ABSTRACT
It is estimated that more than 170 million people are infected with hepatitis C virus (HCV) worldwide. Clinical trials have demonstrated that, for the first time in human history, the potential exists to eradicate a chronic viral disease using combination therapies that contain only direct-acting antiviral agents. HCV non-structural protein 5A (NS5A) is a multifunctional protein required for several stages of the virus replication cycle. NS5A replication complex inhibitors, exemplified by daclatasvir (DCV; also known as BMS-790052 and Daklinza), belong to the most potent class of direct-acting anti-HCV agents described so far, with in vitro activity in the picomolar (pM) to low nanomolar (nM) range. The potency observed in vitro has translated into clinical efficacy, with HCV RNA declining by ~3-4 log10 in infected patients after administration of single oral doses of DCV. Understanding the exceptional potency of DCV was a key objective of this study. Here we show that although DCV and an NS5A inhibitor analogue (Syn-395) are inactive against certain NS5A resistance variants, combinations of the pair enhance DCV potency by >1,000-fold, restoring activity to the pM range. This synergistic effect was validated in vivo using an HCV-infected chimaeric mouse model. The cooperative interaction of a pair of compounds suggests that NS5A protein molecules communicate with each other: one inhibitor binds to resistant NS5A, causing a conformational change that is transmitted to adjacent NS5As, resensitizing resistant NS5A so that the second inhibitor can act to restore inhibition. This unprecedented synergistic anti-HCV activity also enhances the resistance barrier of DCV, providing additional options for HCV combination therapy and new insight into the role of NS5A in the HCV replication cycle.
Subject(s)
Antiviral Agents/pharmacology , Biphenyl Compounds/pharmacology , Drug Resistance, Viral/drug effects , Hepacivirus/drug effects , Hepacivirus/genetics , Imidazoles/pharmacology , Viral Nonstructural Proteins/metabolism , Allosteric Regulation/drug effects , Animals , Carbamates , Cell Line , Drug Synergism , Drug Therapy, Combination , Hepacivirus/metabolism , Hepatitis C/virology , Hepatocytes/transplantation , Humans , Mice , Models, Molecular , Protein Conformation/drug effects , Protein Multimerization/drug effects , Protein Structure, Quaternary/drug effects , Pyrrolidines , Reproducibility of Results , Valine/analogs & derivatives , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Virus Replication/drug effectsABSTRACT
Herein, we describe the synthesis, antiviral structure-activity relationships (SAR), metabolic stability, and pharmacokinetic (PK) properties for a series of cyclopropylindolobenzazepine acylsulfonamide HCV NS5B polymerase inhibitors. Optimization of SAR, metabolic stability and PK led to the identification of compound 19 which was advanced into pre-IND enabling toxicology studies.
Subject(s)
Antiviral Agents/chemistry , Hepacivirus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Sulfonamides/chemistry , Administration, Oral , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Benzazepines/chemistry , Drug Evaluation, Preclinical , Half-Life , Humans , Macaca fascicularis , Microsomes, Liver/metabolism , RNA-Dependent RNA Polymerase/metabolism , Rats , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokineticsABSTRACT
Daclatasvir (DCV) is a first-in-class hepatitis C virus (HCV) nonstructural 5A replication complex inhibitor (NS5A RCI) that is clinically effective in interferon-free combinations with direct-acting antivirals (DAAs) targeting alternate HCV proteins. Recently, we reported NS5A RCI combinations that enhance HCV inhibitory potential in vitro, defining a new class of HCV inhibitors termed NS5A synergists (J. Sun, D. R. O'Boyle II, R. A. Fridell, D. R. Langley, C. Wang, S. Roberts, P. Nower, B. M. Johnson F. Moulin, M. J. Nophsker, Y. Wang, M. Liu, K. Rigat, Y. Tu, P. Hewawasam, J. Kadow, N. A. Meanwell, M. Cockett, J. A. Lemm, M. Kramer, M. Belema, and M. Gao, Nature 527:245-248, 2015, doi:10.1038/nature15711). To extend the characterization of NS5A synergists, we tested new combinations of DCV and NS5A synergists against genotype (gt) 1 to 6 replicons and gt 1a, 2a, and 3a viruses. The kinetics of inhibition in HCV-infected cells treated with DCV, an NS5A synergist (NS5A-Syn), or a combination of DCV and NS5A-Syn were distinctive. Similar to activity observed clinically, DCV caused a multilog drop in HCV, followed by rebound due to the emergence of resistance. DCV-NS5A-Syn combinations were highly efficient at clearing cells of viruses, in line with the trend seen in replicon studies. The retreatment of resistant viruses that emerged using DCV monotherapy with DCV-NS5A-Syn resulted in a multilog drop and rebound in HCV similar to the initial decline and rebound observed with DCV alone on wild-type (WT) virus. A triple combination of DCV, NS5A-Syn, and a DAA targeting the NS3 or NS5B protein cleared the cells of viruses that are highly resistant to DCV. Our data support the observation that the cooperative interaction of DCV and NS5A-Syn potentiates both the genotype coverage and resistance barrier of DCV, offering an additional DAA option for combination therapy and tools for explorations of NS5A function.
