ABSTRACT
In flowering plants, fertilization-dependent degeneration of the persistent synergid cell ensures one-on-one pairings of male and female gametes. Here, we report that the fusion of the persistent synergid cell and the endosperm selectively inactivates the persistent synergid cell in Arabidopsis thaliana. The synergid-endosperm fusion causes rapid dilution of pre-secreted pollen tube attractant in the persistent synergid cell and selective disorganization of the synergid nucleus during the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling, an inducer of the synergid nuclear disorganization. Therefore, two female gametes (the egg and the central cell) control independent pathways yet coordinately accomplish the elimination of the persistent synergid cell by double fertilization.
Subject(s)
Arabidopsis/cytology , Arabidopsis/metabolism , Arabidopsis/embryology , Cell Fusion , Endosperm/metabolism , Mitosis , Peptides/metabolism , Plant Development , Plant Proteins/metabolism , Pollen Tube/metabolismABSTRACT
Mitochondrial biogenesis relies on hundreds of proteins that are derived from genes encoded in the nucleus. According to the characteristic properties of N-terminal targeting peptides (TPs) and multi-step authentication by the protein translocase called the TOM complex, nascent polypeptides satisfying the requirements are imported into mitochondria. However, it is unknown whether eukaryotic cells with a single mitochondrion per cell have a similar complexity of presequence requirements for mitochondrial protein import compared to other eukaryotes with multiple mitochondria. Based on putative mitochondrial TP sequences in the unicellular red alga Cyanidioschyzon merolae, we designed synthetic TPs and showed that functional TPs must have at least one basic residue and a specific amino acid composition, although their physicochemical properties are not strictly determined. Combined with the simple composition of the TOM complex in C. merolae, our results suggest that a regional positive charge in TPs is verified solely by TOM22 for mitochondrial protein import in C. merolae. The simple authentication mechanism indicates that the monomitochondrial C. merolae does not need to increase the cryptographic complexity of the lock-and-key mechanism for mitochondrial protein import.
Subject(s)
Mitochondria , Mitochondrial Proteins , Protein Transport , Rhodophyta , Rhodophyta/metabolism , Rhodophyta/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/metabolism , Amino Acid SequenceABSTRACT
Pollen tube attraction is a key event of sexual reproduction in flowering plants. In the ovule, two synergid cells neighboring the egg cell control pollen tube arrival via the active secretion of attractant peptides such as AtLURE1 and XIUQIU from the filiform apparatus (FA) facing toward the micropyle. Distinctive cell polarity together with longitudinal F-actin and microtubules are hallmarks of the synergid cell in various species, though the functions of these cellular structures are unclear. In this study, we used genetic and pharmacological approaches to indicate the roles of cytoskeletal components in FA formation and pollen tube guidance in Arabidopsis thaliana. Genetic inhibition of microtubule formation reduced invaginations of the plasma membrane but did not abolish micropylar AtLURE1.2 accumulation. By contrast, the expression of a dominant-negative form of ACTIN8 induced disorganization of the FA and loss of polar AtLURE1.2 distribution toward the FA. Interestingly, after pollen tube reception, F-actin became unclear for a few hours in the persistent synergid cell, which may be involved in pausing and resuming pollen tube attraction during early polytubey block. Our data suggest that F-actin plays a central role in maintaining cell polarity and in mediating male-female communication in the synergid cell.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Actins/genetics , Actins/metabolism , Pollen Tube/genetics , Pollen Tube/metabolism , Cell Membrane/metabolism , Ovule/genetics , Ovule/metabolismABSTRACT
In the pistil of flowering plants, each ovule usually associates with a single pollen tube for fertilization. This one-to-one pollen tube guidance, which contributes to polyspermy blocking and efficient seed production, is largely different from animal chemotaxis of many sperms to one egg. However, the functional mechanisms underlying the directional cues and polytubey blocks in the depths of the pistil remain unknown. Here, we develop a two-photon live imaging method to directly observe pollen tube guidance in the pistil of Arabidopsis thaliana, clarifying signaling and cellular behaviors in the one-to-one guidance. Ovules are suggested to emit multiple signals for pollen tubes, including an integument-dependent directional signal that reaches the inner surface of the septum and adhesion signals for emerged pollen tubes on the septum. Not only FERONIA in the septum but ovular gametophytic FERONIA and LORELEI, as well as FERONIA- and LORELEI-independent repulsion signal, are involved in polytubey blocks on the ovular funiculus. However, these funicular blocks are not strictly maintained in the first 45 min, explaining previous reports of polyspermy in flowering plants.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Ovule , Pollen Tube , Signal Transduction , Pollen Tube/growth & development , Arabidopsis/growth & development , Arabidopsis/physiology , Ovule/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , FertilizationABSTRACT
In many flowering plants, petals initiate in alternate positions from first whorl sepals, suggesting possible signaling between sepal boundaries and petal initiation sites. PETAL LOSS (PTL) and RABBIT EARS (RBE) regulate petal initiation in Arabidopsis thaliana and their transcripts are expressed in sepal boundary and petal initiation sites, respectively, suggesting that PTL acts in a non-cell-autonomous manner. Here, we determined that cells expressing PTL and RBE fusion proteins did not overlap but were adjacent, confirming the non-cell-autonomous function of PTL. Genetic ablation of intersepal cells by expressing the diphtheria toxin-A chain gene driven by the PTL promoter resulted in flowers lacking petals, suggesting these cells are required for petal initiation. Transcriptome analysis combined with a PTL induction system revealed 42 genes that were upregulated under PTL activation, including UNUSUAL FLORAL ORGANS (UFO), which likely plays an important role in petal initiation. These findings suggest a molecular mechanism in which PTL indirectly regulates petal initiation and UFO mediates positional signaling between the sepal boundary and petal initiation sites.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/metabolismABSTRACT
The gynoecium is critical for the reproduction of flowering plants as it contains the ovules and the tissues that foster pollen germination, growth, and guidance. These tissues, known as the reproductive tract (ReT), comprise the stigma, style, and transmitting tract (TT). The ReT and ovules originate from the carpel margin meristem (CMM) within the pistil. SHOOT MERISTEMLESS (STM) is a key transcription factor for meristem formation and maintenance. In all above-ground meristems, including the CMM, local STM downregulation is required for organ formation. However, how this downregulation is achieved in the CMM is unknown. Here, we have studied the role of HISTONE DEACETYLASE 19 (HDA19) in Arabidopsis (Arabidopsis thaliana) during ovule and ReT differentiation based on the observation that the hda19-3 mutant displays a reduced ovule number and fails to differentiate the TT properly. Fluorescence-activated cell sorting coupled with RNA-sequencing revealed that in the CMM of hda19-3 mutants, genes promoting organ development are downregulated while meristematic markers, including STM, are upregulated. HDA19 was essential to downregulate STM in the CMM, thereby allowing ovule formation and TT differentiation. STM is ectopically expressed in hda19-3 at intermediate stages of pistil development, and its downregulation by RNA interference alleviated the hda19-3 phenotype. Chromatin immunoprecipitation assays indicated that STM is a direct target of HDA19 during pistil development and that the transcription factor SEEDSTICK is also required to regulate STM via histone acetylation. Thus, we identified factors required for the downregulation of STM in the CMM, which is necessary for organogenesis and tissue differentiation.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Histones/genetics , Ovule/genetics , Ovule/metabolism , Arabidopsis/physiology , Transcription Factors/metabolism , Meristem , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , Histone Deacetylases/metabolismABSTRACT
In many plants, the asymmetric division of the zygote sets up the apical-basal axis of the embryo. Unlike animals, plant zygotes are transcriptionally active, implying that plants have evolved specific mechanisms to control transcriptional activation of patterning genes in the zygote. In Arabidopsis, two pathways have been found to regulate zygote asymmetry: YODA (YDA) mitogen-activated protein kinase (MAPK) signaling, which is potentiated by sperm-delivered mRNA of the SHORT SUSPENSOR (SSP) membrane protein, and up-regulation of the patterning gene WOX8 by the WRKY2 transcription factor. How SSP/YDA signaling is transduced into the nucleus and how these pathways are integrated have remained elusive. Here we show that paternal SSP/YDA signaling directly phosphorylates WRKY2, which in turn leads to the up-regulation of WOX8 transcription in the zygote. We further discovered the transcription factors HOMEODOMAIN GLABROUS11/12 (HDG11/12) as maternal regulators of zygote asymmetry that also directly regulate WOX8 transcription. Our results reveal a framework of how maternal and paternal factors are integrated in the zygote to regulate embryo patterning.
Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Transcription, Genetic , Zygote/metabolism , Arabidopsis/enzymology , Arabidopsis/metabolism , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , MAP Kinase Signaling System , Maternal Inheritance , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Paternal Inheritance , Transcription Factors/biosynthesis , Transcription Factors/genetics , Transcription Factors/metabolism , Zygote/enzymologyABSTRACT
Polyadenylation of mRNAs is critical for their export from the nucleus, stability, and efficient translation. The Arabidopsis thaliana genome encodes three isoforms of canonical nuclear poly(A) polymerase (PAPS) that redundantly polyadenylate the bulk of pre-mRNAs. However, previous studies have indicated that subsets of pre-mRNAs are preferentially polyadenylated by either PAPS1 or the other two isoforms. Such functional specialization raises the possibility of an additional level of gene-expression control in plants. Here we test this notion by studying the function of PAPS1 in pollen-tube growth and guidance. Pollen tubes growing through female tissue acquire the competence to find ovules efficiently and upregulate PAPS1 expression at the transcriptional, but not detectably at the protein level compared with in vitro grown pollen tubes. Using the temperature-sensitive paps1-1 allele we show that PAPS1 activity during pollen-tube growth is required for full acquisition of competence, resulting in inefficient fertilization by paps1-1 mutant pollen tubes. While these mutant pollen tubes grow almost at the wild-type rate, they are compromised in locating the micropyles of ovules. Previously identified competence-associated genes are less expressed in paps1-1 mutant than in wild-type pollen tubes. Estimating the poly(A) tail lengths of transcripts suggests that polyadenylation by PAPS1 is associated with reduced transcript abundance. Our results therefore suggest that PAPS1 plays a key role in the acquisition of competence and underline the importance of functional specialization between PAPS isoforms throughout different developmental stages.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Pollen Tube/metabolism , Arabidopsis Proteins/metabolism , Polynucleotide Adenylyltransferase/genetics , Protein Isoforms/metabolism , MutationABSTRACT
The centromere is an essential chromosome region where the kinetochore is formed to control equal chromosome distribution during cell division. The centromere-specific histone H3 variant CENH3 (also called CENP-A) is a prerequisite for the kinetochore formation. Since CENH3 evolves rapidly, associated factors, including histone chaperones mediating the deposition of CENH3 on the centromere, are thought to act through species-specific amino acid sequences. The functions and interaction networks of CENH3 and histone chaperons have been well-characterized in animals and yeasts. However, molecular mechanisms involved in recognition and deposition of CENH3 are still unclear in plants. Here, we used a swapping strategy between domains of CENH3 of Arabidopsis thaliana and the liverwort Marchantia polymorpha to identify specific regions of CENH3 involved in targeting the centromeres and interacting with the general histone H3 chaperone, nuclear autoantigenic sperm protein (NASP). CENH3's LoopN-α1 region was necessary and sufficient for the centromere targeting in cooperation with the α2 region and was involved in interaction with NASP in cooperation with αN, suggesting a species-specific CENH3 recognition. In addition, by generating an Arabidopsis nasp knock-out mutant in the background of a fully fertile GFP-CENH3/cenh3-1 line, we found that NASP was implicated for de novo CENH3 deposition after fertilization and thus for early embryo development. Our results imply that the NASP mediates the supply of CENH3 in the context of the rapidly evolving centromere identity in land plants.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Centromere , Arabidopsis/genetics , Arabidopsis/metabolism , Centromere/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Centromere Protein A/metabolism , Centromere Protein A/genetics , Histones/metabolism , Histones/genetics , Marchantia/genetics , Marchantia/metabolism , Molecular Chaperones/metabolism , Molecular Chaperones/geneticsABSTRACT
Many terrestrial plants produce large quantities of alkanes for use in epicuticular wax and the pollen coat. However, their carbon chains must be long to be useful as fuel or as a petrochemical feedstock. Here, we focus on Nymphaea odorata, which produces relatively short alkanes in its anthers. We identified orthologs of the Arabidopsis alkane biosynthesis genes AtCER1 and AtCER3 in N. odorata and designated them NoCER1A, NoCER3A and NoCER3B. Expression analysis of NoCER1A and NoCER3A/B in Arabidopsis cer mutants revealed that the N. odorata enzymes cooperated with the Arabidopsis enzymes and that the NoCER1A produced shorter alkanes than AtCER1, regardless of which CER3 protein it interacted with. These results indicate that AtCER1 frequently uses a C30 substrate, whereas NoCER1A, NoCER3A/B and AtCER3 react with a broad range of substrate chain lengths. The incorporation of shorter alkanes disturbed the formation of wax crystals required for water-repellent activity in stems, suggesting that chain-length specificity is important for surface cleaning. Moreover, cultured tobacco cells expressing NoCER1A and NoCER3A/B effectively produced C19-C23 alkanes, indicating that the introduction of the two enzymes is sufficient to produce alkanes. Taken together, our findings suggest that these N. odorata enzymes may be useful for the biological production of alkanes of specific lengths. 3D modeling revealed that CER1s and CER3s share a similar structure that consists of N- and C-terminal domains, in which their predicted active sites are respectively located. We predicted the complex structure of both enzymes and found a cavity that connects their active sites.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Nymphaea , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Nymphaea/metabolism , Alkanes/metabolism , Carbon-Carbon Lyases/metabolismABSTRACT
BACKGROUND: In Angiosperms, the continuation of plant species is intricately dependent on the funiculus multifaceted role in nutrient transport, mechanical support, and dehiscence of seeds. SEEDSTICK (STK) is a MADS-box transcription factor involved in seed size and abscission, and one of the few genes identified as affecting funiculus growth. Given the importance of the funiculus to a correct seed development, allied with previous phenotypic observations of stk mutants, we performed a transcriptomic analysis of stk funiculi from floral stage 17, using RNA-sequencing, to infer on the deregulated networks of genes. RESULTS: The generated dataset of differentially expressed genes was enriched with cell wall biogenesis, cell cycle, sugar metabolism and transport terms, all in accordance with stk phenotype observed in funiculi from floral stage 17. We selected eight differentially expressed genes for transcriptome validation using qPCR and/or promoter reporter lines. Those genes were involved with abscission, seed development or novel functions in stk funiculus, such as hormones/secondary metabolites transport. CONCLUSION: Overall, the analysis performed in this study allowed delving into the STK-network established in Arabidopsis funiculus, fulfilling a literature gap. Simultaneously, our findings reinforced the reliability of the transcriptome, making it a valuable resource for candidate genes selection for functional genetic studies in the funiculus. This will enhance our understanding on the regulatory network controlled by STK, on the role of the funiculus and how seed development may be affected by them.
