Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
iScience ; 26(4): 106352, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37009214

ABSTRACT

Rubella virus (RuV) infection during pregnancy can lead to abortion, stillbirth, and embryonic defects, resulting in congenital rubella syndrome (CRS). It is estimated that there are still 100,000 cases of CRS per year in developing regions with a mortality rate of over 30%. The molecular pathomechanisms remain largely unexplored. Placental endothelial cells (EC) are frequently infected with RuV. RuV reduced the angiogenic and migratory capacity of primary human EC, as confirmed by treatment of EC with serum from RuV IgM-positive patients. Next generation sequencing analysis revealed the induction of antiviral interferon (IFN) type I and III and CXCL10. The RuV-induced transcriptional profile resembled the effects of IFN-ß treatment. The RuV-mediated inhibition of angiogenesis was reversed by treatment with blocking and neutralizing antibodies targeting CXCL10 and the IFN-ß receptor. The data identify an important role for antiviral IFN-mediated induction of CXCL10 in the control of EC function during RuV infection.

2.
Sci Total Environ ; 814: 152704, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34973315

ABSTRACT

Marine phages have been applied to trace ground- and surface water flows. Yet, information on their transport in soil and related particle intactness is limited. Here we compared the breakthrough of two lytic marine tracer phages (Pseudoalteromonas phages PSA-HM1 and PSA-HS2) with the commonly used Escherichia virus T4 in soil- and sand-filled laboratory percolation columns. All three phages showed high mass recoveries in the effluents and a higher transport velocity than non-reactive tracer Br-. Comparison of effluent gene copy numbers (CN) to physically-determined phage particle counts or infectious phage counts showed that PSA-HM1 and PSA-HS2 retained high phage particle intactness (Ip > 81%), in contrast to T4 (Ip < 36%). Our data suggest that marine phages may be applied in soil to mimic the transport of (bio-) colloids or anthropogenic nanoparticles of similar traits. Quantitative PCR (qPCR) thereby allows for highly sensitive quantification and thus for the detection of even highly diluted marine tracer phages in environmental samples.


Subject(s)
Bacteriophages , Viruses , Colloids , Soil
3.
Front Neurol ; 9: 1019, 2018.
Article in English | MEDLINE | ID: mdl-30555403

ABSTRACT

The pupillary light reflex (PLR) is a neurological reflex driven by rods, cones, and melanopsin-containing retinal ganglion cells. Our aim was to achieve a more precise picture of the effects of 5-min duration monochromatic light stimuli, alone or in combination, on the human PLR, to determine its spectral sensitivity and to assess the importance of photon flux. Using pupillometry, the PLR was assessed in 13 participants (6 women) aged 27.2 ± 5.41 years (mean ± SD) during 5-min light stimuli of purple (437 nm), blue (479 nm), red (627 nm), and combinations of red+purple or red+blue light. In addition, nine 5-min, photon-matched light stimuli, ranging in 10 nm increments peaking between 420 and 500 nm were tested in 15 participants (8 women) aged 25.7 ± 8.90 years. Maximum pupil constriction, time to achieve this, constriction velocity, area under the curve (AUC) at short (0-60 s), and longer duration (240-300 s) light exposures, and 6-s post-illumination pupillary response (6-s PIPR) were assessed. Photoreceptor activation was estimated by mathematical modeling. The velocity of constriction was significantly faster with blue monochromatic light than with red or purple light. Within the blue light spectrum (between 420 and 500 nm), the velocity of constriction was significantly faster with the 480 nm light stimulus, while the slowest pupil constriction was observed with 430 nm light. Maximum pupil constriction was achieved with 470 nm light, and the greatest AUC0-60 and AUC240-300 was observed with 490 and 460 nm light, respectively. The 6-s PIPR was maximum after 490 nm light stimulus. Both the transient (AUC0-60) and sustained (AUC240-300) response was significantly correlated with melanopic activation. Higher photon fluxes for both purple and blue light produced greater amplitude sustained pupillary constriction. The findings confirm human PLR dependence on wavelength, monochromatic or bichromatic light and photon flux under 5-min duration light stimuli. Since the most rapid and high amplitude PLR occurred within the 460-490 nm light range (alone or combined), our results suggest that color discrimination should be studied under total or partial substitution of this blue light range (460-490 nm) by shorter wavelengths (~440 nm). Thus for nocturnal lighting, replacement of blue light with purple light might be a plausible solution to preserve color discrimination while minimizing melanopic activation.

4.
Sci Rep ; 7: 46371, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28422129

ABSTRACT

The potential to extend the emission wavelength of photonic devices further into the near- and mid-infrared via pseudomorphic growth on conventional GaAs substrates is appealing for a number of communications and sensing applications. We present a new class of GaAs-based quantum well (QW) heterostructure that exploits the unusual impact of Bi and N on the GaAs band structure to produce type-II QWs having long emission wavelengths with little or no net strain relative to GaAs, while also providing control over important laser loss processes. We theoretically and experimentally demonstrate the potential of GaAs1-xBix/GaNyAs1-y type-II QWs on GaAs and show that this approach offers optical emission and absorption at wavelengths up to ~3 µm utilising strain-balanced structures, a first for GaAs-based QWs. Experimental measurements on a prototype GaAs0.967Bi0.033/GaN0.062As0.938 structure, grown via metal-organic vapour phase epitaxy, indicate good structural quality and exhibit both photoluminescence and absorption at room temperature. The measured photoluminescence peak wavelength of 1.72 µm is in good agreement with theoretical calculations and is one of the longest emission wavelengths achieved on GaAs to date using a pseudomorphically grown heterostructure. These results demonstrate the significant potential of this new class of III-V heterostructure for long-wavelength applications.

5.
PLoS One ; 11(9): e0162476, 2016.
Article in English | MEDLINE | ID: mdl-27636197

ABSTRACT

Intrinsically photosensitive retinal ganglion cells (ipRGCs), whose photopigment melanopsin has a peak of sensitivity in the short wavelength range of the spectrum, constitute a common light input pathway to the olivary pretectal nucleus (OPN), the pupillary light reflex (PLR) regulatory centre, and to the suprachiasmatic nuclei (SCN), the major pacemaker of the circadian system. Thus, evaluating PLR under short wavelength light (λmax ≤ 500 nm) and creating an integrated PLR parameter, as a possible tool to indirectly assess the status of the circadian system, becomes of interest. Nine monochromatic, photon-matched light stimuli (300 s), in 10 nm increments from λmax 420 to 500 nm were administered to 15 healthy young participants (8 females), analyzing: i) the PLR; ii) wrist temperature (WT) and motor activity rhythms (WA), iii) light exposure (L) pattern and iv) diurnal preference (Horne-Östberg), sleep quality (Pittsburgh) and daytime sleepiness (Epworth). Linear correlations between the different PLR parameters and circadian status index obtained from WT, WA and L recordings and scores from questionnaires were calculated. In summary, we found markers of robust circadian rhythms, namely high stability, reduced fragmentation, high amplitude, phase advance and low internal desynchronization, were correlated with a reduced PLR to 460-490 nm wavelengths. Integrated circadian (CSI) and PLR (cp-PLR) parameters are proposed, that also showed an inverse correlation. These results demonstrate, for the first time, the existence of a close relationship between the circadian system robustness and the pupillary reflex response, two non-visual functions primarily under melanopsin-ipRGC input.


Subject(s)
Circadian Rhythm , Light , Pupil/physiology , Humans , Light Signal Transduction , Motor Activity , Reflex, Pupillary , Suprachiasmatic Nucleus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL