence of Smad7 promotes liver fibrosis. Here, we examine whether Smad7 expression in myeloid cells affects the extent of liver inflammation, injury and fibrosis induction during chronic liver inflammation. Using the well-established model of chronic carbon tetrachloride (CCl4)-mediated liver injury, we investigated the role of Smad7 in myeloid cells in LysM-Cre Smadfl/fl mice that harbour a myeloid-specific knock-down of Smad7. We found that the chronic application of CCl4 induces severe liver injury, with elevated serum alanine transaminase (ALT)/aspartate transaminase (AST) levels, centrilobular and periportal necrosis and immune-cell infiltration. However, the myeloid-specific knock-down of Smad7 did not influence these and other parameters in the CCl4-treated animals. In summary, our results suggest that, during long-term application of CCl4, Smad7 expression in myeloid cells and its potential effects on the TGF-ß-signalling pathway are dispensable for regulating the extent of chronic liver injury and inflammation.


Subject(s)
Carbon Tetrachloride/pharmacology , Inflammation/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver Diseases/metabolism , Myeloid Cells/metabolism , Smad7 Protein/deficiency , Alanine Transaminase/metabolism , Animals , Disease Models, Animal , Hepatocytes/metabolism , Liver/metabolism , Male , Mice , Signal Transduction/physiology , Smad7 Protein/metabolism , Transforming Growth Factor beta/metabolism
5.
Pathologe ; 42(1): 103-115, 2021 Feb.
Article in German | MEDLINE | ID: mdl-33258061

ABSTRACT

NTRK gene fusions are sporadic genetic alterations that can occur across tumor entities. Whereas they are quite rare in most solid tumors they are present at much higher frequencies in certain rare tumors such as infantile fibrosarcoma, congenital mesoblastic nephroma, secretory breast, or salivary gland carcinoma. NTRK gene fusions or TRK fusion proteins are considered strong oncogenic drivers. If NTRK gene fusions are detected, TRK inhibitors such as entrectinib and larotrectinib can be used regardless of the tumor entity. So far only larotrectinib is approved in the European Union. Both drugs have been shown to be effective and well tolerated in phase I and phase II studies. The low prevalence of TRK fusion-positive cancers poses challenges for diagnostic and clinical work-flows. On one hand, patients with NTRK gene fusions should be identified; on the other hand, epidemiological, histological, and resource-related aspects have to be taken into account. Based on these premises, we suggest a diagnostic algorithm for TRK fusion cancers and present current data on TRK inhibitors.


Subject(s)
Kidney Neoplasms , Nephroma, Mesoblastic , Gene Fusion/genetics , Genetic Markers , Humans , Mutation , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/therapeutic use , Receptor, trkA/genetics
6.
Int J Cancer ; 146(11): 3053-3064, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31970771

ABSTRACT

Cancer of unknown primary (CUP) denotes a malignancy with histologically confirmed metastatic spread while the primary tumor remains elusive. Here, we address prognostic and therapeutic implications of mutations and copy number variations (CNVs) detected in tumor tissue in the context of a comprehensive clinical risk assessment. Targeted panel sequencing was performed in 252 CUP patients. 71.8% of patients had unfavorable CUP according to ESMO guidelines. 74.7% were adeno- and 13.7% squamous cell carcinomas. DNA was extracted from microdissected formalin-fixed, paraffin-embedded tissues. For library preparation, mostly multiplex PCR-based Ion Torrent AmpliSeq™ technology with Oncomine comprehensive assays was used. Most frequent genetic alterations were mutations/deletions of TP53 (49.6%), CDKN2A (19.0%) and NOTCH1 (14.1%) as well as oncogenic activation of KRAS (23.4%), FGFR4 (14.9%) and PIK3CA (10.7%). KRAS activation was predominantly found in adenocarcinomas (p = 0.01), PIK3CA activation in squamous cell carcinomas (p = 0.03). Male sex, high ECOG score, unfavorable CUP, higher number of involved organs and RAS activation predicted decreased event-free and overall survival in multivariate analysis. Deletions of CDKN2A were prognostically adverse regarding overall survival. TP53 mutations did not significantly influence prognosis in the overall cohort, but worsened prognosis in otherwise favorable CUP subtypes. Although not standard in CUP, for 17/198 (8.6%) patients molecularly targeted treatment was recommended and 10 patients (5.1%) were treated accordingly. In conclusion, besides the identification of drug targets, panel sequencing in CUP is prognostically relevant, with RAS activation and CDKN2A deletion emerging as novel independent risk factors in a comprehensive assessment with clinicopathological data.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Squamous Cell/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Neoplasms, Unknown Primary/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma/pathology , Adolescent , Adult , Carcinoma, Squamous Cell/pathology , Class I Phosphatidylinositol 3-Kinases/genetics , DNA Copy Number Variations/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Neoplasms, Unknown Primary/pathology , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptor, Notch1/genetics , Tumor Suppressor Protein p53/genetics , Young Adult
7.
BMC Cancer ; 20(1): 408, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32397977

ABSTRACT

BACKGROUND: Over the past years, EGFR tyrosine kinase inhibitors (TKI) revolutionized treatment response. 1st-generation (reversible) EGFR TKI and later the 2nd -generation irreversible EGFR TKI Afatinib were aimed to improve treatment response. Nevertheless, diverse resistance mechanisms develop within the first year of therapy. Here, we evaluate the prevalence of acquired resistance mechanisms towards reversible and irreversible EGFR TKI. METHODS: Rebiopsies of patients after progression to EGFR TKI therapy (> 6 months) were targeted to histological and molecular analysis. Multiplexed targeted sequencing (NGS) was conducted to identify acquired resistance mutations (e.g. EGFR p.T790M). Further, Fluorescence in situ hybridisation (FISH) was applied to investigate the status of bypass mechanisms like, MET or HER2 amplification. RESULTS: One hundred twenty-three rebiopsy samples of patients that underwent first-line EGFR TKI therapy (PFS ≥6 months) were histologically and molecularly profiled upon clinical progression. The EGFR p.T790M mutation is the major mechanism of acquired resistance in patients treated with reversible as well as irreversible EGFR TKI. Nevertheless a statistically significant difference for the acquisition of T790M mutation has been identified: 45% of afatinib- vs 65% of reversible EGFR TKI treated patients developed a T790M mutation (p-value 0.02). Progression free survival (PFS) was comparable in patients treated with irreversible EGFR irrespective of the sensitising primary mutation or the acquisition of p.T790M. CONCLUSIONS: The EGFR p.T790M mutation is the most prominent mechanism of resistance to reversible and irreversible EGFR TKI therapy. Nevertheless there is a statistically significant difference of p.T790M acquisition between the two types of TKI, which might be of importance for clinical therapy decision.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/pharmacology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/genetics , Female , Follow-Up Studies , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Male , Middle Aged , Molecular Targeted Therapy , Prognosis , Retrospective Studies , Survival Rate
8.
Int J Mol Sci ; 21(7)2020 Apr 05.
Article in English | MEDLINE | ID: mdl-32260486

ABSTRACT

The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) regulates target gene expression upon ligand binding. Apart from its effects on metabolism, PPARγ activity can inhibit the production of pro-inflammatory cytokines by several immune cells, including dendritic cells and macrophages. In chronic inflammatory disease models, PPARγ activation delays the onset and ameliorates disease severity. Here, we investigated the effect of PPARγ activation by the agonist Pioglitazone on the function of hepatic immune cells and its effect in a murine model of immune-mediated hepatitis. Cytokine production by both liver sinusoidal endothelial cells (IL-6) and in T cells ex vivo (IFNγ) was decreased in cells from Pioglitazone-treated mice. However, PPARγ activation did not decrease pro-inflammatory tumor necrosis factor alpha TNFα production by Kupffer cells after Toll-like receptor (TLR) stimulation ex vivo. Most interestingly, although PPARγ activation was shown to ameliorate chronic inflammatory diseases, it did not improve hepatic injury in a model of immune-mediated hepatitis. In contrast, Pioglitazone-induced PPARγ activation exacerbated D-galactosamine (GalN)/lipopolysaccharide (LPS) hepatitis associated with an increased production of TNFα by Kupffer cells and increased sensitivity of hepatocytes towards TNFα after in vivo Pioglitazone administration. These results unravel liver-specific effects of Pioglitazone that fail to attenuate liver inflammation but rather exacerbate liver injury in an experimental hepatitis model.


Subject(s)
Hepatitis, Autoimmune/immunology , PPAR gamma/agonists , Pioglitazone/pharmacology , Animals , Cells, Cultured , Interferon-gamma/metabolism , Kupffer Cells/drug effects , Kupffer Cells/immunology , Lymphocyte Activation , Macrophage Activation , Mice , Mice, Inbred C57BL , PPAR gamma/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
BMC Cancer ; 19(1): 243, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30885150

ABSTRACT

BACKGROUND: High-risk neuroblastoma with N-Myc amplification remains a therapeutic challenge in paediatric oncology. Antagonism of pro-death Bcl-2 homology (BH) proteins to pro-survival BH members such as Mcl-1 and Bcl-2 has become a treatment approach, but previous studies suggest that a combined inhibition of Bcl-2 and Mcl-1 is necessary. TW-37 inhibits Mcl-1 and Bcl-2 with almost the same affinity. However, single-agent cytotoxicity of TW-37 in neuroblastoma cell lines has not been investigated. METHODS: Cell viability, apoptosis, proliferation and changes in growth properties were determined in SKNAS, IMR-5, SY5Y and Kelly cells after treatment with TW-37. After transfection with Mcl-1 or Bcl-2 siRNA, apoptosis and proliferation were investigated in Kelly cells. Mice with Kelly cell line xenografts were treated with TW-37 and tumor growth, survival and apoptosis were determined. RESULTS: Cell lines with N-Myc amplification were more sensitive to TW-37 treatment, IC50 values for IMR-5 and Kelly cells being 0.28 µM and 0.22 µM, compared to SY5Y cells and SKNAS cells (IC50 0.96 µM and 0.83 µM). Treatment with TW-37 resulted in increased apoptosis and reduced proliferation rates, especially in IMR5 and Kelly cells. Bcl-2 as well as Mcl-1 knockdown induced apoptosis in Kelly cells. TW-37 led to a decrease in tumor growth and a favorable survival (p = 0.0379) in a Kelly neuroblastoma xenografts mouse model. CONCLUSION: TW-37 has strong single-agent cytotoxicity in vitro and in vivo. Therefore, combined inhibition of Bcl-2/Mcl-1 by TW-37 in N-Myc amplified neuroblastoma may represent an interesting therapeutic strategy.


Subject(s)
Benzamides/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Neuroblastoma/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfones/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Benzamides/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Gene Amplification , Gene Knockdown Techniques , Humans , Inhibitory Concentration 50 , Mice , Mice, Nude , Myeloid Cell Leukemia Sequence 1 Protein/genetics , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Neuroblastoma/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Sulfones/therapeutic use , Treatment Outcome , Xenograft Model Antitumor Assays
10.
Int J Mol Sci ; 20(22)2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31698731

ABSTRACT

Myeloid cells are essential for the initiation and termination of innate and adaptive immunity that create homeostasis in the liver. Smad7 is an inhibitor of the transforming growth factor ß (TGF-ß) signaling pathway, which regulates inflammatory cellular processes. Knockdown of Smad7 in hepatocytes has been shown to promote liver fibrosis, but little is known about the effects of Smad7 in myeloid cells during inflammatory responses in the liver. Using mice with a myeloid-specific knockdown of Smad7 (LysM-Cre Smad7fl/fl), we investigated the impact of Smad7 deficiency in myeloid cells on liver inflammation and regeneration using the well-established model of CCl4-mediated liver injury. Early (24/48 h) and late (7 d) time points were analyzed. We found that CCl4 induces severe liver injury, with elevated serum ALT levels, centrilobular and periportal necrosis, infiltrating myeloid cells and an increase of inflammatory cytokines in the liver. Furthermore, as expected, inflammation peaked at 24 h and subsided after 7 d. However, the knockdown of Smad7 in myeloid cells did not affect any of the investigated parameters in the CCl4-treated animals. In summary, our results suggest that the inhibition of TGF-ß signaling via Smad7 expression in myeloid cells is dispensable for the induction and control of acute CCl4-induced liver injury.