Subject(s)
Arabidopsis Proteins , Arabidopsis , MADS Domain Proteins , Seeds , Transcriptome , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Seeds/genetics , Seeds/growth & development , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Gene Expression Regulation, Plant , Gene Expression Profiling , Fertilization/geneticsABSTRACT
The 33rd International Conference on Arabidopsis Research (ICAR2023) was held at Makuhari Messe International Conference Hall in Chiba prefecture from June 5 to 9, 2023. This annual conference, which rotates among hosts in North America, Asia-Oceania, and Europe, covers the full range of plant biology research involving Arabidopsis and other plant species. The conference hosted more than 1200 participants, including approximately 800 international attendees from 42 countries (or regions), and featured about 900 oral and poster presentations. Reflecting the conference theme, "Arabidopsis for Sustainable Development Goals (SDGs)," there were numerous exemplary presentations regarding basic plant science using Arabidopsis and translational research conducted to achieve SDGs by exploiting the knowledge gained from Arabidopsis to improve crop production. The conference concluded on a high note, with more than 99% of survey respondents expressing their general satisfaction with ICAR2023. This report aims to summarize the organization, objectives, and outcomes of the conference.
Subject(s)
Arabidopsis , Humans , Arabidopsis/genetics , AsiaABSTRACT
The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in Arabidopsis thaliana. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar-chalazal (distal-proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of MYB98pro::GFP-MYB98, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and myb98 mutant revealed that the myb98 synergid cells had egg cell-like gene expression profiles. Although in myb98, egg cell-specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell-specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type-specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants.
Subject(s)
Arabidopsis/metabolism , Cell Differentiation/genetics , Ovule/metabolism , Arabidopsis Proteins/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Magnoliopsida/metabolism , Morphogenesis , Ovule/genetics , Ovule/growth & development , Pollen Tube/genetics , Pollen Tube/growth & development , Pollen Tube/metabolism , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcriptome/geneticsABSTRACT
An Arabidopsis mutant named defective repression of OLE3::LUC 1 (drol1) was originally isolated as a mutant with defects in the repression of OLEOSIN3 (OLE3) after seed germination. In this study, we show that DROL1 is an Arabidopsis homolog of yeast DIB1, a subunit of the U5 small nuclear ribonucleoprotein particle (snRNP) in the spliceosome. It is also part of a new subfamily that is specific to a certain class of eukaryotes. Comprehensive analysis of the intron splicing using RNA sequencing analysis of the drol1 mutants revealed that most of the minor introns with AT-AC dinucleotide termini had reduced levels of splicing. Only two nucleotide substitutions from AT-AC to GT-AG enabled AT-AC-type introns to be spliced in drol1 mutants. Forty-eight genes, including those having important roles in abiotic stress responses and cell proliferation, exhibited reduced splicing of AT-AC-type introns in the drol1 mutants. Additionally, drol1 mutant seedlings showed retarded growth, similar to that caused by the activation of abscisic acid signaling, possibly as a result of reduced AT-AC-type intron splicing in the endosomal Na+ /H+ antiporters and plant-specific histone deacetylases. These results indicate that DROL1 is specifically involved in the splicing of minor introns with AT-AC termini and that this plays an important role in plant growth and development.
Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Introns/genetics , RNA Splicing/physiology , Spliceosomes/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Mutation , Plant Development/genetics , Plant Development/physiology , RNA Splicing/genetics , Spliceosomes/geneticsABSTRACT
The unicellular alga Cyanidioschyzon merolae has a simple cellular structure; each cell has one nucleus, one mitochondrion, one chloroplast and one peroxisome. This simplicity offers unique advantages for investigating organellar proliferation and the cell cycle. Here, we describe CZON-cutter, an engineered clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system for simultaneous genome editing and organellar visualization. We engineered a C. merolae strain expressing a nuclear-localized Cas9-Venus nuclease for targeted editing of any locus defined by a single-guide RNA (sgRNA). We then successfully edited the algal genome and visualized the mitochondrion and peroxisome in transformants using fluorescent protein reporters with different excitation wavelengths. Fluorescent protein labeling of organelles in living transformants allows us to validate phenotypes associated with organellar proliferation and the cell cycle, even when the edited gene is essential. Combined with the exceptional biological features of C. merolae, CZON-cutter will be instrumental for investigating cellular and organellar division in a high-throughput manner. This article has an associated First Person interview with the first author of the paper.
Subject(s)
CRISPR-Cas Systems , Rhodophyta , CRISPR-Cas Systems/genetics , Cell Nucleus/genetics , Gene Editing , Humans , RNA, Guide, KinetoplastidaABSTRACT
MAIN CONCLUSION: Targeted expression of bgl23-D, a dominant-negative allele of ATCSLD5, is a useful genetic approach for functional analysis of ATCSLDs in specific cells and tissues in plants. Stomata are key cellular structures for gas and water exchange in plants and their development is influenced by several genes. We found the A. thaliana bagel23-D (bgl23-D) mutant showing abnormal bagel-shaped single guard cells. The bgl23-D was a novel dominant mutation in the A. thaliana cellulose synthase-like D5 (ATCSLD5) gene that was reported to function in the division of guard mother cells. The dominant character of bgl23-D was used to inhibit ATCSLD5 function in specific cells and tissues. Transgenic A. thaliana expressing bgl23-D cDNA with the promoter of stomata lineage genes, SDD1, MUTE, and FAMA, showed bagel-shaped stomata as observed in the bgl23-D mutant. Especially, the FAMA promoter exhibited a higher frequency of bagel-shaped stomata with severe cytokinesis defects. Expression of bgl23-D cDNA in the tapetum with SP11 promoter or in the anther with ATSP146 promoter induced defects in exine pattern and pollen shape, novel phenotypes that were not shown in the bgl23-D mutant. These results indicated that bgl23-D inhibited unknown ATCSLD(s) that exert the function of exine formation in the tapetum. Furthermore, transgenic A. thaliana expressing bgl23-D cDNA with SDD1, MUTE, and FAMA promoters showed enhanced rosette diameter and increased leaf growth. Taken together, these findings suggest that the bgl23-D mutation could be a helpful genetic tool for functional analysis of ATCSLDs and manipulating plant growth.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Cytokinesis , Alleles , DNA, Complementary , Arabidopsis Proteins/metabolism , Pollen/genetics , Stem Cells/metabolism , Gene Expression Regulation, PlantABSTRACT
Presynaptic plasticity is known to modulate the strength of synaptic transmission. However, it remains unknown whether regulation in presynaptic neurons can evoke excitatory and inhibitory postsynaptic responses. We report here that the Caenorhabditis elegans homologs of MAST kinase, Stomatin, and Diacylglycerol kinase act in a thermosensory neuron to elicit in its postsynaptic neuron an excitatory or inhibitory response that correlates with the valence of thermal stimuli. By monitoring neural activity of the valence-coding interneuron in freely behaving animals, we show that the alteration between excitatory and inhibitory responses of the interneuron is mediated by controlling the balance of two opposing signals released from the presynaptic neuron. These alternative transmissions further generate opposing behavioral outputs necessary for the navigation on thermal gradients. Our findings suggest that valence-encoding interneuronal activity is determined by a presynaptic mechanism whereby MAST kinase, Stomatin, and Diacylglycerol kinase influence presynaptic outputs.
Subject(s)
Caenorhabditis elegans/metabolism , Neurons/physiology , Synaptic Transmission/physiology , Taxis Response/physiology , Animals , Behavior, Animal , Caenorhabditis elegans Proteins/metabolism , Diacylglycerol Kinase/metabolism , Glutamic Acid/metabolism , Interneurons/physiology , Microtubule-Associated Proteins/metabolism , Neuropeptides/metabolismABSTRACT
Flowers of honey plants (Torenia) face various abiotic stressors, including rain, that can damage pollens and dilute nectar. Many Torenia species are thought to have evolved a modified corolla base termed the corolla neck to prevent raindrops from contacting the nectar. Although this hypothesis was postulated long ago, direct validation is lacking. Here, we have evaluated Torenia fournieri, the corolla tube of which differentiates into distinct regions: a conical tube above that connects to an inflated base through a constriction. This constriction and inflated base are collectively referred to as the corolla neck. Using transcriptomic sequencing and genome-editing approaches, we have characterized an ALOG gene, TfALOG3, that is involved in formation of the corolla neck. TfALOG3 was found expressed in the epidermis of the corolla neck. Cells in the corolla bottom differentiated and expanded in wild-type T. fournieri, whereas such cells in TfALOG3 loss-of-function mutants failed to develop into a corolla neck. Water easily contacted the nectary in the absence of the corolla neck. Taken together, our study unveils a novel gene that controls corolla tube differentiation and demonstrates a hypothetical property of the corolla neck.
Subject(s)
Flowers/anatomy & histology , Genes, Plant , Lamiales/anatomy & histology , Cell Differentiation , Flowers/cytology , Flowers/growth & development , Lamiales/cytology , Lamiales/genetics , Loss of Function Mutation , Multigene FamilyABSTRACT
Directional control of tip-growing cells is essential for proper tissue organization and cell-to-cell communication in animals and plants. In the sexual reproduction of flowering plants, the tip growth of the male gametophyte, the pollen tube, is precisely guided by female cues to achieve fertilization. Several female-secreted peptides have recently been identified as species-specific attractants that directly control the direction of pollen tube growth. However, the method by which pollen tubes precisely and promptly respond to the guidance signal from their own species is unknown. Here we show that tip-localized pollen-specific receptor-like kinase 6 (PRK6) with an extracellular leucine-rich repeat domain is an essential receptor for sensing of the LURE1 attractant peptide in Arabidopsis thaliana under semi-in-vivo conditions, and is important for ovule targeting in the pistil. PRK6 interacted with pollen-expressed ROPGEFs (Rho of plant guanine nucleotide-exchange factors), which are important for pollen tube growth through activation of the signalling switch Rho GTPase ROP1 (refs 7, 8). PRK6 conferred responsiveness to AtLURE1 in pollen tubes of the related species Capsella rubella. Furthermore, our genetic and physiological data suggest that PRK6 signalling through ROPGEFs and sensing of AtLURE1 are achieved in cooperation with the other PRK family receptors, PRK1, PRK3 and PRK8. Notably, the tip-focused PRK6 accumulated asymmetrically towards an external AtLURE1 source before reorientation of pollen tube tip growth. These results demonstrate that PRK6 acts as a key membrane receptor for external AtLURE1 attractants, and recruits the core tip-growth machinery, including ROP signalling proteins. This work provides insights into the orchestration of efficient pollen tube growth and species-specific pollen tube attraction by multiple receptors during male-female communication.
Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Phosphotransferases/metabolism , Pollen Tube/growth & development , Pollen Tube/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Capsella/genetics , Capsella/metabolism , Capsella/physiology , GTP-Binding Proteins/metabolism , Mutation , Ovule/metabolism , Phenotype , Phosphotransferases/chemistry , Phosphotransferases/genetics , Pollen Tube/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Reproduction , Species SpecificityABSTRACT
In most flowering plants, the asymmetric cell division of the zygote is the initial step in establishing the apical-basal axis of the mature plant. The zygote is polarized, possessing the nucleus at the apical tip and large vacuoles at the basal end. Despite their known polar localization, whether the positioning of the vacuoles and the nucleus is coordinated and what the role of the vacuole is in the asymmetric zygotic division remain elusive. In the present study, we utilized a live-cell imaging system to visualize the dynamics of vacuoles during the entire process of zygote polarization in Arabidopsis Image analysis revealed that the vacuoles formed tubular strands around the apically migrating nucleus. They gradually accumulated at the basal region and filled the space, resulting in asymmetric distribution in the mature zygote. To assess the role of vacuoles in the zygote, we screened various vacuole mutants and identified that shoot gravitropism2 (sgr2), in which the vacuolar structural change was impaired, failed to form tubular vacuoles and to polarly distribute the vacuole. In sgr2, large vacuoles occupied the apical tip and thus nuclear migration was blocked, resulting in a more symmetric zygotic division. We further observed that tubular vacuole formation and asymmetric vacuolar distribution both depended on the longitudinal array of actin filaments. Overall, our results show that vacuolar dynamics is crucial not only for the polar distribution along actin filaments but also for adequate nuclear positioning, and consequently zygote-division asymmetry.