ABSTRACT
Cachexia, a systemic wasting condition, is considered a late consequence of diseases, including cancer, organ failure, or infections, and contributes to significant morbidity and mortality. The induction process and mechanistic progression of cachexia are incompletely understood. Refocusing academic efforts away from advanced cachexia to the etiology of cachexia may enable discoveries of new therapeutic approaches. Here, we review drivers, mechanisms, organismal predispositions, evidence for multi-organ interaction, model systems, clinical research, trials, and care provision from early onset to late cachexia. Evidence is emerging that distinct inflammatory, metabolic, and neuro-modulatory drivers can initiate processes that ultimately converge on advanced cachexia.
Subject(s)
Cachexia , Humans , Cachexia/drug therapy , Cachexia/etiology , Cachexia/metabolism , Cachexia/pathology , Muscle, Skeletal/metabolism , Neoplasms/complications , Neoplasms/metabolism , Neoplasms/pathology , Infections/complications , Infections/pathology , Multiple Organ Failure/complications , Multiple Organ Failure/pathologyABSTRACT
Cancer cachexia is a complex systemic wasting syndrome. Nutritional mechanisms that span energy intake, nutrient metabolism, body composition, and energy balance may be impacted by, and may contribute to, the development of cachexia. To date, clinical management of cachexia remains elusive. Leaning on discoveries and novel methodologies from other fields of research may bolster new breakthroughs that improve nutritional management and clinical outcomes. Characteristics that compare and contrast cachexia and obesity may reveal opportunities for cachexia research to adopt methodology from the well-established field of obesity research. This review outlines the known nutritional mechanisms and gaps in the knowledge surrounding cancer cachexia. In parallel, we present how obesity may be a different side of the same coin and how obesity research has tackled similar research questions. We present insights into how cachexia research may utilize nutritional methodology to expand our understanding of cachexia to improve definitions and clinical care in future directions for the field.
Subject(s)
Body Composition , Cachexia , Energy Metabolism , Neoplasms , Obesity , Cachexia/etiology , Cachexia/therapy , Humans , Neoplasms/complications , Neoplasms/therapy , Obesity/complications , Obesity/metabolism , Nutritional Status , Energy IntakeABSTRACT
Knowledge of human body composition at the dawn of the twentieth century was based largely on cadaver studies and chemical analyses of isolated organs and tissues. Matters soon changed by the nineteen twenties when the Czech anthropologist Jindrich Matiegka introduced an influential new anthropometric method of fractionating body mass into subcutaneous adipose tissue and other major body components. Today, one century later, investigators can not only quantify every major body component in vivo at the atomic, molecular, cellular, tissue-organ, and whole-body organizational levels, but go far beyond to organ and tissue-specific composition and metabolite estimates. These advances are leading to an improved understanding of adiposity structure-function relations, discovery of new obesity phenotypes, and a mechanistic basis of some weight-related pathophysiological processes and adverse clinical outcomes. What factors over the past one hundred years combined to generate these profound new body composition measurement capabilities in living humans? This perspective tracks the origins of these scientific innovations with the aim of providing insights on current methodology gaps and future research needs.
ABSTRACT
OBJECTIVE: To evaluate the hypothesis that anthropometric dimensions derived from a person's manifold-regression predicted three-dimensional (3D) humanoid avatar are accurate when compared to their actual circumference, volume, and surface area measurements acquired with a ground-truth 3D optical imaging method. Avatars predicted using this approach, if accurate with respect to anthropometric dimensions, can serve multiple purposes including patient body composition analysis and metabolic disease risk stratification in clinical settings. METHODS: Manifold regression 3D avatar prediction equations were developed on a sample of 570 adults who completed 3D optical scans, dual-energy X-ray absorptiometry (DXA), and bioimpedance analysis (BIA) evaluations. A new prospective sample of 84 adults had ground-truth measurements of 6 body circumferences, 7 volumes, and 7 surface areas with a 20-camera 3D reference scanner. 3D humanoid avatars were generated on these participants with manifold regression including age, weight, height, DXA %fat, and BIA impedances as potential predictor variables. Ground-truth and predicted avatar anthropometric dimensions were quantified with the same software. RESULTS: Following exploratory studies, one manifold prediction model was moved forward for presentation that included age, weight, height, and %fat as covariates. Predicted and ground-truth avatars had similar visual appearances; correlations between predicted and ground-truth anthropometric estimates were all high (R2s, 0.75-0.99; all p < 0.001) with non-significant mean differences except for arm circumferences (%Δ ~ 5%; p < 0.05). Concordance correlation coefficients ranged from 0.80-0.99 and small but significant bias (p < 0.05-0.01) was present with Bland-Altman plots in 13 of 20 total anthropometric measurements. The mean waist to hip circumference ratio predicted by manifold regression was non-significantly different from ground-truth scanner measurements. CONCLUSIONS: 3D avatars predicted from demographic, physical, and other accessible characteristics can produce body representations with accurate anthropometric dimensions without a 3D scanner. Combining manifold regression algorithms into established body composition methods such as DXA, BIA, and other accessible methods provides new research and clinical opportunities.
ABSTRACT
BACKGROUND: We aimed to explore the associations between thigh muscle fat density and vascular events. METHODS: A total of 3,595 adults (mean age, 57.2 years; women, 1,715 [47.7%]) without baseline cardiovascular events from the Korean Atherosclerosis Study-2 were included. Muscle and fat area at the mid-thigh level were measured by computed tomography (CT) using the following Hounsfield Unit range: 0-30 for low density muscle (LDM); 31-100 for normal density muscle (NDM); and - 250 to - 50 for fat. RESULTS: During a median follow-up period of 11.8 (4.3-13.9) years, vascular events occurred in 11.6% of men and 5.9% of women. Individuals with vascular events had a larger LDM area (men: 48.8 ± 15.5 cm2 vs. 44.6 ± 14.5 cm2; women: 39.4 ± 13.2 cm2 vs. 35.0 ± 11.8 cm2, both P < 0.001) compared with those who did not have vascular events during the follow-up of at least 5 years. The LDM/NDM ratio was also independently associated with vascular events after adjusting for cardiometabolic risk factors. Moreover, the LDM/NDM ratio improved the prognostic value for vascular events when added to conventional risk factors. CONCLUSIONS: The current study suggests that a higher thigh muscle fat infiltration is associated with an increased risk of developing vascular events among Korean adults.
Subject(s)
Muscle, Skeletal , Thigh , Male , Adult , Humans , Female , Middle Aged , Muscle, Skeletal/diagnostic imaging , Risk Factors , Tomography, X-Ray Computed , Republic of Korea/epidemiologyABSTRACT
Excess adiposity is at the root of type 2 diabetes (T2D). Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as first-line treatments for T2D based on significant weight loss results. The composition of weight loss using most diets consists of <25% fat-free mass (FFM) loss, with the remainder from fat stores. Higher amounts of weight loss (achieved with metabolic bariatric surgery) result in greater reductions in FFM. Our aim was to assess the impact that GLP-1RA-based treatments have on FFM. We analysed studies that reported changes in FFM with the following agents: exenatide, liraglutide, semaglutide, and the dual incretin receptor agonist tirzepatide. We performed an analysis of various weight loss interventions to provide a reference for expected changes in FFM. We evaluated studies using dual-energy X-ray absorptiometry (DXA) for measuring FFM (a crude surrogate for skeletal muscle). In evaluating the composition of weight loss, the percentage lost as fat-free mass (%FFML) was equal to ΔFFM/total weight change. The %FFML using GLP-1RA-based agents was between 20% and 40%. In the 28 clinical trials evaluated, the proportion of FFM loss was highly variable, but the majority reported %FFML exceeding 25%. Our review was limited to small substudies and the use of DXA, which does not measure skeletal muscle mass directly. Since FFM contains a variable amount of muscle (approximately 55%), this indirect measure may explain the heterogeneity in the data. Assessing quantity and quality of skeletal muscle using advanced imaging (magnetic resonance imaging) with functional testing will help fill the gaps in our current understanding.