Subject(s)
Antiviral Agents/pharmacology , Biphenyl Compounds/pharmacology , Hepacivirus/drug effects , Imidazoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Carbamates , Cell Line , Drug Synergism , Drug Therapy, Combination , Humans , Molecular Docking Simulation , Pyrrolidines , Replicon/drug effects , Replicon/genetics , Valine/analogs & derivativesABSTRACT
Glioblastoma (GBM) is the most common primary malignant tumor of the central nervous system with a dismal prognosis. Locoregional failure is common despite high doses of radiation therapy, which has prompted great interest in developing novel strategies to radiosensitize these cancers. Our group previously identified a calcium channel blocker (CCB), mibefradil, as a potential GBM radiosensitizer. We discovered that mibefradil selectively inhibits a key DNA repair pathway, alternative non-homologous end joining. We then initiated a phase I clinical trial that revealed promising initial efficacy of mibefradil, but further development was hampered by dose-limiting toxicities, including CCB-related cardiotoxicity, off-target hERG channel and cytochrome P450 enzymes (CYPs) interactions. Here, we show that mibefradil inhibits DNA repair independent of its CCB activity, and report a series of mibefradil analogues which lack CCB activity and demonstrate reduced hERG and CYP activity while retaining potency as DNA repair inhibitors. We present in vivo pharmacokinetic studies of the top analogues with evidence of brain penetration. We also report a targeted siRNA-based screen which suggests a possible role for mTOR and Akt in DNA repair inhibition by this class of drugs. Taken together, these data reveal a new class of mibefradil-based DNA repair inhibitors which can be further advanced into pre-clinical testing and eventually clinical trials, as potential GBM radiosensitizers.
ABSTRACT
A series of 3-aryloxindole derivatives were synthesized and evaluated as activators of the cloned maxi-K channel mSlo expressed in Xenopus laevis oocytes using electrophysiological methods. The most promising maxi-K openers to emerge from this study were (+/-)-3-(5-chloro-2-hydroxyphenyl)-1,3-dihydro-3-hydroxy-6-(trifluoromethyl)-2H-indol-2-one ((+/-)-8c) and its 3-des-hydroxy analogue (+/-)-11b. The individual enantiomers of (+/-)-8c were synthesized, and the maxi-K channel-opening properties were shown to depend on the absolute configuration of the single stereogenic center with the efficacy of (-)-8c superior to that of both (+)-8c and the racemic mixture when evaluated at a concentration of 20 microM. Racemic 11b exhibited greater efficacy than either the racemic 8c or the more active enantiomer in the electrophysiological evaluation. In vitro metabolic stability studies conducted with (+/-)-8c and (+/-)-11b in rat liver S9 microsomal fractions revealed significant oxidative degradation with two hydroxylated metabolites observed by liquid chromatography/mass spectrometry for each compound in addition to the production of 8c from 11b. The pharmacokinetic properties of (+/-)-8c and (+/-)-11b were determined in rats as a prelude to evaluation in a rat model of stroke that involved permanent occlusion of the middle cerebral artery (MCAO model). In the MCAO model, conducted in the spontaneously hypertensive rat, the more polar 3-hydroxy derivative (+/-)-8c did not demonstrate a significant reduction in cortical infarct volume when administered intravenously at doses ranging from 0.1 to 10 mg/kg as a single bolus 2 h after middle cerebral artery occlusion when compared to vehicle-treated controls. In contrast, intravenous administration of (+/-)-11b at a dose of 0.03 mg/kg was found to reduce the measured cortical infarct volume by approximately 18% when compared to vehicle-treated control animals. Intraperitoneal administration of (+/-)-11b at a dose of 10 mg/kg 2 h following artery occlusion was shown to reduce infarct volume by 26% when compared to vehicle-treated controls. To further probe the effects of compounds (+/-)-8c and (+/-)-11b on neurotransmitter release in vitro, both compounds were examined for their ability to reduce electrically stimulated [3H]-glutamate release from rat hippocampal slices that had been preloaded with [3H]-glutamate. Only (+/-)-11b was able to demonstrate a significant inhibition [3H]-glutamate release in this assay at a concentration of 20 microM, providing concordance with the profile of these compounds in the MCAO model. Although (+/-)-11b showed some promise as a potential developmental candidate for the treatment of the sequelae of stroke based on its efficacy in the rat MCAO model, the pharmacokinetic profile of this compound was considered to be less than optimal and was not pursued in favor of derivatives with enhanced metabolic stability.
Subject(s)
Calcium/chemistry , Indoles/chemistry , Indoles/pharmacology , Neurons/drug effects , Potassium Channels, Calcium-Activated/chemistry , Animals , COS Cells , Calcium/metabolism , Cerebral Arteries/metabolism , Dose-Response Relationship, Drug , Electrophysiology , Glutamic Acid/chemistry , Hippocampus/drug effects , Large-Conductance Calcium-Activated Potassium Channels , Male , Models, Chemical , Models, Molecular , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Protein Binding , Protein Structure, Tertiary , Rats , Rats, Inbred SHR , Rats, Sprague-Dawley , Structure-Activity Relationship , Temperature , Xenopus , Xenopus laevisABSTRACT
Novel 4-aryl-3-(hydroxyalkyl)quinoline-2-one derivatives were prepared and evaluated as openers of the cloned maxi-K channel hSlo expressed in Xenopus laevis oocytes by utilizing electrophysiological methods. The effect of these maxi-K openers on corporal smooth muscle was studied in vitro using isolated rabbit corpus cavernosum. From this study, a potent maxi-K opener was identified as an effective relaxant of rabbit corporal smooth muscle and shown to be active in an in vivo animal model of male erectile function.
Subject(s)
Muscle, Smooth/drug effects , Penis/drug effects , Potassium Channels, Calcium-Activated/drug effects , Quinolones/chemical synthesis , Animals , Blood Pressure/drug effects , Electric Stimulation , Erectile Dysfunction/drug therapy , In Vitro Techniques , Large-Conductance Calcium-Activated Potassium Channels , Male , Muscle Relaxation/drug effects , Muscle, Smooth/physiology , Penile Erection/drug effects , Penis/innervation , Penis/physiology , Pressure , Quinolones/chemistry , Quinolones/pharmacology , Rabbits , Rats , Rats, Inbred F344 , Structure-Activity RelationshipABSTRACT
The racemate 1, ((+/-)-(5-Chloro-2-methoxyphenyl)-1,3-dihydro-3-fluoro-6-(trifluoromethyl)- 2H-indol-2-one), is a potent, specific and novel opener of cloned large-conductance, calcium-activated (maxi-K) potassium channels. One of its enantiomers, BMS-204352 (MaxiPost), is undergoing clinical evaluation for efficacy in patients with suspected acute stroke. In the current study, we have prepared [(18)F]-labeled 1 using a silver assisted nucleophilic substitution to examine its distribution and disposition in the rat, with particular emphasis on the brain. Biodistribution studies in rats confirm that brain uptake is rapid and occurs at high levels, and indicate that a major fraction of the compound in the brain does not accumulate by a specific, saturable mechanism.
Subject(s)
Indoles/chemical synthesis , Neuroprotective Agents/chemical synthesis , Animals , Brain/metabolism , Indoles/pharmacokinetics , Neuroprotective Agents/pharmacokinetics , Potassium Channels/drug effects , Rats , Tissue DistributionABSTRACT
Described herein are structure-activity relationship studies that resulted in the optimization of the activity of members of a class of cyclopropyl-fused indolobenzazepine HCV NS5B polymerase inhibitors. Subsequent iterations of analogue design and syntheses successfully addressed off-target activities, most notably human pregnane X receptor (hPXR) transactivation, and led to significant improvements in the physicochemical properties of lead compounds. Those analogues exhibiting improved solubility and membrane permeability were shown to have notably enhanced pharmacokinetic profiles. Additionally, a series of alkyl bridged piperazine carboxamides was identified as being of particular interest, and from which the compound BMS-791325 (2) was found to have distinguishing antiviral, safety, and pharmacokinetic properties that resulted in its selection for clinical evaluation.
Subject(s)
Antiviral Agents/pharmacology , Benzazepines/pharmacology , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Benzazepines/chemistry , Benzazepines/pharmacokinetics , Dogs , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Indoles/chemistry , Indoles/pharmacokinetics , Magnetic Resonance Spectroscopy , Mass Spectrometry , Models, Molecular , Rats , Structure-Activity RelationshipABSTRACT
The discovery of asunaprevir (BMS-650032, 24) is described. This tripeptidic acylsulfonamide inhibitor of the NS3/4A enzyme is currently in phase III clinical trials for the treatment of hepatitis C virus infection. The discovery of 24 was enabled by employing an isolated rabbit heart model to screen for the cardiovascular (CV) liabilities (changes to HR and SNRT) that were responsible for the discontinuation of an earlier lead from this chemical series, BMS-605339 (1), from clinical trials. The structure-activity relationships (SARs) developed with respect to CV effects established that small structural changes to the P2* subsite of the molecule had a significant impact on the CV profile of a given compound. The antiviral activity, preclincial PK profile, and toxicology studies in rat and dog supported clinical development of BMS-650032 (24).
Subject(s)
Antiviral Agents/therapeutic use , Hepatitis C/drug therapy , Isoquinolines/therapeutic use , Protease Inhibitors/therapeutic use , Sulfonamides/therapeutic use , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/blood , Antiviral Agents/chemistry , Dogs , Humans , Isoquinolines/blood , Isoquinolines/chemistry , Models, Molecular , Protease Inhibitors/blood , Protease Inhibitors/chemistry , Rabbits , Rats , Sulfonamides/blood , Sulfonamides/chemistryABSTRACT
The discovery of BMS-605339 (35), a tripeptidic inhibitor of the NS3/4A enzyme, is described. This compound incorporates a cyclopropylacylsulfonamide moiety that was designed to improve the potency of carboxylic acid prototypes through the introduction of favorable nonbonding interactions within the S1' site of the protease. The identification of 35 was enabled through the optimization and balance of critical properties including potency and pharmacokinetics (PK). This was achieved through modulation of the P2* subsite of the inhibitor which identified the isoquinoline ring system as a key template for improving PK properties with further optimization achieved through functionalization. A methoxy moiety at the C6 position of this isoquinoline ring system proved to be optimal with respect to potency and PK, thus providing the clinical compound 35 which demonstrated antiviral activity in HCV-infected patients.
Subject(s)
Antiviral Agents/therapeutic use , Drug Discovery , Hepatitis C/drug therapy , Isoquinolines/therapeutic use , Protease Inhibitors/therapeutic use , Sulfonamides/therapeutic use , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Crystallography, X-Ray , Dogs , Drug Evaluation, Preclinical , Humans , Isoquinolines/chemistry , Models, Molecular , Protease Inhibitors/chemistry , Sulfonamides/chemistryABSTRACT
We evaluated the effects of 4-(5-chloro-2-hydroxyphenyl)-3-(2-hydroxyethyl)-6-(trifluoromethyl)-quinolin-2(1H)-one (BMS-223131), an opener of large conductance Ca(2+)-activated potassium (maxi-K) channels, on normal and stress-exacerbated colonic motility and visceral nociception in the rat. Fecal output was employed as an index of motility. Visceral nociception, in response to intracolonic balloon distension (10-90 mm Hg; 30 s duration), was evaluated using one of three indices: change in blood pressure, abdominal withdrawal, or myoelectrical activity. BMS-223131 (2, 6, or 20 mg/kg i.p.) produced a small but dose-dependent and significant reduction in cumulative 24-h fecal output. Fecal output in response to stress (1-h restraint plus bursts of air to the face) was markedly inhibited by BMS-223131, and moisture content was significantly reduced. With regard to visceral pain, the transient and distention-dependent reduction in arterial pressure in anesthetized animals was inhibited by BMS-223131 in a dose-dependent manner. Distension-induced abdominal withdrawal in conscious rats was also dose-dependently attenuated by BMS-223131. BMS-223131 at a dose of 20 mg/kg markedly attenuated the increase in myoelectrical activity evoked by balloon distention in conscious animals. BMS-223131 was also evaluated in viscerally hypersensitive rats (sensitized as neonates by intracolonic mustard oil) where it produced a robust dose-dependent attenuation of the abdominal withdrawal response. Compared with naive animals, BMS-223131 was more potent in the sensitized animals. Thus, BMS-223131 effectively reduced stress-induced colonic motility and visceral nociception supporting the potential utility of maxi-K channel openers for the treatment of bowel disorders involving dysfunctional motility and visceral sensitivity.
Subject(s)
Colon/drug effects , Gastrointestinal Motility/drug effects , Pain Measurement/drug effects , Potassium Channels, Calcium-Activated/agonists , Potassium Channels, Calcium-Activated/physiology , Quinolones/administration & dosage , Stress, Physiological/drug therapy , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Colon/physiology , Dose-Response Relationship, Drug , Female , Gastrointestinal Motility/physiology , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Large-Conductance Calcium-Activated Potassium Channels , Pain Measurement/methods , Quinolines/administration & dosage , Quinolines/chemistry , Quinolones/chemistry , Rats , Rats, Wistar , Stress, Physiological/physiopathology , Viscera/drug effects , Viscera/physiologyABSTRACT
A series of 4-aryl-3-aminoquinoline-2-one derivatives was synthesized and evaluated as activators of the cloned maxi-K channel mSlo (hSlo) expressed in Xenopus laevis oocytes using electrophysiological methods. A brain penetrable activator of maxi-K channels was identified and shown to be significantly active in the MCAO model of stroke.
Subject(s)
Neuroprotective Agents/chemistry , Potassium Channels, Calcium-Activated/metabolism , Quinolones/chemistry , Animals , Brain/drug effects , Clone Cells , Disease Models, Animal , Electrophysiology , Large-Conductance Calcium-Activated Potassium Channels , Male , Membrane Potentials , Neuroprotective Agents/blood , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Oocytes/metabolism , Patch-Clamp Techniques , Potassium Channels, Calcium-Activated/drug effects , Quinolones/blood , Quinolones/chemical synthesis , Quinolones/pharmacology , Rats , Stroke/complications , Stroke/drug therapy , Structure-Activity Relationship , Xenopus laevisABSTRACT
A series of 1,3-diaryl 1,2,4-(4H)-triazol-5-ones was prepared and shown by electrophysiological analysis to activate a cloned maxi-K channel mSlo (or hSlo) expressed in Xenopus laevis oocytes. The effects of these structurally novel maxi-K channel openers on bladder contractile function were studied in vitro using isolated rat bladder strips pre-contracted with carbachol. Several 1,3-diaryl 1,2,4-(4H)-triazol-5-one derivatives were found to be potent smooth muscle relaxants but this activity did not completely correlate with maxi-K channel opening.
Subject(s)
Azo Compounds/chemical synthesis , Azo Compounds/pharmacology , Oocytes/drug effects , Oocytes/physiology , Potassium Channels, Calcium-Activated/drug effects , Urinary Incontinence/drug therapy , Animals , Calcium/metabolism , Carbachol/pharmacology , Cells, Cultured/drug effects , Electrophysiology , Humans , Large-Conductance Calcium-Activated Potassium Channels , Male , Mice , Microinjections , Models, Molecular , Muscle Relaxation/drug effects , Muscle, Smooth/physiology , Potassium Channels, Calcium-Activated/genetics , Potassium Channels, Calcium-Activated/metabolism , RNA, Messenger/metabolism , Rats , Structure-Activity Relationship , Urinary Bladder/metabolism , Xenopus laevisABSTRACT
A variety of water-soluble prodrugs of BMS-191011 was synthesized and evaluated for solution state stability and rate of conversion to BMS-191011 in rat and human plasma. The deoxycarnitine ester prodrug (11c) was selected for clinical evaluation based on its superior chemical stability, crystallinity and cleavage to BMS-191011 in human plasma.
Subject(s)
Betaine/analogs & derivatives , Carnitine , Heterocyclic Compounds, 3-Ring/chemical synthesis , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacokinetics , Potassium Channels/agonists , Prodrugs/chemical synthesis , Prodrugs/metabolism , Stroke/drug therapy , Animals , Blood/metabolism , Crystallization , Dose-Response Relationship, Drug , Drug Stability , Heterocyclic Compounds, 3-Ring/metabolism , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Neuroprotective Agents/metabolism , Oxadiazoles , Prodrugs/pharmacokinetics , Rats , Solubility , Structure-Activity Relationship , WaterABSTRACT
A novel series of 4-aryl-3-(mercapto)quinolin-2-one derivatives was prepared and evaluated as openers of the cloned maxi-K channel hSlo expressed in Xenopus laevis oocytes by utilizing electrophysiological methods. The effect of these maxi-K openers on corporal smooth muscle was studied in vitro using isolated rabbit corpus cavernosum. In vivo efficacy has been demonstrated with a selective maxi-K opening relaxant in a rat model of erectile function.
Subject(s)
Muscle, Smooth, Vascular/drug effects , Penis/drug effects , Potassium Channels, Calcium-Activated/physiology , Quinolones/chemistry , Vasodilation/drug effects , Animals , Female , In Vitro Techniques , Large-Conductance Calcium-Activated Potassium Channels , Male , Muscle, Smooth, Vascular/physiology , Penis/physiology , Quinolones/pharmacology , Rabbits , Rats , Rats, Inbred F344 , Vasodilation/physiology , Xenopus laevisABSTRACT
3-amino-4-benzylquinolin-2-ones have been identified as a novel class of KCNQ2 channel openers. Synthesis and SAR is described along with their electrophysiological evaluation as activators of the cloned mKCNQ2 channel expressed in Xenopus laevis oocytes. The preliminary SAR data suggest the importance of both the trifluoromethylsulfonamido group and electron-withdrawing substituents on the quinolone nucleus for expression of KCNQ2 channel opening properties.
Subject(s)
Potassium Channels/physiology , Quinolones/chemical synthesis , Quinolones/pharmacology , Animals , Female , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , KCNQ2 Potassium Channel , Potassium Channels/agonists , Potassium Channels, Voltage-Gated , Structure-Activity Relationship , Xenopus laevisABSTRACT
A series of Maxi-K openers for the treatment of erectile dysfunction based on the 3-thio-quinolinone core is described. Significant levels of channel opening (up to 550% of control) are seen in transfected oocytes. Functional activity in rabbit corpus cavernosum tissue strips confirms the potential to effect therapy for ED, the effect being maximal for the 3-amino-2-hydroxy thiol side chain.
Subject(s)
Ion Channel Gating , Penile Erection/drug effects , Potassium Channels, Calcium-Activated/drug effects , Quinolines/chemical synthesis , Sulfides/chemical synthesis , Vasodilator Agents/chemical synthesis , Animals , Erectile Dysfunction/drug therapy , Humans , In Vitro Techniques , Large-Conductance Calcium-Activated Potassium Channels , Male , Muscle Relaxation/drug effects , Muscle Relaxation/physiology , Muscle, Smooth, Vascular/drug effects , Oocytes/drug effects , Oocytes/physiology , Patch-Clamp Techniques , Penile Erection/physiology , Penis/blood supply , Quinolines/chemistry , Quinolines/pharmacology , Rabbits , Structure-Activity Relationship , Sulfides/chemistry , Sulfides/pharmacology , Vasodilator Agents/chemistry , Vasodilator Agents/pharmacologyABSTRACT
3-Aryl-3-fluorooxindoles can be efficiently synthesized in two steps by the addition of an aryl Grignard to an isatin, followed by treatment with DAST. Oxindole 1 (BMS-204352; MaxiPost) can be isolated using chiral HPLC or prepared by employing chiral resolution. Cloned maxi-K channels are opened by 1, which demonstrates a brain/plasma ratio >9 in rats.