Subject(s)
Carbon Tetrachloride/administration & dosage , Liver/injuries , Liver/metabolism , Myeloid Cells/metabolism , Acute Disease , Animals , Cell Cycle/genetics , Gene Expression Regulation , Inflammation/genetics , Inflammation/pathology , Liver/pathology , Liver Regeneration , Male , Mice
11.
Histopathology ; 72(3): 449-459, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28851100

ABSTRACT

AIMS: Programmed death ligand 1 (PD-L1) immunohistochemistry has become a mandatory diagnostic test in the treatment of lung cancer. Several research initiatives have started to harmonise the five PD-L1 immunohistochemistry assays that have been used in clinical trials. Here, we report data on interlaboratory and interassay concordance for commercial assays ('assays') and laboratory-developed tests (LDTs) at 10 German testing sites. METHODS AND RESULTS: To assess interlaboratory concordance, a tissue microarray containing 21 pulmonary carcinoma specimens was centrally prepared. Pre-cut sections were stained at 10 sites by the use of assays 28-8, 22C3, SP263, and SP142, as well as 11 LDTs. Assay performance was evaluated with a second tissue microarray containing 11 cell lines with defined PD-L1 expression. Quality control was centrally performed by manual and digital analyses. The assays yielded reproducible IHC staining patterns at all sites. In agreement with previous studies, 22C3, 28-8 and SP263 showed similar staining patterns, whereas SP142 was distinct. Among the LDTs, six of 11 protocols showed staining patterns similar to those of assays 22C3 and 28-8. Interlaboratory concordance of tumour cell scoring by use of a six-step system was moderate (Light's κ = 0.43-0.69), whereas the clinically approved cut-offs of ≥1% and ≥50% showed substantial concordance (κ = 0.73-0.89). Immune cell scoring by the use of SP142 yielded moderate concordance (κ = 0.42). CONCLUSIONS: The data confirm the previously described staining patterns of the assays, and show that they can be reproducibly employed at different sites. LDTs with staining results similar to those of the assays are implementable, but have to be carefully validated.


Subject(s)
B7-H1 Antigen/analysis , Biomarkers, Tumor/analysis , Carcinoma, Non-Small-Cell Lung/diagnosis , Immunohistochemistry/standards , Lung Neoplasms/diagnosis , Humans , Reproducibility of Results
12.
Gut ; 65(8): 1296-305, 2016 08.
Article in English | MEDLINE | ID: mdl-26001389

ABSTRACT

OBJECTIVE: Microsatellite instability (MSI) is detected in approximately 15% of all colorectal cancers (CRC) and virtually in all cases with Lynch syndrome. The MSI phenotype is caused by dysfunctional mismatch repair (MMR) and leads to accumulation of DNA replication errors. Sporadic MSI CRC often harbours BRAF(V600E); however, no consistent data exist regarding targeted treatment approaches in BRAF(wt) MSI CRC. DESIGN: Mutations and quantitative MSI were analysed by deep sequencing in 196 formalin fixed paraffin embedded (FFPE) specimens comprising Lynch and Lynch-like CRCs from the German Hereditary Nonpolyposis Colorectal Cancer registry. Functional relevance of recurrent ERBB2/HER2 mutations was investigated in CRC cell lines using reversible and irreversible HER-targeting inhibitors, EGFR-directed antibody cetuximab, HER2-directed antibody trastuzumab and siRNA-mediated ERBB2/HER2 knockdown. RESULTS: Quantification of nucleotide loss in non-coding mononucleotide repeats distinguished microsatellite status with very high accuracy (area under curve=0.9998) and demonstrated progressive losses with deeper invasion of MMR-deficient colorectal neoplasms (p=0.008). Characterisation of BRAF(wt) MSI CRC revealed hot-spot mutations in well-known oncogenic drivers, including KRAS (38.7%), PIK3CA (36.5%), and ERBB2 (15.0%). L755S and V842I substitutions in ERBB2 were highly recurrent. Functional analyses in ERBB2-mutated MSI CRC cell lines revealed a differential response to HER-targeting compounds and superiority of irreversible pan-HER inhibitors. CONCLUSIONS: We developed a high-throughput deep sequencing approach for concomitant MSI and mutational analyses in FFPE specimens. We provided novel insights into clinically relevant alterations in MSI CRC and a rationale for targeting ERBB2/HER2 mutations in Lynch and Lynch-like CRC.


