Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cell ; 187(15): 3919-3935.e19, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38908368

ABSTRACT

In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors, little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex physiologic networks generate lifespan variation, new methods are needed. Here, we present Asynch-seq, an approach that uses gene-expression heterogeneity within isogenic populations to study the processes generating lifespan variation. By collecting thousands of single-individual transcriptomes, we capture the Caenorhabditis elegans "pan-transcriptome"-a highly resolved atlas of non-genetic variation. We use our atlas to guide a large-scale perturbation screen that identifies the decoupling of total mRNA content between germline and soma as the largest source of physiologic heterogeneity in aging, driven by pleiotropic genes whose knockdown dramatically reduces lifespan variance. Our work demonstrates how systematic mapping of physiologic heterogeneity can be applied to reduce inter-individual disparities in aging.


Subject(s)
Aging , Caenorhabditis elegans , Gene Regulatory Networks , Longevity , Transcriptome , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Animals , Aging/genetics , Transcriptome/genetics , Longevity/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics
2.
Immunity ; 57(2): 379-399.e18, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38301653

ABSTRACT

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.


Subject(s)
B-Lymphocytes , Palatine Tonsil , Humans , Adult , B-Lymphocytes/metabolism
3.
Brain ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045638

ABSTRACT

Late-onset Pompe Disease (LOPD) is a rare genetic disorder caused by the deficiency of acid alpha-glucosidase leading to progressive cellular dysfunction due to the accumulation of glycogen in the lysosome. The mechanism of relentless muscle damage - a classic manifestation of the disease - has been extensively studied by analysing the whole muscle tissue; however, little, if any, is known about transcriptional heterogeneity among nuclei within the multinucleated skeletal muscle cells. This is the first report of application of single nuclei RNA sequencing to uncover changes in the gene expression profile in muscle biopsies from eight patients with LOPD and four muscle samples from age and gender matched healthy controls. We matched these changes with histology findings using GeoMx Spatial Transcriptomics to compare the transcriptome of control myofibers from healthy individuals with non-vacuolated (histologically unaffected) and vacuolated (histologically affected) myofibers of LODP patients. We observed an increase in the proportion of slow and regenerative muscle fibers and macrophages in LOPD muscles. The expression of the genes involved in glycolysis was reduced, whereas the expression of the genes involved in the metabolism of lipids and amino acids was increased in non-vacuolated fibers, indicating early metabolic abnormalities. Additionally, we detected upregulation of autophagy genes, and downregulation of the genes involved in ribosomal and mitochondrial function leading to defective oxidative phosphorylation. The upregulation of the genes associated with inflammation, apoptosis and muscle regeneration was observed only in vacuolated fibers. Notably, enzyme replacement therapy - the only available therapy for the disease - showed a tendency to restore metabolism dysregulation, particularly within slow fibers. A combination of single nuclei RNA sequencing and spatial transcriptomics revealed the landscape of normal and the diseased muscle, and highlighted the early abnormalities associated with the disease progression. Thus, the application of these two new cutting-edge technologies provided insight into the molecular pathophysiology of muscle damage in LOPD and identified potential avenues for therapeutic intervention.

4.
Immunol Cell Biol ; 102(2): 131-148, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184783

ABSTRACT

The cellular complexity of the endochondral bone underlies its essential and pleiotropic roles during organismal life. While the adult bone has received significant attention, we still lack a deep understanding of the perinatal bone cellulome. Here, we have profiled the full composition of the murine endochondral bone at the single-cell level during the transition from fetal to newborn life and in comparison with the adult tissue, with particular emphasis on the mesenchymal compartment. The perinatal bone contains different fibroblastic clusters with blastema-like characteristics in organizing and supporting skeletogenesis, angiogenesis and hematopoiesis. Our data also suggest dynamic inter- and intra-compartment interactions, as well as a bone marrow milieu that seems prone to anti-inflammation, which we hypothesize is necessary to ensure the proper program of lymphopoiesis and the establishment of central and peripheral tolerance in early life. Our study provides an integrative roadmap for the future design of genetic and cellular functional assays to validate cellular interactions and lineage relationships within the perinatal bone.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Mice , Animals , Osteogenesis/genetics , Bone and Bones , Bone Marrow , Hematopoiesis
5.
Genome Med ; 16(1): 42, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509600

ABSTRACT

BACKGROUND: Ineffective drug treatment is a major problem for many patients with immune-mediated inflammatory diseases (IMIDs). Important reasons are the lack of systematic solutions for drug prioritisation and repurposing based on characterisation of the complex and heterogeneous cellular and molecular changes in IMIDs. METHODS: Here, we propose a computational framework, scDrugPrio, which constructs network models of inflammatory disease based on single-cell RNA sequencing (scRNA-seq) data. scDrugPrio constructs detailed network models of inflammatory diseases that integrate information on cell type-specific expression changes, altered cellular crosstalk and pharmacological properties for the selection and ranking of thousands of drugs. RESULTS: scDrugPrio was developed using a mouse model of antigen-induced arthritis and validated by improved precision/recall for approved drugs, as well as extensive in vitro, in vivo, and in silico studies of drugs that were predicted, but not approved, for the studied diseases. Next, scDrugPrio was applied to multiple sclerosis, Crohn's disease, and psoriatic arthritis, further supporting scDrugPrio through prioritisation of relevant and approved drugs. However, in contrast to the mouse model of arthritis, great interindividual cellular and gene expression differences were found in patients with the same diagnosis. Such differences could explain why some patients did or did not respond to treatment. This explanation was supported by the application of scDrugPrio to scRNA-seq data from eleven individual Crohn's disease patients. The analysis showed great variations in drug predictions between patients, for example, assigning a high rank to anti-TNF treatment in a responder and a low rank in a nonresponder to that treatment. CONCLUSIONS: We propose a computational framework, scDrugPrio, for drug prioritisation based on scRNA-seq of IMID disease. Application to individual patients indicates scDrugPrio's potential for personalised network-based drug screening on cellulome-, genome-, and drugome-wide scales. For this purpose, we made scDrugPrio into an easy-to-use R package ( https://github.com/SDTC-CPMed/scDrugPrio ).


Subject(s)
Arthritis , Crohn Disease , Humans , Precision Medicine , Tumor Necrosis Factor Inhibitors , Gene Expression Profiling , Immunomodulating Agents , Single-Cell Analysis , Sequence Analysis, RNA
6.
Nat Commun ; 15(1): 5895, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003267

ABSTRACT

Autoimmune thyroid diseases (AITD) such as Graves' disease (GD) or Hashimoto's thyroiditis (HT) are organ-specific diseases that involve complex interactions between distinct components of thyroid tissue. Here, we use spatial transcriptomics to explore the molecular architecture, heterogeneity and location of different cells present in the thyroid tissue, including thyroid follicular cells (TFCs), stromal cells such as fibroblasts, endothelial cells, and thyroid infiltrating lymphocytes. We identify damaged antigen-presenting TFCs with upregulated CD74 and MIF expression in thyroid samples from AITD patients. Furthermore, we discern two main fibroblast subpopulations in the connective tissue including ADIRF+ myofibroblasts, mainly enriched in GD, and inflammatory fibroblasts, enriched in HT patients. We also demonstrate an increase of fenestrated PLVAP+ vessels in AITD, especially in GD. Our data unveil stromal and thyroid epithelial cell subpopulations that could play a role in the pathogenesis of AITD.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Graves Disease , Hashimoto Disease , Thyroid Gland , Humans , Graves Disease/pathology , Graves Disease/immunology , Graves Disease/genetics , Graves Disease/metabolism , Thyroid Gland/pathology , Thyroid Gland/metabolism , Hashimoto Disease/pathology , Hashimoto Disease/immunology , Hashimoto Disease/metabolism , Hashimoto Disease/genetics , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Thyroid Epithelial Cells/metabolism , Thyroid Epithelial Cells/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Transcriptome , Myofibroblasts/metabolism , Myofibroblasts/pathology , Stromal Cells/metabolism , Stromal Cells/pathology , Female , Macrophage Migration-Inhibitory Factors , Intramolecular Oxidoreductases
7.
Nat Commun ; 15(1): 1302, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383522

ABSTRACT

The interactions between tumor and immune cells along the course of breast cancer progression remain largely unknown. Here, we extensively characterize multiple sequential and parallel multiregion tumor and blood specimens of an index patient and a cohort of metastatic triple-negative breast cancers. We demonstrate that a continuous increase in tumor genomic heterogeneity and distinct molecular clocks correlated with resistance to treatment, eventually allowing tumors to escape from immune control. TCR repertoire loses diversity over time, leading to convergent evolution as breast cancer progresses. Although mixed populations of effector memory and cytotoxic single T cells coexist in the peripheral blood, defects in the antigen presentation machinery coupled with subdued T cell recruitment into metastases are observed, indicating a potent immune avoidance microenvironment not compatible with an effective antitumor response in lethal metastatic disease. Our results demonstrate that the immune responses against cancer are not static, but rather follow dynamic processes that match cancer genomic progression, illustrating the complex nature of tumor and immune cell interactions.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Genomics/methods , Tumor Microenvironment
8.
Hemasphere ; 8(2): e45, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38435427

ABSTRACT

Relapse remains a major challenge in the clinical management of acute myeloid leukemia (AML) and is driven by rare therapy-resistant leukemia stem cells (LSCs) that reside in specific bone marrow niches. Hypoxia signaling maintains cells in a quiescent and metabolically relaxed state, desensitizing them to chemotherapy. This suggests the hypothesis that hypoxia contributes to the chemoresistance of AML-LSCs and may represent a therapeutic target to sensitize AML-LSCs to chemotherapy. Here, we identify HIFhigh and HIFlow specific AML subgroups (inv(16)/t(8;21) and MLLr, respectively) and provide a comprehensive single-cell expression atlas of 119,000 AML cells and AML-LSCs in paired diagnostic-relapse samples from these molecular subgroups. The HIF/hypoxia pathway signature is attenuated in AML-LSCs compared with more differentiated AML cells but is more expressed than in healthy hematopoietic cells. Importantly, chemical inhibition of HIF cooperates with standard-of-care chemotherapy to impair AML growth and to substantially eliminate AML-LSCs in vitro and in vivo. These findings support the HIF pathway in the stem cell-driven drug resistance of AML and unravel avenues for combinatorial targeted and chemotherapy-based approaches to specifically eliminate AML-LSCs.

9.
Genome Biol ; 25(1): 81, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38553769

ABSTRACT

The use of single-cell technologies for clinical applications requires disconnecting sampling from downstream processing steps. Early sample preservation can further increase robustness and reproducibility by avoiding artifacts introduced during specimen handling. We present FixNCut, a methodology for the reversible fixation of tissue followed by dissociation that overcomes current limitations. We applied FixNCut to human and mouse tissues to demonstrate the preservation of RNA integrity, sequencing library complexity, and cellular composition, while diminishing stress-related artifacts. Besides single-cell RNA sequencing, FixNCut is compatible with multiple single-cell and spatial technologies, making it a versatile tool for robust and flexible study designs.


Subject(s)
Genomics , RNA , Humans , Animals , Mice , Tissue Fixation/methods , Reproducibility of Results , Sequence Analysis, RNA/methods , RNA/genetics , Genomics/methods , Single-Cell Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL