Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Eur J Heart Fail ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714362

ABSTRACT

AIMS: The optimal echocardiographic predictors of cardiovascular outcome in heart failure (HF) with preserved ejection fraction (HFpEF) are unknown. We aimed to identify independent echocardiographic predictors of cardiovascular outcome in patients with HFpEF. METHODS AND RESULTS: Systematic literature search of three electronic databases was conducted from date of inception until November 2022. Hazard ratios (HRs) and their 95% confidence intervals (CIs) for echocardiographic variables from multivariate prediction models for the composite primary endpoint of cardiovascular death and HF hospitalization were pooled using a random effects meta-analysis. Specific subgroup analyses were conducted for studies that enrolled patients with acute versus chronic HF, and for those studies that included E/e', pulmonary artery systolic pressure (PASP), renal function, natriuretic peptides and diuretic use in multivariate models. Forty-six studies totalling 20 056 patients with HFpEF were included. Three echocardiographic parameters emerged as independent predictors in all subgroup analyses: decreased left ventricular (LV) global longitudinal strain (HR 1.24, 95% CI 1.10-1.39 per 5% decrease), decreased left atrial (LA) reservoir strain (HR 1.30, 95% CI 1.13-1.1.50 per 5% decrease) and lower tricuspid annular plane systolic excursion (TAPSE) to PASP ratio (HR 1.17, 95% CI 1.07-1.25 per 0.1 unit decrease). Other independent echocardiographic predictors of the primary endpoint were a higher E/e', moderate to severe tricuspid regurgitation, LV mass index and LA ejection fraction, although these variables were less robust. CONCLUSIONS: Impaired LV global longitudinal strain, lower LA reservoir strain and lower TAPSE/PASP ratio predict cardiovascular death and HF hospitalization in HFpEF and are independent of filling pressures, clinical characteristics and natriuretic peptides. These echocardiographic parameters reflect key functional changes in HFpEF, and should be incorporated in future prospective risk prediction models.

2.
Chem Commun (Camb) ; (14): 1640-1, 2004 Jul 21.
Article in English | MEDLINE | ID: mdl-15263957

ABSTRACT

A bis(bora)calixarene 3, the first lower-rim boron derivatised calixarene to be structurally characterised, is synthesised by the reaction of PhBCl2 with 4-tert-butylcalix[4]arene, and is demonstrated to be a sensitive and selective fluorescent fluoride sensor.

3.
Dalton Trans ; (22): 3822-8, 2004 Nov 21.
Article in English | MEDLINE | ID: mdl-15540124

ABSTRACT

Reaction of the lithium salt of 1-(2'-pyridyl)-ortho-carborane, Li[1-R-1,2-C(2)B(10)H(10)](R = 2'-NC(5)H(4)), with sulfur, followed by hydrolysis, gave the mercapto-o-carborane, 1-R-2-SH-1,2-C(2)B(10)H(10) which forms chiral crystals containing helical chains of molecules linked by intermolecular S-H...N hydrogen bonds. The cage C(1)-C(2) and exo C(2)-S bond lengths (1.730(3) and 1.775(2)[Angstrom], respectively) are indicative of exo S=C pi bonding. The tin derivative 1-R-2-SnMe(3)-1,2-C(2)B(10)H(10), prepared from Li[1-R-1,2-C(2)B(10)H(10)] and Me(3)SnCl, crystallises with no significant intermolecular interactions. The pyridyl group lies in the C(1)-C(2)-Sn plane, oriented to minimise the NSn distance (2.861(3)[Angstrom]). The tin environment is distorted trigonal bipyramidal with axial N and Me. The gold derivative 1-R-2-AuPPh(3)-1,2-C(2)B(10)H(10), prepared from Li[1-R-1,2-C(2)B(10)H(10)] and AuCl(PPh(3)), reveals no NAu interaction in its crystal structure.

4.
Dalton Trans ; (17): 2786-99, 2004 Sep 07.
Article in English | MEDLINE | ID: mdl-15514767

ABSTRACT

The structures of derivatives of phenyl-ortho-carborane bearing on the second cage hypercarbon atom a pi-donor substituent (F, OH, O-, NH2, NH- and CH2-) were investigated by NMR, X-ray crystallography and computational studies. The molecular structures of these compounds, notably their cage C1-C2 distances and the orientations of their pi-donor substituents (OH, NH2, NH- and CH2-) show remarkable and systematic variations with the degree of exo pi-bonding, which varies as expected with the pi-donor characteristics of the substituent.

SELECTION OF CITATIONS
SEARCH DETAIL