Subject(s)
Cetuximab/pharmacology , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , ErbB Receptors , Receptor, ErbB-2 , Trastuzumab/pharmacology , Antineoplastic Agents/pharmacology , Cell Culture Techniques , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Female , Humans , Male , Microsatellite Instability , Middle Aged , Pharmacogenomic Testing/methods , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics
13.
Int J Cancer ; 138(4): 927-38, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26340530

ABSTRACT

Small cell lung cancers (SCLCs) and extrapulmonary small cell cancers (SCCs) are very aggressive tumors arising de novo as primary small cell cancer with characteristic genetic lesions in RB1 and TP53. Based on murine models, neuroendocrine stem cells of the terminal bronchioli have been postulated as the cellular origin of primary SCLC. However, both in lung and many other organs, combined small cell/non-small cell tumors and secondary transitions from non-small cell carcinomas upon cancer therapy to neuroendocrine and small cell tumors occur. We define features of "small cell-ness" based on neuroendocrine markers, characteristic RB1 and TP53 mutations and small cell morphology. Furthermore, here we identify a pathway driving the pathogenesis of secondary SCLC involving inactivating NOTCH mutations, activation of the NOTCH target ASCL1 and canonical WNT-signaling in the context of mutual bi-allelic RB1 and TP53 lesions. Additionally, we explored ASCL1 dependent RB inactivation by phosphorylation, which is reversible by CDK5 inhibition. We experimentally verify the NOTCH-ASCL1-RB-p53 signaling axis in vitro and validate its activation by genetic alterations in vivo. We analyzed clinical tumor samples including SCLC, SCC and pulmonary large cell neuroendocrine carcinomas and adenocarcinomas using amplicon-based Next Generation Sequencing, immunohistochemistry and fluorescence in situ hybridization. In conclusion, we identified a novel pathway underlying rare secondary SCLC which may drive small cell carcinomas in organs other than lung, as well.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Signal Transduction , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA Mutational Analysis , Flow Cytometry , Fluorescent Antibody Technique , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Receptors, Notch/genetics , Receptors, Notch/metabolism , Retinoblastoma Protein/genetics , Transfection , Tumor Suppressor Protein p53/genetics
14.
EMBO J ; 31(20): 3961-75, 2012 Oct 17.
Article in English | MEDLINE | ID: mdl-22909821

ABSTRACT

Following genotoxic stress, cells activate a complex signalling network to arrest the cell cycle and initiate DNA repair or apoptosis. The tumour suppressor p53 lies at the heart of this DNA damage response. However, it remains incompletely understood, which signalling molecules dictate the choice between these different cellular outcomes. Here, we identify the transcriptional regulator apoptosis-antagonizing transcription factor (AATF)/Che-1 as a critical regulator of the cellular outcome of the p53 response. Upon genotoxic stress, AATF is phosphorylated by the checkpoint kinase MK2. Phosphorylation results in the release of AATF from cytoplasmic MRLC3 and subsequent nuclear translocation where AATF binds to the PUMA, BAX and BAK promoter regions to repress p53-driven expression of these pro-apoptotic genes. In xenograft experiments, mice exhibit a dramatically enhanced response of AATF-depleted tumours following genotoxic chemotherapy with adriamycin. The exogenous expression of a phospho-mimicking AATF point mutant results in marked adriamycin resistance in vivo. Nuclear AATF enrichment appears to be selected for in p53-proficient endometrial cancers. Furthermore, focal copy number gains at the AATF locus in neuroblastoma, which is known to be almost exclusively p53-proficient, correlate with an adverse prognosis and reduced overall survival. These data identify the p38/MK2/AATF signalling module as a critical repressor of p53-driven apoptosis and commend this pathway as a target for DNA damage-sensitizing therapeutic regimens.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Apoptosis/physiology , DNA Damage/physiology , Repressor Proteins/physiology , Tumor Suppressor Protein p53/physiology , Active Transport, Cell Nucleus , Amino Acid Sequence , Animals , Apoptosis Regulatory Proteins/genetics , Cell Cycle Checkpoints , DNA Damage/genetics , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/genetics , Endometrial Neoplasms/genetics , Female , Gene Amplification , Gene Dosage , HEK293 Cells , Humans , Mice , Molecular Sequence Data , Multiprotein Complexes , Myosin Light Chains/metabolism , Neuroblastoma/genetics , Neuroblastoma/mortality , Osmotic Pressure , Phosphorylation , Prognosis , Protein Processing, Post-Translational , Repressor Proteins/genetics
15.
Mod Pathol ; 29(10): 1165-72, 2016 10.
Article in English | MEDLINE | ID: mdl-27389313