ABSTRACT
BACKGROUND AND AIMS: Body fat distribution, i.e., visceral (VAT), subcutaneous adipose tissue (SAT) and intramuscular fat, is important for disease prevention, but sex and ethnic differences are not well understood. Our aim was to identify anthropometric, demographic, and lifestyle predictors for these outcomes. METHODS AND RESULTS: The cross-sectional ShapeUp!Kids study was conducted among five ethnic groups aged 5-18 years. All participants completed questionnaires, anthropometric measurements, and abdominal MRI scans. VAT and SAT areas at four lumbar levels and muscle density were assessed manually. General linear models were applied to estimate coefficients of determination (R2) and to compare the fit of VAT and SAT prediction models. After exclusions, the study population had 133 male and 170 female participants. Girls had higher BMI-z scores, waist circumference (WC), and SAT than boys but lower VAT/SAT and muscle density. SAT, VAT, and VAT/SAT but not muscle density differed significantly by ethnicity. R2 values were higher for SAT than VAT across groups and improved slightly after adding WC. For SAT, R2 increased from 0.85 to 0.88 (girls) and 0.62 to 0.71 (boys) when WC was added while VAT models improved from 0.62 to 0.65 (girls) and 0.57 to 0.62 (boys). VAT values were significantly lower among Blacks than Whites with little difference for the other groups. CONCLUSION: This analysis in a multiethnic population identified BMI-z scores and WC as the major predictors of MRI-derived SAT and VAT and highlights the important ethnic differences that need to be considered in diverse populations.
Subject(s)
Muscles , Subcutaneous Fat , Humans , Male , Female , Cross-Sectional Studies , Subcutaneous Fat/diagnostic imaging , Anthropometry/methods , Waist CircumferenceABSTRACT
BACKGROUND/OBJECTIVES: Body size and shape have increased over the past several decades with one in five adolescents now having obesity according to objective anthropometric measures such as weight, height, and body mass index (BMI). The gradual physical changes and their consequences may not be fully appreciated upon visual inspection by those managing the long-term health of adolescents. This study aimed to develop humanoid avatars representing the gradual changes in adolescent body size and shape over the past five decades and to align avatars with key BMI percentile cut points for underweight, normal weight, overweight, and obesity. PARTICIPANTS/METHODS: Participants included 223 children and adolescents between the ages of 5 and 18 years approximately representative of the race/ethnicity and BMI of the noninstitutionalized US population. Each participant completed a three-dimensional whole-body scan, and the collected data was used to develop manifold regression models for generating humanoid male and female avatars from specified ages, weights, and heights. Secular changes in the mean weights and heights of adolescents were acquired from six U.S. National Health and Nutrition Surveys beginning in 1971-1974 and ending in 2015-2018. Male and female avatars at two representative ages, 10 and 15 years, were developed for each survey and at the key BMI percentile cut points based on data from the 2015-2018 survey. RESULTS: The subtle changes in adolescent Americans' body size and shape over the past five decades are represented by 24 male and female 10- and 15-year-old avatars and 8 corresponding BMI percentile cut points. CONCLUSIONS: The current study, the first of its kind, aligns objective physical examination weights and heights with the visual appearance of adolescents. Aligning the biometric and visual information may help improve awareness and appropriate clinical management of adolescents with excess adiposity passing through health care systems. TRIAL REGISTRATION: ClinicalTrials.Gov NCT03706612.
Subject(s)
Pediatric Obesity , Adolescent , Body Mass Index , Child , Child, Preschool , Female , Humans , Male , Nutrition Surveys , Overweight/epidemiology , Pediatric Obesity/epidemiology , Prevalence , Thinness , United States/epidemiologyABSTRACT
BACKGROUND: Deuterium oxide (D2O) dilution is the criterion method for total body water (TBW) measurement, but results may vary depending on the specimen type, analysis method, and analyzing laboratory. Bioelectrical impedance (BIA) estimates TBW, but results may vary by device make and model. OBJECTIVES: We investigated the accuracy and precision of TBW estimates and how measurement conditions affected the accuracy of body composition using multicompartment body composition models. METHODS: Eighty collegiate athletes received duplicate TBW measures acquired from 3 BIA devices (S10, SFB7, and SOZO) and from unique D2O combinations of specimen type (saliva, urine), analysis methodology [Fourier transform infrared spectrophotometry (FTIR), isotope-ratio mass spectrometry (IRMS)], and 3 different laboratories. TBW measures were substituted into 2-compartment (2C) and 5-compartment (5C) body composition models. Criterion measures were compared using Lin's concordance correlation coefficient cutoff of poor (<0.90), moderate (0.90-0.95), substantial (0.95-0.99), and almost perfect (>0.99). RESULTS: Fifty-one participants (26 female) completed the protocol. Using IRMS saliva as the criterion TBW, all other measures produced a substantial or almost perfect agreement, except for SFB7 (poor) and SOZO (moderate). The 2C body composition measures using D2O and BIA produced poor agreement except for moderate agreement for lab 3 FTIR saliva. The 5C body composition measures using D2O produced a substantial agreement, whereas the BIA device S10 and SOZO had a moderate agreement, while the SFB7 had a poor agreement to the criterion. Test-retest precision varied between techniques from 0.3% to 1.2% for TBW. CONCLUSIONS: Small differences in TBW measurement led to significant differences in 2C models. The 5C models partially mitigate differences seen in 2C models when different TBW measures are used. Interchanging TBW measures in multicompartment models can be problematic and should be performed with these considerations.
Subject(s)
Body Composition , Body Water , Athletes , Deuterium , Deuterium Oxide , Electric Impedance , Female , Humans , Indicator Dilution TechniquesABSTRACT
BACKGROUND: The aim of obesity treatment is to promote loss of fat relative to lean mass. However, body composition changes with calorie restriction differ among individuals. OBJECTIVES: The goal of this study was to test the hypothesis that insulin secretion predicts body composition changes among young and middle-age adults with high BMI (in kg/m2) following major weight loss. METHODS: Exploratory analyses were conducted with pre-randomization data from 2 large feeding trials: the Framingham, Boston, Bloomington, Birmingham, and Baylor study (FB4; n = 82, 43.9% women, BMI ≥27) and the Framingham State Food Study [(FS)2; n = 161, 69.6% women, BMI ≥25]. Participants in the 2 trials consumed calorie-restricted moderate-carbohydrate or very-low-carbohydrate diets to produce 12-18% weight loss in â¼14 wk or 10-14% in â¼10 wk, respectively. We determined insulin concentration 30 min after a 75-g oral glucose load (insulin-30) as a measure of insulin secretion and HOMA-IR as a measure of insulin resistance at baseline. Body composition was determined by DXA at baseline and post-weight loss. Associations were analyzed using general linear models with adjustment for covariates. RESULTS: In FB4, higher insulin-30 was associated with a smaller decrease in fat mass (0.441 kg per 100 µIU/mL increment in baseline insulin-30; P = 0.005; -1.20-kg mean difference between the first compared with the fifth group of insulin-30) and a larger decrease in lean mass (-0.465 kg per 100 µIU/mL; P = 0.004; 1.27-kg difference). Participants with higher insulin-30 lost a smaller proportion of weight loss as fat (-3.37% per 100 µIU/mL; P = 0.003; 9.20% difference). Greater HOMA-IR was also significantly associated with adverse body composition changes. Results from (FS)2 were qualitatively similar but of a smaller magnitude. CONCLUSIONS: Baseline insulin dynamics predict substantial individual differences in body composition following weight loss. These findings may inform understanding of the pathophysiological basis for weight regain and the design of more effective obesity treatment. Registered at clinicaltrials.gov as NCT03394664 and NCT02068885.
Subject(s)
Hyperinsulinism , Insulin Resistance , Adult , Body Composition , Body Mass Index , Clinical Trials as Topic , Female , Humans , Hyperinsulinism/complications , Insulin/metabolism , Insulin Secretion , Male , Middle Aged , Obesity/complications , Weight LossABSTRACT
PURPOSE: The aim of this study was (1) to assess AT through 13 different mathematical approaches and to compare their results; and (2) to understand if AT occurs after moderate WL. METHODS: Ninety-four participants [mean (SD); BMI, 31.1 (4.3) kg/m2; age, 43.0 (9.4) years; 34% females] underwent a 1-year lifestyle intervention (clinicaltrials.gov ID: NCT03031951) and were randomized to intervention (IG, n = 49) or control groups (CG, n = 45), and all measurements were made at baseline and after 4 months. Fat mass (FM) and fat-free mass (FFM) were measured by dual-energy X-ray absorptiometry and REE by indirect calorimetry. AT was assessed through 13 different approaches, varying in how REE was predicted and/or how AT was assessed. RESULTS: IG underwent a mean negative energy balance (EB) of 270 (289) kcal/day, p < 0.001), resulting in a WL of - 4.8 (4.9)% and an FM loss of - 11.3 (10.8)%. Regardless of approach, AT occurred in the IG, ranging from ~ - 65 to ~ - 230 kcal/day and three approaches showed significant AT in the CG. CONCLUSIONS: Regardless of approach, AT occurred after moderate WL in the IG. AT assessment should be standardized and comparisons among studies with different methodologies to assess AT must be avoided.
Subject(s)
Obesity , Thermogenesis , Adult , Basal Metabolism , Body Composition , Calorimetry, Indirect , Energy Metabolism , Female , Humans , Male , Weight LossABSTRACT
Roux-en-Y gastric bypass (RYGB) is one of the most performed bariatric surgical techniques. However, RYGB commonly results, as side effects, in nutritional deficiencies. This study aimed to examine changes in the expression of vitamin A pathway encoding genes in the gastrointestinal tract (GI) and to evaluate the potential mechanisms associated with hypovitaminosis A after RYGB. Intestinal biopsies were obtained through double-balloon endoscopy in 20 women with obesity (age 46.9±6.2 years; body mass index [BMI] 46.5±5.3 kg/m2 [mean±SD]) before and three months after RYGB (BMI, 38.2±4.2 kg/m2). Intestinal mucosal gene microarray analyses were performed in samples using a Human GeneChip 1.0 ST array (Affymetrix). Vitamin A intake was assessed from 7-day food records and serum retinol levels were evaluated by electrochemiluminescence immunoassay. Our results showed the following genes with significant downregulation (p≤0.05): LIPF (-0.60), NPC1L1 (-0.71), BCO1 (-0.45), and RBP4 (-0.13) in duodenum; CD36 (-0.33), and ISX (-0.43) in jejunum and BCO1 (-0.29) in ileum. No significant changes in vitamin A intake were found (784±694 retinol equivalents [RE] pre-operative vs. 809±753 RE post-operative [mean±SD]). Although patients were routinely supplemented with 3500 international units IU/day (equivalent to 1050 µg RE/day) of oral retinol palmitate, serum concentrations were lower in the post-operative when compared to pre-operative period (0.35±0.14 µg/L vs. 0.52±0.33 µg/L, respectively - P=0.07), both within the normal range. After RYGB, the simultaneous change in expression of GI genes, may impair carotenoid metabolism in the enterocytes, formation of nascent chylomicrons and transport of retinol, resulting in lower availability of vitamin A.
ABSTRACT
Randomization is an important tool used to establish causal inferences in studies designed to further our understanding of questions related to obesity and nutrition. To take advantage of the inferences afforded by randomization, scientific standards must be upheld during the planning, execution, analysis, and reporting of such studies. We discuss ten errors in randomized experiments from real-world examples from the literature and outline best practices for their avoidance. These ten errors include: representing nonrandom allocation as random, failing to adequately conceal allocation, not accounting for changing allocation ratios, replacing subjects in nonrandom ways, failing to account for non-independence, drawing inferences by comparing statistical significance from within-group comparisons instead of between-groups, pooling data and breaking the randomized design, failing to account for missing data, failing to report sufficient information to understand study methods, and failing to frame the causal question as testing the randomized assignment per se. We hope that these examples will aid researchers, reviewers, journal editors, and other readers to endeavor to a high standard of scientific rigor in randomized experiments within obesity and nutrition research.
Subject(s)
Nutritional Sciences/standards , Obesity/diet therapy , Public Reporting of Healthcare Data , Research Design/standards , Humans , Nutritional Sciences/methods , Nutritional Sciences/trends , Obesity/physiopathology , Practice Guidelines as TopicABSTRACT
OBJECTIVES: Body surface area (SA) is a widely used physical measure incorporated into multiple thermophysiology and evolutionary biology models currently estimated in humans either with empirical prediction equations or costly whole-body laser imaging systems. The introduction of low-cost 3D scanners provides a new opportunity to quantify total body (TB) and regional SA, although a critical question prevails: can these devices acquire the quality of depth information and process this initial data to form a mesh that has the fidelity needed to generate accurate SA estimates? MATERIALS AND METHODS: This question was answered by comparing SA estimates calculated using images from four commercial 3D scanners in 108 adults to corresponding estimates acquired with a whole-body laser system. This was accomplished by processing initial mesh data from all devices, including the laser system, with the same universal software adapted specifically for repairing mesh gaps, identifying landmarks, and generating SA measurements. RESULTS: TB SA measured on all four 3D scanners was highly correlated with corresponding laser system estimates (R2 s, 0.98-0.99; all p < 0.001) with some small but significant mean differences (-0.19 to 0.06 m2 ); root-mean square errors (RMSEs) were small (0.02-0.03 m2 ); and significant bias was present for one device. Qualitatively similar results (e.g., R2 s, 0.78-0.95; mean Δs, -0.05 to 0.02 m2 ; RMSEs, 0.01-0.03 m2 ) were present for trunk, arm, and leg SA comparisons. DISCUSSION: The current study observations demonstrate that low-cost and practical 3D optical scanners are capable of accurately quantifying TB and regional SA, thus opening new opportunities for evaluating human phenotypes and related physiological characteristics.
Subject(s)
Lasers , Software , Anthropometry , Body Surface Area , Humans , Imaging, Three-Dimensional , Optical ImagingABSTRACT
We aimed to validate bioelectrical impedance spectroscopy (BIS), compared with tracer dilution measurements, for assessing total body water (TBW), intracellular water (ICW), and extracellular water (ECW) in athletes differing in hydration status. A total of 201 athletes participated. Reference TBW and ECW were determined by deuterium and bromide dilution methods, respectively; ICW was calculated as TBW-ECW. Water compartments were estimated by BIS. Urine specific gravity (USG) classified athletes into well-hydrated (WH) (USG < 1.023), euhydrated (EH) (USG:1.024-1.026), and dehydrated (DH) (USG>1.027). No significant differences were found between BIS and the reference methods for WH, EH, and DH athletes for TBW, ICW nor ECW (p>0.05). Concordance of TBW and its compartments by method was significant (p < 0.001) with coefficients of determination ranging by hydration classification [EH:52-96%;DH:56-98%;WH:71-96%]. Bland-Altman analyses showed no trend for TBW and its compartments with the exception of ICW in the WH athletes. The 95% confidence BIS intervals for the WH group ranged from -3.08 to 2.68 kg for TBW, -4.28 to 4.14 kg for ICW, and -3.29 to 3.02 kg for ECW. For the EH athletes, the 95% confidence intervals ranged from -2.78 to 2.24 kg for TBW, -4.10 to 3.94 kg for ICW, and -3.44 to 3.06 kg for ECW. In DH group, TBW ranged between -1.99 and 2.01 kg, ICW between -3.78 and 6.34 kg, and ECW between -6.22 and 3.74 kg. These findings show that BIS is useful at a group level in assessing water compartments in athletes differing in hydration status. However, the usefulness of BIS is limited at an individual level, especially in dehydrated athletes.
Subject(s)
Athletes , Body Water/metabolism , Electric Impedance , Organism Hydration Status/physiology , Spectrum Analysis/standards , Adolescent , Adult , Female , Humans , Male , Young AdultABSTRACT
BACKGROUND: High levels of sedentary behavior and low physical activity are associated with poor health, and the cognitive determinants of these behaviors in children and adolescents are not well understood. To address this gap, we developed a novel, non-verbal, computer-based assessment to quantify the degree to which youth prefer to be sedentary relative to physically active in their leisure time. METHODS: The Activity Preference Assessment (APA) uses a forced-choice paradigm to understand implicit decision-making processes when presented with common sedentary and physical activities. The APA bias score ranges from - 100 to + 100, with positive scores indicating a relative preference for sedentary activities, and negative scores representing a preference for physical activities. In 60 children ages 8-17 years, we assessed the validity of this behavioral task against a free-choice play observation, accelerometry-measured activity, anthropometrics and body composition, and cardiorespiratory fitness. We explored neighborhood, family, and individual-level factors that may influence implicit activity preferences. Test-retest reliability was assessed over one week. RESULTS: The majority of children (67%) preferred sedentary relative to physical activities. APA bias scores were positively associated with sedentary time during free-choice play. In girls, bias scores were negatively associated with average daily MVPA. APA bias scores were positively associated with body fat and negatively associated with cardiorespiratory fitness. These findings were independent of age, sex, and race/ethnicity. Neighborhood access to physical activity spaces, the number of people in the home, perceived physical self-competence (e.g., coordination, strength), and self-reported depressive symptoms were associated with activity preferences. The intra-class correlation for test-retest reliability was r = 0.59. CONCLUSIONS: The APA shows promise as a novel tool for quantifying children's relative preference for sedentary versus physical activities. Implicit bias scores from the APA are clinically meaningful, as shown by significant associations with adiposity and cardiorespiratory fitness. Future longitudinal studies should examine the directionality of the association between preferences and health markers, and the degree to which implicit activity preferences are modifiable. Importantly, the task only takes an average of 10 min to complete, highlighting a potential role as an efficient screening tool for the propensity to be sedentary versus physically active. TRIAL REGISTRATION: ClinicalTrials.gov NCT03624582 .
Subject(s)
Adolescent Behavior , Child Behavior , Decision Making , Exercise , Leisure Activities , Sedentary Behavior , Surveys and Questionnaires , Accelerometry , Adiposity , Adolescent , Body Composition , Cardiorespiratory Fitness , Child , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Obesity , Psychometrics , Reproducibility of Results , Residence Characteristics , Self ReportABSTRACT
OBJECTIVES: Recent reports on body regional mass scalings to height have advanced understanding differences in adult heights. These studies resulted in conjectures on how regional lengths and circumferences may scale to height. We provide evidence for these conjectures by analyzing a large sample of regional limb, trunk, chest, and head lengths and circumferences in a large sample of US Army basic training recruits. METHODS: Participants consisted of 10 271 males and 2760 females ages 17 to 21 years old who reported for basic training at Fort Jackson, SC. Participants were imaged by a three-dimensional (3D) body scanner for uniform sizing which yielded 159 body measurements of total mass, lengths and circumferences at regional sites of arms, legs, trunk, chest, and head. The allometric model, Body Measur e i = α i H ß i was applied to derive scaling exponents which were applied to estimate regional mass scalings. RESULTS: Body mass scaled to height with powers of â¼2.0 (mean ß ± SE, 1.98 ± 0.04, 1.93 ± 0.06). Arm and leg lengths scaled to exponents larger than 1.0 and head height and circumferences at regional sites scaled to exponents smaller than 1.0. The leg, arm, and trunk mass scaling exponents were all above 2.0. Head mass scaled to powers smaller than 2.0. CONCLUSIONS: The 3D scanner allowed hundreds of anthropometric measurements to be obtained within seconds. The ensuing analysis revealed that greater height yielded disproportional increases in limb lengths, limb mass and trunk mass. These analyses provide evidence that could not be previously measured that further both biomechanical and metabolic conjectures.
Subject(s)
Anthropometry , Military Personnel/statistics & numerical data , Adolescent , Adult , Body Height , Female , Humans , Imaging, Three-Dimensional , Male , Models, Biological , South Carolina , Waist Circumference , Young AdultABSTRACT
We read the recent article in Psychology of Sport and Exercise by Liu et al. ("A randomized controlled trial of coordination exercise on cognitive function in obese adolescents") with great interest. Our interest in the article stemmed from the extraordinary differences in obesity-related outcomes reported in response to a rope-jumping intervention. We requested the raw data from the authors to confirm the results and, after the journal editors reinforced our request, the authors graciously provided us with their data. We share our evaluation of the original data herein, which includes concerns that weight and BMI loss by the intervention appears extraordinary in both magnitude and aspects of the distributions. We request that the authors address our findings by providing explanations of the extraordinary data or correcting any errors that may have occurred in the original report, as appropriate.