Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Card Fail ; 28(5): 778-786, 2022 05.
Article in English | MEDLINE | ID: mdl-34933097

ABSTRACT

BACKGROUND: Adipose tissue influences the expression and degradation of circulating biomarkers. We aimed to identify the biomarker profile and biological meaning of biomarkers associated with obesity to assess the effect of spironolactone on the circulating biomarkers and to explore whether obesity might modify the effect of spironolactone. METHODS AND RESULTS: Protein biomarkers (n = 276) from the Olink Proseek-Multiplex cardiovascular and inflammation panels were measured in plasma collected at baseline, 1 month and 9 months from the HOMAGE randomized controlled trial participants. Of the 510 participants, 299 had obesity defined as an increased waist circumference (≥102 cm in men and ≥88 cm in women). Biomarkers at baseline reflected adipogenesis, increased vascularization, decreased fibrinolysis, and glucose intolerance in patients with obesity at baseline. Treatment with spironolactone had only minor effects on this proteomic profile. Obesity modified the effect of spironolactone on systolic blood pressure (Pinteraction = 0.001), showing a stronger decrease of blood pressure in obese patients (-14.8 mm Hg 95% confidence interval -18.45 to -11.12) compared with nonobese patients (-3.6 mm Hg 95% confidence interval -7.82 to 0.66). CONCLUSIONS: Among patients at risk for heart failure, those with obesity have a characteristic proteomic profile reflecting adipogenesis and glucose intolerance. Spironolactone had only minor effects on this obesity-related proteomic profile, but obesity significantly modified the effect of spironolactone on systolic blood pressure.


Subject(s)
Glucose Intolerance , Heart Failure , Biomarkers , Female , Humans , Male , Mineralocorticoid Receptor Antagonists , Obesity/complications , Obesity/drug therapy , Proteomics , Spironolactone/therapeutic use , Treatment Outcome
2.
Europace ; 24(10): 1645-1654, 2022 10 13.
Article in English | MEDLINE | ID: mdl-35762524

ABSTRACT

AIMS: While electrocardiogram (ECG) characteristics have been associated with life-threatening ventricular arrhythmias (LTVA) in dilated cardiomyopathy (DCM), they typically rely on human-derived parameters. Deep neural networks (DNNs) can discover complex ECG patterns, but the interpretation is hampered by their 'black-box' characteristics. We aimed to detect DCM patients at risk of LTVA using an inherently explainable DNN. METHODS AND RESULTS: In this two-phase study, we first developed a variational autoencoder DNN on more than 1 million 12-lead median beat ECGs, compressing the ECG into 21 different factors (F): FactorECG. Next, we used two cohorts with a combined total of 695 DCM patients and entered these factors in a Cox regression for the composite LTVA outcome, which was defined as sudden cardiac arrest, spontaneous sustained ventricular tachycardia, or implantable cardioverter-defibrillator treated ventricular arrhythmia. Most patients were male (n = 442, 64%) with a median age of 54 years [interquartile range (IQR) 44-62], and median left ventricular ejection fraction of 30% (IQR 23-39). A total of 115 patients (16.5%) reached the study outcome. Factors F8 (prolonged PR-interval and P-wave duration, P < 0.005), F15 (reduced P-wave height, P = 0.04), F25 (increased right bundle branch delay, P = 0.02), F27 (P-wave axis P < 0.005), and F32 (reduced QRS-T voltages P = 0.03) were significantly associated with LTVA. CONCLUSION: Inherently explainable DNNs can detect patients at risk of LTVA which is mainly driven by P-wave abnormalities.


Subject(s)
Cardiomyopathy, Dilated , Defibrillators, Implantable , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/therapy , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/diagnosis , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Electrocardiography/methods , Female , Humans , Male , Middle Aged , Neural Networks, Computer , Risk Factors , Stroke Volume , Ventricular Function, Left/physiology
3.
Eur Heart J ; 42(2): 162-174, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33156912

ABSTRACT

AIMS: The dilated cardiomyopathy (DCM) phenotype is the result of combined genetic and acquired triggers. Until now, clinical decision-making in DCM has mainly been based on ejection fraction (EF) and NYHA classification, not considering the DCM heterogenicity. The present study aimed to identify patient subgroups by phenotypic clustering integrating aetiologies, comorbidities, and cardiac function along cardiac transcript levels, to unveil pathophysiological differences between DCM subgroups. METHODS AND RESULTS: We included 795 consecutive DCM patients from the Maastricht Cardiomyopathy Registry who underwent in-depth phenotyping, comprising extensive clinical data on aetiology and comorbodities, imaging and endomyocardial biopsies. Four mutually exclusive and clinically distinct phenogroups (PG) were identified based upon unsupervised hierarchical clustering of principal components: [PG1] mild systolic dysfunction, [PG2] auto-immune, [PG3] genetic and arrhythmias, and [PG4] severe systolic dysfunction. RNA-sequencing of cardiac samples (n = 91) revealed a distinct underlying molecular profile per PG: pro-inflammatory (PG2, auto-immune), pro-fibrotic (PG3; arrhythmia), and metabolic (PG4, low EF) gene expression. Furthermore, event-free survival differed among the four phenogroups, also when corrected for well-known clinical predictors. Decision tree modelling identified four clinical parameters (auto-immune disease, EF, atrial fibrillation, and kidney function) by which every DCM patient from two independent DCM cohorts could be placed in one of the four phenogroups with corresponding outcome (n = 789; Spain, n = 352 and Italy, n = 437), showing a feasible applicability of the phenogrouping. CONCLUSION: The present study identified four different DCM phenogroups associated with significant differences in clinical presentation, underlying molecular profiles and outcome, paving the way for a more personalized treatment approach.


Subject(s)
Cardiomyopathy, Dilated , Cardiomyopathy, Dilated/genetics , Cluster Analysis , Humans , Italy , Phenotype , Spain
4.
Genet Med ; 23(11): 2186-2193, 2021 11.
Article in English | MEDLINE | ID: mdl-34194005

ABSTRACT

PURPOSE: Accurate interpretation of variants detected in dilated cardiomyopathy (DCM) is crucial for patient care but has proven challenging. We applied a set of proposed refined American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria for DCM, reclassified all detected variants in robust genes, and associated these results to patients' phenotype. METHODS: The study included 902 DCM probands from the Maastricht Cardiomyopathy Registry who underwent genetic testing. Two gene panel sizes (extended n = 48; and robust panel n = 14) and two standards of variant classification (standard versus the proposed refined ACMG/AMP criteria) were applied to compare genetic yield. RESULTS: A pathogenic or likely pathogenic (P/LP) variant was found in 17.8% of patients, and a variant of uncertain significance (VUS) was found in 32.8% of patients when using method 1 (extended panel (n = 48) + standard ACMG/AMP), compared to respectively 16.9% and 12.9% when using method 2 (robust panel (n = 14) + standard ACMG/AMP), and respectively 14% and 14.5% using method 3 (robust panel (n = 14) + refined ACMG/AMP). Patients with P/LP variants had significantly lower event-free survival compared to genotype-negative DCM patients. CONCLUSION: Stringent gene selection for DCM genetic testing reduced the number of VUS while retaining ability to detect similar P/LP variants. The number of genes on diagnostic panels should be limited to genes that have the highest signal to noise ratio.


Subject(s)
Cardiomyopathy, Dilated , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/genetics , Genetic Testing , Genetic Variation , Genomics , Humans , Phenotype
5.
Cardiovasc Diabetol ; 20(1): 163, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34372849

ABSTRACT

BACKGROUND: Patients with diabetes mellitus (DM) are at increased risk of developing heart failure (HF). The "Heart OMics in AGEing" (HOMAGE) trial suggested that spironolactone had beneficial effect on fibrosis and cardiac remodelling in an at risk population, potentially slowing the progression towards HF. We compared the proteomic profile of patients with and without diabetes among patients at risk for HF in the HOMAGE trial. METHODS: Protein biomarkers (n = 276) from the Olink®Proseek-Multiplex cardiovascular and inflammation panels were measured in plasma collected at baseline and 9 months (or last visit) from HOMAGE trial participants including 217 patients with, and 310 without, diabetes. RESULTS: Twenty-one biomarkers were increased and five decreased in patients with diabetes compared to non-diabetics at baseline. The markers clustered mainly within inflammatory and proteolytic pathways, with granulin as the key-hub, as revealed by knowledge-induced network and subsequent gene enrichment analysis. Treatment with spironolactone in diabetic patients did not lead to large changes in biomarkers. The effects of spironolactone on NTproBNP, fibrosis biomarkers and echocardiographic measures of diastolic function were similar in patients with and without diabetes (all interaction analyses p > 0.05). CONCLUSIONS: Amongst patients at risk for HF, those with diabetes have higher plasma concentrations of proteins involved in inflammation and proteolysis. Diabetes does not influence the effects of spironolactone on the proteomic profile, and spironolactone produced anti-fibrotic, anti-remodelling, blood pressure and natriuretic peptide lowering effects regardless of diabetes status.  Trial registration NCT02556450.


Subject(s)
Blood Proteins/analysis , Diabetes Mellitus/blood , Diabetic Cardiomyopathies/blood , Heart Failure/blood , Proteome , Proteomics , Aged , Biomarkers/blood , Diabetes Mellitus/diagnosis , Diabetes Mellitus/drug therapy , Diabetic Cardiomyopathies/diagnosis , Diabetic Cardiomyopathies/drug therapy , Female , Heart Failure/diagnosis , Heart Failure/drug therapy , Humans , Male , Mineralocorticoid Receptor Antagonists/therapeutic use , Predictive Value of Tests , Prospective Studies , Risk Assessment , Risk Factors , Spironolactone/therapeutic use , Time Factors , Treatment Outcome
6.
Hum Mutat ; 41(6): 1091-1111, 2020 06.
Article in English | MEDLINE | ID: mdl-32112656

ABSTRACT

Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high-throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC-associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrimental for muscle function, as found in HCM and MFM. Variants associated with HCM are predominantly missense variants, which cluster in the ROD2 domain. This domain is important for binding to the sarcomere and to ensure appropriate cell signaling. We here review FLNC genotype-phenotype correlations based on available evidence.


Subject(s)
Cardiomyopathies/genetics , Filamins/genetics , Muscular Diseases/genetics , Animals , Arrhythmias, Cardiac/genetics , Cardiomyopathy, Dilated/genetics , Disease Models, Animal , Genetic Association Studies , Humans , Mutation , Myopathies, Structural, Congenital/genetics
7.
BMC Med ; 18(1): 290, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33121502

ABSTRACT

BACKGROUND: An overview of the diagnostic performance of natriuretic peptides (NPs) for the detection of diastolic dysfunction (DD) and heart failure with preserved ejection fraction (HFpEF), in a non-acute setting, is currently lacking. METHODS: We performed a systematic literature search in PubMed and Embase.com (May 13, 2019). Studies were included when they (1) reported diagnostic performance measures, (2) are for the detection of DD or HFpEF in a non-acute setting, (3) are compared with a control group without DD or HFpEF or with patients with heart failure with reduced ejection fraction, (4) are in a cross-sectional design. Two investigators independently assessed risk of bias of the included studies according to the QUADAS-2 checklist. Results were meta-analysed when three or more studies reported a similar diagnostic measure. RESULTS: From 11,728 titles/abstracts, we included 51 studies. The meta-analysis indicated a reasonable diagnostic performance for both NPs for the detection of DD and HFpEF based on AUC values of approximately 0.80 (0.73-0.87; I2 = 86%). For both NPs, sensitivity was lower than specificity for the detection of DD and HFpEF: approximately 65% (51-85%; I2 = 95%) versus 80% (70-90%; I2 = 97%), respectively. Both NPs have adequate ability to rule out DD: negative predictive value of approximately 85% (78-93%; I2 = 95%). The ability of both NPs to prove DD is lower: positive predictive value of approximately 60% (30-90%; I2 = 99%). CONCLUSION: The diagnostic performance of NPs for the detection of DD and HFpEF is reasonable. However, they may be used to rule out DD or HFpEF, and not for the diagnosis of DD or HFpEF.


Subject(s)
Heart Failure, Diastolic/physiopathology , Heart Failure/physiopathology , Natriuretic Peptides/metabolism , Cross-Sectional Studies , Female , Humans , Male
8.
J Card Fail ; 26(3): 212-222, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31541741

ABSTRACT

BACKGROUND: Metabolomic profiling may have diagnostic and prognostic value in heart failure. This study investigated whether targeted blood and urine metabolomics reflects disease severity in patients with nonischemic dilated cardiomyopathy (DCM) and compared its incremental value on top of N-terminal prohormone of brain natriuretic peptide (NT-proBNP). METHODS AND RESULTS: A total of 149 metabolites were measured in plasma and urine samples of 273 patients with DCM and with varying stages of disease (patients with DCM and normal left ventricular reverse remodeling, n = 70; asymptomatic DCM, n = 72; and symptomatic DCM, n = 131). Acylcarnitines, sialic acid and glutamic acid are the most distinctive metabolites associated with disease severity, as repeatedly revealed by unibiomarker linear regression, sparse partial least squares discriminant analysis, random forest, and conditional random forest analyses. However, the absolute difference in the metabolic profile among groups was marginal. A decision-tree model based on the top metabolites did not surpass NT-proBNP in classifying stages. However, a combination of NT-proBNP and the top metabolites improved the decision tree to distinguish patients with DCM and left ventricular reverse remodeling from symptomatic DCM (area under the curve 0.813 ± 0.138 vs 0.739 ± 0.114; P = 0.02). CONCLUSION: Functional cardiac recovery is reflected in metabolomics. These alterations reveal potential alternative treatment targets in advanced symptomatic DCM. The metabolic profile can complement NT-proBNP in determining disease severity in nonischemic DCM.


Subject(s)
Cardiomyopathy, Dilated , Heart Failure , Cardiomyopathy, Dilated/diagnosis , Humans , Metabolomics , Natriuretic Peptide, Brain , Peptide Fragments , Severity of Illness Index , Ventricular Remodeling
10.
Eur Heart J ; 39(10): 864-873, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29377983

ABSTRACT

Aims: Truncating titin variants (TTNtv) are the most prevalent genetic cause of dilated cardiomyopathy (DCM). We aim to study clinical parameters and long-term outcomes related to the TTNtv genotype and determine the related molecular changes at tissue level in TTNtv DCM patients. Methods and results: A total of 303 consecutive and extensively phenotyped DCM patients (including cardiac imaging, Holter monitoring, and endomyocardial biopsy) underwent DNA sequencing of 47 cardiomyopathy-associated genes including TTN, yielding 38 TTNtv positive (13%) patients. At long-term follow-up (median of 45 months, up to 12 years), TTNtv DCM patients had increased ventricular arrhythmias compared to other DCM, but a similar survival. Arrhythmias are especially prominent in TTNtv patients with an additional environmental trigger (i.e. virus infection, cardiac inflammation, systemic disease, toxic exposure). Importantly, cardiac mass is reduced in TTNtv patients, despite similar cardiac function and dimensions at cardiac magnetic resonance. These enhanced life-threatening arrhythmias and decreased cardiac mass in TTNtv DCM patients go along with significant cardiac energetic and matrix alterations. All components of the mitochondrial electron transport chain are significantly upregulated in TTNtv hearts at RNA-sequencing. Also, interstitial fibrosis was augmented in TTNtv patients at histological and transcript level. Conclusion: Truncating titin variants lead to pronounced cardiac alterations in mitochondrial function, with increased interstitial fibrosis and reduced hypertrophy. Those structural and metabolic alterations in TTNtv hearts go along with increased ventricular arrhythmias at long-term follow-up, with a similar survival and overall cardiac function.


Subject(s)
Cardiomyopathies , Connectin , Arrhythmias, Cardiac/metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Connectin/genetics , Connectin/metabolism , Connectin/physiology , Fibrosis/metabolism , Humans , Mitochondria/metabolism
13.
J Clin Med ; 13(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38610657

ABSTRACT

Background: Systemic microvascular regression and dysfunction are considered important underlying mechanisms in heart failure with preserved ejection fraction (HFpEF), but retinal changes are unknown. Methods: This prospective study aimed to investigate whether retinal microvascular and structural parameters assessed using optical coherence tomography angiography (OCT-A) differ between patients with HFpEF and control individuals (i.e., capillary vessel density, thickness of retina layers). We also aimed to assess the associations of retinal parameters with clinical and echocardiographic parameters in HFpEF. HFpEF patients, but not controls, underwent echocardiography. Macula-centered 6 × 6 mm volume scans were computed of both eyes. Results: Twenty-two HFpEF patients and 24 controls without known HFpEF were evaluated, with an age of 74 [68-80] vs. 68 [58-77] years (p = 0.027), and 73% vs. 42% females (p = 0.034), respectively. HFpEF patients showed vascular degeneration compared to controls, depicted by lower macular vessel density (p < 0.001) and macular ganglion cell-inner plexiform layer thickness (p = 0.025), and a trend towards lower total retinal volume (p = 0.050) on OCT-A. In HFpEF, a lower total retinal volume was associated with markers of diastolic dysfunction (septal e', septal and average E/e': R2 = 0.38, 0.36, 0.25, respectively; all p < 0.05), even after adjustment for age, sex, diabetes mellitus, or atrial fibrillation. Conclusions: Patients with HFpEF showed clear levels of retinal vascular changes compared to control individuals, and retinal alterations appeared to be associated with markers of more severe diastolic dysfunction in HFpEF. OCT-A may therefore be a promising technique for monitoring systemic microvascular regression and cardiac diastolic dysfunction.

14.
Circ Genom Precis Med ; 17(2): e004416, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38516780

ABSTRACT

BACKGROUND: Preimplantation genetic testing (PGT) is a reproductive technology that selects embryos without (familial) genetic variants. PGT has been applied in inherited cardiac disease and is included in the latest American Heart Association/American College of Cardiology guidelines. However, guidelines selecting eligible couples who will have the strongest risk reduction most from PGT are lacking. We developed an objective decision model to select eligibility for PGT and compared its results with those from a multidisciplinary team. METHODS: All couples with an inherited cardiac disease referred to the national PGT center were included. A multidisciplinary team approved or rejected the indication based on clinical and genetic information. We developed a decision model based on published risk prediction models and literature, to evaluate the severity of the cardiac phenotype and the penetrance of the familial variant in referred patients. The outcomes of the model and the multidisciplinary team were compared in a blinded fashion. RESULTS: Eighty-three couples were referred for PGT (1997-2022), comprising 19 different genes for 8 different inherited cardiac diseases (cardiomyopathies and arrhythmias). Using our model and proposed cutoff values, a definitive decision was reached for 76 (92%) couples, aligning with 95% of the multidisciplinary team decisions. In a prospective cohort of 11 couples, we showed the clinical applicability of the model to select couples most eligible for PGT. CONCLUSIONS: The number of PGT requests for inherited cardiac diseases increases rapidly, without the availability of specific guidelines. We propose a 2-step decision model that helps select couples with the highest risk reduction for cardiac disease in their offspring after PGT.


Subject(s)
Clinical Decision-Making , Genetic Diseases, Inborn , Genetic Testing , Heart Diseases , Preimplantation Diagnosis , Referral and Consultation , Female , Humans , Genetic Testing/methods , Heart Diseases/congenital , Heart Diseases/diagnosis , Heart Diseases/genetics , Heart Diseases/prevention & control , Preimplantation Diagnosis/methods , Male , Clinical Decision-Making/methods , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Risk Management , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/prevention & control , Heterozygote , Prospective Studies , Family Characteristics
15.
JACC Basic Transl Sci ; 8(11): 1477-1488, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38093747

ABSTRACT

Immunotherapy is a potential cornerstone in the treatment of myocardial fibrosis. During a myocardial insult or heart failure, danger signals stimulate innate immune cells to produce chemokines and profibrotic cytokines, which initiate self-escalating inflammatory processes by attracting and stimulating adaptive immune cells. Stimulation of fibroblasts by inflammatory processes and the need to replace damaged cardiomyocytes fosters reshaping of the cardiac fibroblast landscape. In this review, we discuss new immunomodulatory strategies that manipulate and direct cardiac fibroblast activation and differentiation. In particular, we highlight immunomodulatory strategies that target fibroblasts such as chimeric antigen receptor T cells, interleukin-11, and invariant natural killer T-cells. Moreover, we discuss the potential of manipulating both innate and adaptive immune system components for the translation into clinical validation. Clearly, multiple pathways should be considered to develop innovative approaches to ameliorate myocardial fibrosis and hence to reduce the risk of heart failure.

16.
J Am Heart Assoc ; 12(15): e030603, 2023 08.
Article in English | MEDLINE | ID: mdl-37489738

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP) is a common bone marrow abnormality induced by age-related DNA mutations, which give rise to proinflammatory immune cells. These immune cells exacerbate atherosclerotic cardiovascular disease and may induce or accelerate heart failure. The mechanisms involved are complex but point toward a central role for proinflammatory macrophages and an inflammasome-dependent immune response (IL-1 [interleukin-1] and IL-6 [interleukin-6]) in the atherosclerotic plaque or directly in the myocardium. Intracardiac inflammation may decrease cardiac function and induce cardiac fibrosis, even in the absence of atherosclerotic cardiovascular disease. The pathophysiology and consequences of CHIP may differ among implicated genes as well as subgroups of patients with heart failure, based on cause (ischemic versus nonischemic) and ejection fraction (reduced ejection fraction versus preserved ejection fraction). Evidence is accumulating that CHIP is associated with cardiovascular mortality in ischemic and nonischemic heart failure with reduced ejection fraction and involved in the development of heart failure with preserved ejection fraction. CHIP and corresponding inflammatory pathways provide a highly potent therapeutic target. Randomized controlled trials in patients with well-phenotyped heart failure, where readily available anti-inflammatory therapies are used to intervene with clonal hematopoiesis, may pave the way for a new area of heart failure treatment. The first clinical trials that target CHIP are already registered.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Heart Failure , Humans , Clonal Hematopoiesis/genetics , Cardiovascular Diseases/etiology , Hematopoiesis/genetics , Atherosclerosis/genetics , Mutation
17.
J Am Soc Echocardiogr ; 36(2): 154-162, 2023 02.
Article in English | MEDLINE | ID: mdl-36332803

ABSTRACT

BACKGROUND: Left atrial (LA) dilation is associated with a worse prognosis in several cardiovascular settings, but therapies can promote LA reverse remodeling. The aim of this study was to characterize and define the prognostic implications of LA volume index (LAVI) reduction in patients with dilated cardiomyopathy (DCM). METHODS: Consecutive patients with DCM from two tertiary care centers, with available echocardiograms at baseline and at 1-year follow-up, were retrospectively analyzed. LA dilation was defined as LAVI > 34 mL/m2, and change in LAVI (ΔLAVI) was defined as the 1-year relative LAVI reduction. The outcome was a composite of death, heart transplantation (HTx), or heart failure hospitalization (HFH). RESULTS: Five hundred sixty patients were included (mean age, 54 ± 13 years; mean left ventricular ejection fraction, 31 ± 10%; mean LAVI, 45 ± 18 mL/m2). Baseline LAVI had a non-linear association with the risk for death, HTx, or HFH, independent of age, left ventricular ejection fraction, mitral regurgitation, and medical therapy (P < .01). At 1-year follow-up, LAVI decreased in 374 patients (67%; median ΔLAVI, -24%; interquartile range, -37% to -11%). Factors independently associated with ΔLAVI were higher baseline LAVI and lower baseline left ventricular ejection fraction. After multivariable adjustment, ΔLAVI showed a linear association with the risk for death, HTx, or HFH (hazard ratio, 0.96 per 5% decrease; 95% CI, 0.93-0.99; P = .042). At 1-year follow-up, patients with reductions in LAVI of >10% and LAVI normalization (i.e., follow-up LAVI ≤ 34 mL/m2; 31% of the overall cohort) were at lower risk for death, HTx, or HFH (hazard ratio, 0.37; 95% CI, 0.35-0.97; P = .028). CONCLUSIONS: In a large cohort of patients with DCM, 1-year reduction in LAVI was observed in a number of patients. The association between reduction in LAVI and death, HTx, or HFH suggests that LA structural reverse remodeling might be considered an additional parameter useful in the individualized risk stratification of patients with DCM.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Cardiomyopathy, Dilated , Humans , Adult , Middle Aged , Aged , Retrospective Studies , Stroke Volume , Cardiomyopathy, Dilated/diagnostic imaging , Heart Atria/diagnostic imaging , Ventricular Function, Left , Prognosis
18.
Eur Heart J Cardiovasc Imaging ; 24(9): 1231-1240, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37131297

ABSTRACT

AIMS: Left ventricular (LV) blood flow is determined by intraventricular pressure gradients (IVPG). Changes in blood flow initiate remodelling and precede functional decline. Novel cardiac magnetic resonance (CMR) post-processing LV-IVPG analysis might provide a sensitive marker of LV function in dilated cardiomyopathy (DCM). Therefore, the aim of our study was to evaluate LV-IVPG patterns and their prognostic value in DCM. METHODS AND RESULTS: LV-IVPGs between apex and base were measured on standard CMR cine images in DCM patients (n = 447) from the Maastricht Cardiomyopathy registry. Major adverse cardiovascular events, including heart failure hospitalisations, life-threatening arrhythmias, and sudden/cardiac death, occurred in 66 DCM patients (15%). A temporary LV-IVPG reversal during systolic-diastolic transition, leading to a prolonged transition period or slower filling, was present in 168 patients (38%). In 14%, this led to a reversal of blood flow, which predicted outcome corrected for univariable predictors [hazard ratio (HR) = 2.57, 95% confidence interval (1.01-6.51), P = 0.047]. In patients without pressure reversal (n = 279), impaired overall LV-IVPG [HR = 0.91 (0.83-0.99), P = 0.033], systolic ejection force [HR = 0.91 (0.86-0.96), P < 0.001], and E-wave decelerative force [HR = 0.83 (0.73-0.94), P = 0.003] predicted outcome, independent of known predictors (age, sex, New York Heart Association class ≥ 3, LV ejection fraction, late gadolinium enhancement, LV-longitudinal strain, left atrium (LA) volume-index, and LA-conduit strain). CONCLUSION: Pressure reversal during systolic-diastolic transition was observed in one-third of DCM patients, and reversal of blood flow direction predicted worse outcome. In the absence of pressure reversal, lower systolic ejection force, E-wave decelerative force (end of passive LV filling), and overall LV-IVPG are powerful predictors of outcome, independent of clinical and imaging parameters.


Subject(s)
Cardiomyopathy, Dilated , Humans , Contrast Media , Ventricular Pressure , Magnetic Resonance Imaging, Cine , Gadolinium , Ventricular Function, Left , Stroke Volume , Magnetic Resonance Spectroscopy , Prognosis , Predictive Value of Tests
19.
J Clin Med ; 12(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37373632

ABSTRACT

Dilated cardiomyopathy (DCM) has a genetic cause in up to 40% of cases, with differences in disease penetrance and clinical presentation, due to different exogeneous triggers and implicated genes. Cardiac inflammation can be the consequence of an exogeneous trigger, subsequently unveiling a phenotype. The study aimed to determine cardiac inflammation in a cohort of genetic DCM patients and investigate whether it associated with a younger disease onset. The study included 113 DCM patients with a genetic etiology, of which 17 had cardiac inflammation as diagnosed in an endomyocardial biopsy. They had a significant increased cardiac infiltration of white blood, cytotoxic T, and T-helper cells (p < 0.05). Disease expression was at a younger age in those patients with cardiac inflammation, compared to those without inflammation (p = 0.015; 50 years (interquartile range (IQR) 42-53) versus 53 years (IQR 46-61). However, cardiac inflammation was not associated with a higher incidence of all-cause mortality, heart failure hospitalization, or life-threatening arrhythmias (hazard ratio 0.85 [0.35-2.07], p = 0.74). Cardiac inflammation is associated with an earlier disease onset in patients with genetic DCM. This might indicate that myocarditis is an exogeneous trigger unveiling a phenotype at a younger age in patients with a genetic susceptibility, or that cardiac inflammation resembles a 'hot-phase' of early-onset disease.

20.
JACC Heart Fail ; 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37638520

ABSTRACT

BACKGROUND: Clonal hematopoiesis (CH) gives rise to mutated leukocyte clones that induce cardiovascular inflammation and thereby impact the disease course in atherosclerosis and ischemic heart failure. CH of indeterminate potential refers to a variant allele frequency (VAF; a marker for clone size) in blood of ≥2%. The impact of CH clones-including small clone sizes (VAF <0.5%)-in nonischemic dilated cardiomyopathy (DCM) remains largely undetermined. OBJECTIVES: The authors sought to establish the prognostic impact of CH in DCM including small clones. METHODS: CH is determined using an ultrasensitive single-molecule molecular inversion probe technique that allows detection of clones down to a VAF of 0.01%. Cardiac death and all-cause mortality were analyzed using receiver-operating characteristic curve-optimized VAF cutoff values. RESULTS: A total of 520 DCM patients have been included. One hundred and nine patients (21%) had CH driver mutations, of which 45 had a VAF of ≥2% and 31 <0.5%. The median follow-up duration was 6.5 years [IQR: 4.7-9.7 years]. DCM patients with CH have a higher risk of cardiac death (HR: 2.33 using a VAF cutoff of 0.36%, 95% CI: 1.24-4.40) and all-cause mortality (HR: 1.72 using a VAF cutoff of 0.06%, 95% CI: 1.10-2.69), independent of age, sex, left ventricular ejection fraction, and New York Heart Association classification. CONCLUSIONS: CH predicts cardiac death and all-cause mortality in DCM patients with optimal thresholds for clone size of 0.36% and 0.06%, respectively. Therefore, CH is prognostically relevant, independent of clone size in patients with DCM.

SELECTION OF CITATIONS
SEARCH DETAIL