ABSTRACT

Immunohistochemistry of the PD-L1 protein may be predictive for anti-PD-1 and anti-PD-L1 immunotherapy in pulmonary adenocarcinoma and in clinically unselected cohorts of so-called non-small-cell lung cancer. Several PD-L1 immunohistochemistry assays with custom reagents and scoring-criteria are developed in parallel. Biomarker testing and clinical decision making would profit from harmonized PD-L1 diagnostics. To assess interobserver concordance and PD-L1 immunohistochemistry staining patterns, 15 pulmonary carcinoma resection specimens (adenocarcinoma: n=11, squamous-cell carcinoma: n=4) were centrally stained with the assays 28-8, 22C3, SP142, and SP263 according to clinical trial protocols. The slides were evaluated independently by nine pathologists. Proportions of PD-L1-positive carcinoma cells and immune cells were scored according to a 6-step system that integrates the criteria employed by the four PD-L1 immunohistochemistry assays. Proportion scoring of PD-L1-positive carcinoma cells showed moderate interobserver concordance coefficients for the 6-step scoring system (Light's kappa=0.47-0.50). The integrated dichotomous proportion cut-offs (≥1, ≥5, ≥10, ≥50%) showed good concordance coefficients (κ=0.6-0.8). Proportion scoring of PD-L1-positive immune cells yielded low interobserver concordance coefficients both for the 6-step-score (κ<0.2) and the dichotomous cut-offs (κ=0.12-0.25). The assays 28-8 and 22C3 stained similar proportions of carcinoma cells in 12 of 15 cases. SP142 stained fewer carcinoma cells compared to 28-8, 22C3, and SP263 in four cases, whereas SP263 stained more carcinoma cells in nine cases. SP142 and SP263 stained immune cells more intensely. The data indicate that carcinoma cells can be reproducibly scored in PD-L1 immunohistochemistry for pulmonary adenocarcinoma and squamous-cell carcinoma. No differences in interobserver concordance were noticed among the tested assays. The scoring of immune cells yielded low concordance rates and might require specific standardization. The four tested PD-L1 assays did not show comparable staining patterns in all cases. Thus, studies that correlate staining patterns and response to immunotherapy are required to test the significance of the observed differences.


Subject(s)
Adenocarcinoma , B7-H1 Antigen/analysis , Biomarkers, Tumor/analysis , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Immunohistochemistry/methods , Observer Variation
16.
Am J Pathol ; 185(11): 3025-38, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26506472

ABSTRACT

The immunoregulatory cytokine IL-10 suppresses T-cell immunity. The complementary question, whether IL-10 is also involved in limiting the collateral damage of vigorous T cell responses, has not been addressed in detail. Here, we report that the particularly strong virus-specific immune response during acute primary infection with the lymphocytic choriomeningitis virus (LCMV) in mice is significantly further increased in Il10-deficient mice, particularly regarding frequencies and cytotoxic activity of CD8(+) T cells. This increase results in exacerbating immunopathology in select organs, ranging from transient local swelling to an increased risk for mortality. Remarkably, LCMV-induced, T cell-mediated hepatitis is not affected by endogenous Il10. The alleviating effect of Il10 on LCMV-induced immunopathology was found to be operative in delayed-type hypersensitivity footpad-swelling reaction and in debilitating meningitis in mice of both the C57BL/6 and BALB/c strains. These strains are prototypic counterpoles for genetically imprinted type 1-biased versus type 2-biased T cell-mediated immune responses against various infectious pathogens. However, during acute LCMV infection, neither systemic cytokine patterns nor the impact of Il10 on LCMV-induced immunopathology differed conspicuously between these two strains of mice. This study documents a physiological role of Il10 in the regulation of a balanced T-cell response limiting immunopathological damage.


Subject(s)
Antiviral Agents/immunology , CD8-Positive T-Lymphocytes/immunology , Immunity, Cellular , Interleukin-10/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Animals , Antiviral Agents/metabolism , CD8-Positive T-Lymphocytes/physiology , Cytokines/blood , Cytokines/immunology , Female , Hypersensitivity, Delayed , Interleukin-10/genetics , Interleukin-10/metabolism , Lymphocytic Choriomeningitis/physiopathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout
17.
Int J Cancer ; 136(10): 2293-303, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25348795

ABSTRACT

Previous studies have evaluated the role of miRNAs in cancer initiation and progression. MiR-34a was found to be downregulated in several tumors, including medulloblastomas. Here we employed targeted transgenesis to analyze the function of miR-34a in vivo. We generated mice with a constitutive deletion of the miR-34a gene. These mice were devoid of mir-34a expression in all analyzed tissues, but were viable and fertile. A comprehensive standardized phenotypic analysis including more than 300 single parameters revealed no apparent phenotype. Analysis of miR-34a expression in human medulloblastomas and medulloblastoma cell lines revealed significantly lower levels than in normal human cerebellum. Re-expression of miR-34a in human medulloblastoma cells reduced cell viability and proliferation, induced apoptosis and downregulated the miR-34a target genes, MYCN and SIRT1. Activation of the Shh pathway by targeting SmoA1 transgene overexpression causes medulloblastoma in mice, which is dependent on the presence and upregulation of Mycn. Analysis of miR-34a in medulloblastomas derived from ND2:SmoA1(tg) mice revealed significant suppression of miR-34a compared to normal cerebellum. Tumor incidence was significantly increased and tumor formation was significantly accelerated in mice transgenic for SmoA1 and lacking miR-34a. Interestingly, Mycn and Sirt1 were strongly expressed in medulloblastomas derived from these mice. We here demonstrate that miR-34a is dispensable for normal development, but that its loss accelerates medulloblastomagenesis. Strategies aiming to re-express miR-34a in tumors could, therefore, represent an efficient therapeutic option.


Subject(s)
Cerebellar Neoplasms/pathology , Cerebellum/metabolism , Medulloblastoma/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Humans , Medulloblastoma/genetics , Medulloblastoma/metabolism , Mice , Mice, Transgenic , Phenotype , Signal Transduction
18.
Br J Cancer ; 113(12): 1704-11, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26645239

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer-related deaths worldwide. The typical and atypical carcinoid (TC and AC), the large-cell neuroendocrine carcinoma (LCNEC) and the small-cell lung cancers (SCLC) are subgroups of pulmonary tumours that show neuroendocrine differentiations. With the rising impact of molecular pathology in routine diagnostics the interest for reliable biomarkers, which can help to differentiate these subgroups and may enable a more personalised treatment of patients, grows. METHODS: A collective of 70 formalin-fixed, paraffin-embedded (FFPE) pulmonary neuroendocrine tumours (17 TCs, 17 ACs, 19 LCNECs and 17 SCLCs) was used to identify biomarkers by high-throughput sequencing. Using the Illumina TruSeq Amplicon-Cancer Panel on the MiSeq instrument, the samples were screened for alterations in 221 mutation hot spots of 48 tumour-relevant genes. RESULTS: After filtering >26 000 detected variants by applying strict algorithms, a total of 130 mutations were found in 29 genes and 49 patients. Mutations in JAK3, NRAS, RB1 and VHL1 were exclusively found in SCLCs, whereas the FGFR2 mutation was detected in LCNEC only. KIT, PTEN, HNF1A and SMO were altered in ACs. The SMAD4 mutation corresponded to the TC subtype. We prove that the frequency of mutations increased with the malignancy of tumour type. Interestingly, four out of five ATM-mutated patients showed an additional alteration in TP53, which was by far the most frequently altered gene (28 out of 130; 22%). We found correlations between tumour type and IASLC grade for ATM- (P=0.022; P=0.008) and TP53-mutated patients (P<0.001). Both mutated genes were also associated with lymph node invasion and distant metastasis (P⩽0.005). Furthermore, PIK3CA-mutated patients with high-grade tumours showed a reduced overall survival (P=0.040) and the mutation frequency of APC and ATM in high-grade neuroendocrine lung cancer patients was associated with progression-free survival (PFS) (P=0.020). CONCLUSIONS: The implementation of high-throughput sequencing for the analysis of the neuroendocrine lung tumours has revealed that, even if these tumours encompass several subtypes with varying clinical aggressiveness, they share a number of molecular features. An improved understanding of the biology of neuroendocrine tumours will offer the opportunity for novel approaches in clinical management, resulting in a better prognosis and prediction of therapeutic response.


Subject(s)
Lung Neoplasms/genetics , Mutation , Neuroendocrine Tumors/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Neuroendocrine Tumors/pathology , Paraffin Embedding , Young Adult
19.
Blood ; 121(20): 4126-36, 2013 May 16.
Article in English | MEDLINE | ID: mdl-23547049

ABSTRACT

The cell-surface glycoprotein CD44 is expressed in chronic lymphocytic leukemia (CLL), but its functional role in this disease is poorly characterized. We therefore investigated the contribution of CD44 to CLL in a murine disease model, the Eµ-TCL1 transgenic mouse, and in CLL patients. Surface CD44 increased during murine CLL development. CD44 expression in human CLL was induced by stimulation with interleukin 4/soluble CD40 ligand and by stroma cell contact. Engagement of CD44 by its natural ligands, hyaluronic acid or chondroitin sulfate, protected CLL cells from apoptosis, while anti-CD44 small interfering RNAs impaired tumor cell viability. Deletion of CD44 during TCL1-driven murine leukemogenesis reduced the tumor burden in peripheral blood and spleen and led to a prolonged overall survival. The leukemic cells from these CD44 knockout animals revealed lower levels of antiapoptotic MCL1, a higher propensity to apoptosis, and a diminished B-cell receptor kinase response. The inhibitory anti-CD44 antibodies IM7 and A3D8 impaired the viability of CLL cells in suspension cultures, in stroma contact models, and in vivo via MCL1 reduction and by effector caspase activation. Taken together, CD44 expression in CLL is mediated by the tumor microenvironment. As a coreceptor, CD44 promotes leukemogenesis by regulating stimuli of MCL1 expression. Moreover, CD44 can be addressed therapeutically in CLL by specific antibodies.


Subject(s)
Apoptosis/genetics , Cell Transformation, Neoplastic/genetics , Hyaluronan Receptors/physiology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Animals , Cells, Cultured , Disease Progression , Female , Gene Expression Regulation, Leukemic , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/physiology
20.
Blood ; 121(5): 812-21, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23118218

ABSTRACT

UNLABELLED: Survival of chronic lymphocytic leukemia (CLL) cells depends on stimuli provided by a suitable microenvironment. The factors and mechanisms providing this growth support for CLL cells are not fully understood. We found that plasma levels of macrophage migration inhibitory factor (MIF), a proinflammatory and immunoregulatory chemokine, were elevated in CLL patients. Therefore, we characterized the functional role of MIF in a CLL mouse model. For this purpose, we crossed Eµ-TCL1 mice with MIF knockout (MIF-/-) mice. The resulting TCL1+/wtMIF/ mice showed a delayed onset of leukemia, reduced splenomegaly and hepatomegaly, and a longer survival than TCL1+/wtMIFwt/wt controls. Immunohistochemical examination of the lymphoid organs showed that the numbers of macrophages were significantly reduced in the spleen and bone marrow of TCL1+/wtMIF/ mice compared with TCL1+/wtMIFwt/wt controls. Mechanistic studies in vitro revealed that the absence of MIF rendered CLL cells more susceptible to apoptosis. Accordingly, incubation with an anti-MIF antibody reduced the survival of CLL cells on a macrophage feeder layer. In addition, the migratory activity of TCL1+/wtMIF/ macrophages was decreased compared with TCL1+/wtMIFwt/wt macrophages. Taken together, our results provide evidence that MIF supports the development of CLL by enhancing the interaction of CLL cells with macrophages. KEY POINTS: Targeted deletion of the gene for macrophage migration inhibitory factor (MIF) delays development of chronic lymphocytic leukemia and prolongs survival in mice. MIF recruits leukemia-associated macrophages to spleen or liver.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Communication/immunology , Intramolecular Oxidoreductases/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Macrophage Migration-Inhibitory Factors/immunology , Macrophages/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Cell Survival , Feeder Cells , Humans , Intramolecular Oxidoreductases/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Macrophage Migration-Inhibitory Factors/genetics , Macrophages/pathology , Mice , Mice, Knockout , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL