Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Publication year range
1.
J Musculoskelet Neuronal Interact ; 24(1): 38-46, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427367

ABSTRACT

BFR) applied during sprint interval training (SIT) on performance and neuromuscular function. METHODS: Fifteen men completed a randomized bout of SIT with CBFR, IBFR, and without BFR (No-BFR), consisting of 2, 30-s maximal sprints on a cycle ergometer with a resistance of 7.5% of body mass. Concentric peak torque (CPT), maximal voluntary isometric contraction (MVIC) torque, and muscle thickness (MT) were measured before and after SIT, including surface electromyography (sEMG) recorded during the strength assessments. Peak and mean revolutions per minute (RPM) were measured during SIT and power output was examined relative to physical working capacity at the fatigue threshold (PWCFT). RESULTS: CPT and MVIC torque decreased from pre-SIT (220.3±47.6 Nm and 355.1±72.5 Nm, respectively) to post-SIT (147.9±27.7 Nm and 252.2±45.5 Nm, respectively, all P<0.05), while MT increased (1.77±0.31 cm to 1.96±0.30 cm). sEMG mean power frequency decreased during CPT (-12.8±10.5%) and MVIC (-8.7±10.2%) muscle actions. %PWCFT was greater during No-BFR (414.2±121.9%) than CBFR (375.9±121.9%). CONCLUSION: SIT with or without BFR induced comparable alterations in neuromuscular fatigue and sprint performance across all conditions, without affecting neuromuscular function.


Subject(s)
High-Intensity Interval Training , Muscle, Skeletal , Humans , Male , Electromyography , Isometric Contraction/physiology , Muscle Fatigue , Muscle, Skeletal/physiology , Regional Blood Flow/physiology , Torque
2.
Eur J Appl Physiol ; 124(4): 1121-1129, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37889287

ABSTRACT

PURPOSE: To determined sex differences in absolute- and %-reductions in blood flow during intermittent muscular contractions as well as relationships between blood flow reductions and time to task failure (TTF). METHODS: Thirteen males (25 ± 4 years) and 13 females (22 ± 5 years) completed intermittent isometric trapezoidal forearm flexion at 50% maximal voluntary contraction until task failure. Doppler ultrasound was used to measure brachial artery blood flow (BABF) during the 12-s plateau phase and 12-s relaxation phase. RESULTS: Target torque was less in females than males (24 ± 5 vs. 42 ± 7 Nm; p < 0.001); however, TTF was not different between sexes (F: 425 ± 187 vs. M: 401 ± 158 s; p = 0.72). Relaxation-phase BABF at end-exercise was less in females than males (435 ± 161 vs. 937 ± 281 mL/min; p < 0.001) but contraction-phase BABF was not different (127 ± 46 vs. 190 ± 99 mL/min; p = 0.42). Absolute- and %-reductions in BABF by contraction were less in females than males (309 ± 146 vs. 747 ± 210 mL/min and 69 ± 10 vs. 80% ± 6%, respectively; both p < 0.01) and were associated with target torque independent of sex (r = 0.78 and 0.56, respectively; both p < 0.01). Absolute BABF reduction per target torque (mL/min/Nm) and TTF were positively associated in males (r = 0.60; p = 0.031) but negatively associated in females (r = - 0.61; p = 0.029). CONCLUSIONS: This study provides evidence that females incur less proportional reduction in limb blood flow from muscular contraction than males at a matched relative intensity suggesting females may maintain higher levels of muscle oxygen delivery and metabolite removal than males across the contraction-relaxation cycle of intermittent exercise.


Subject(s)
Muscle Fatigue , Muscle, Skeletal , Humans , Male , Female , Muscle, Skeletal/physiology , Muscle Fatigue/physiology , Sex Characteristics , Isometric Contraction/physiology , Muscle Contraction/physiology , Upper Extremity , Torque
3.
Eur J Appl Physiol ; 124(6): 1807-1820, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38236301

ABSTRACT

PURPOSE: To investigate the effects of blood flow restriction (BFR) on electromyographic amplitude (EMGRMS)-force relationships of the biceps brachii (BB) during a single high-load muscle action. METHODS: Twelve recreationally active males and eleven recreationally active females performed maximal voluntary contractions (MVCs), followed by an isometric trapezoidal muscle action of the elbow flexors at 70% MVC. Surface EMG was recorded from the BB during BFR and control (CON) visits. For BFR, cuff pressure was 60% of the pressure required to completely occlude blood at rest. Individual b (slope) and a terms (gain) were calculated from the log-transformed EMGRMS-force relationships during the linearly increasing and decreasing segments of the trapezoid. EMGRMS during the steady force segment was normalized to MVC EMGRMS. RESULTS: For BFR, the b terms were greater during the linearly increasing segment than the linearly decreasing segment (p < 0.001), and compared to the linearly increasing segment for CON (p < 0.001). The a terms for BFR were greater during the linearly decreasing than linearly increasing segment (p = 0.028). Steady force N-EMGRMS was greater for BFR than CON collapsed across sex (p = 0.041). CONCLUSION: BFR likely elicited additional recruitment of higher threshold motor units during the linearly increasing- and steady force-segment. The differences between activation and deactivation strategies were only observed with BFR, such as the b terms decreased and the a terms increased for the linearly decreasing segment in comparison to the increasing segment. However, EMGRMS-force relationships during the linearly increasing- and decreasing-segments were not different between sexes during BFR and CON.


Subject(s)
Elbow , Isometric Contraction , Muscle, Skeletal , Humans , Male , Female , Muscle, Skeletal/physiology , Muscle, Skeletal/blood supply , Elbow/physiology , Adult , Isometric Contraction/physiology , Regional Blood Flow/physiology , Electromyography/methods , Young Adult , Muscle Contraction/physiology
4.
Eur J Appl Physiol ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162881

ABSTRACT

PURPOSE: Resistance exercise can attenuate muscular impairments associated with multiple sclerosis (MS), and blood flow restriction (BFR) may provide a viable alternative to prescribing heavy training loads. The purpose of this investigation was to examine the progression of upper and lower body low-load (30% of one-repetition maximum [1RM]) resistance training (RT) with BFR applied intermittently during the exercise intervals (RT + BFR) versus volume-matched heavy-load (65% of 1RM) RT. METHODS: Men and women with MS (n = 16) were randomly assigned to low-load RT + BFR (applied intermittently) or heavy-load RT and completed 12 weeks (2 × /week) of RT that consisted of bilateral chest press, seated row, shoulder press, leg press, leg extension, and leg curl exercises. Exercise load, tonnage, and rating of perceived exertion were assessed at baseline and every 6 weeks. RESULTS: Training load increased to a greater extent and sometimes earlier for RT + BFR (57.7-106.3%) than heavy-load RT (42.3-54.3%) during chest press, seated row, and leg curl exercises, while there were similar increases (63.5-101.1%) for shoulder press, leg extension, and leg press exercises. Exercise tonnage was greater across all exercises for RT + BFR than heavy-load RT, although tonnage only increased during the chest press (70.7-80.0%) and leg extension (89.1%) exercises. Perceptions of exertion (4.8-7.2 au) and compliance (97.9-99.0%) were similar for both interventions. CONCLUSION: The training-induced increases in load, high compliance, and moderate levels of exertion suggested that RT + BFR and heavy-load RT are viable interventions among people with MS. RT + BFR may be a preferred modality if heavy loads are not well tolerated and/or to promote early-phase training responses.

5.
J Biosoc Sci ; : 1-22, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618934

ABSTRACT

RESULTS.: Hispanic children have higher odds of growth stunting than non-Hispanic White children. Native American children die younger and have higher odds of respiratory diseases and porous lesions than Hispanic and non-Hispanic Whites. Rural/urban location does not significantly impact age at death, but housing type does. Individuals who lived in trailers/mobile homes had earlier ages at death. When intersections between housing type and housing location are considered, children who were poor and from impoverished areas lived longer than those who were poor from relatively well-off areas. CONCLUSIONS.: Children's health is shaped by factors outside their control. The children included in this study embodied experiences of social and ELS and did not survive to adulthood. They provide the most sobering example of the harm that social factors (structural racism/discrimination, socioeconomic, and political structures) can inflict.

6.
Int J Sports Med ; 45(9): 659-671, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38198822

ABSTRACT

Skeletal muscle is the largest organ system in the human body and plays critical roles in athletic performance, mobility, and disease pathogenesis. Despite growing recognition of its importance by major health organizations, significant knowledge gaps remain regarding skeletal muscle health and its crosstalk with nearly every physiological system. Relevant public health challenges like pain, injury, obesity, and sarcopenia underscore the need to accurately assess skeletal muscle health and function. Feasible, non-invasive techniques that reliably evaluate metrics including muscle pain, dynamic structure, contractility, circulatory function, body composition, and emerging biomarkers are imperative to unraveling the complexities of skeletal muscle. Our concise review highlights innovative or overlooked approaches for comprehensively assessing skeletal muscle in vivo. We summarize recent advances in leveraging dynamic ultrasound imaging, muscle echogenicity, tensiomyography, blood flow restriction protocols, molecular techniques, body composition, and pain assessments to gain novel insight into muscle physiology from cellular to whole-body perspectives. Continued development of precise, non-invasive tools to investigate skeletal muscle are critical in informing impactful discoveries in exercise and rehabilitation science.


Subject(s)
Body Composition , Muscle, Skeletal , Ultrasonography , Humans , Muscle, Skeletal/physiology , Biomarkers , Muscle Contraction/physiology , Myalgia/physiopathology
7.
J Strength Cond Res ; 38(7): e349-e358, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38900183

ABSTRACT

ABSTRACT: Montgomery, TR Jr, Olmos, A, Sears, KN, Succi, PJ, Hammer, SM, Bergstrom, HC, Hill, EC, Trevino, MA, and Dinyer-McNeely, TK. Influence of blood flow restriction on neuromuscular function and fatigue during forearm flexion in men. J Strength Cond Res 38(7): e349-e358, 2024-To determine the effects of blood flow restriction (BFR) on the mean firing rate (MFR) and motor unit action potential amplitude (MUAPAMP) vs. recruitment threshold (RT) relationships during fatiguing isometric elbow flexions. Ten men (24.5 ± 4.0 years) performed isometric trapezoidal contractions at 50% maximum voluntary contraction to task failure with or without BFR, on 2 separate days. For BFR, a cuff was inflated to 60% of the pressure required for full brachial artery occlusion at rest. During both visits, surface electromyography was recorded from the biceps brachii of the dominant limb and the signal was decomposed. A paired-samples t test was used to determine the number of repetitions completed between BFR and CON. ANOVAs (repetition [first, last] × condition [BFR, CON]) were used to determine differences in MFR vs. RT and MUAPAMP vs. RT relationships. Subjects completed more repetitions during CON (12 ± 4) than BFR (9 ± 2; p = 0.012). There was no significant interaction (p > 0.05) between the slopes and y-intercepts during the repetition × condition interaction for MUAPAMP vs. MFR. However, there was a main effect of repetition for the slopes of the MUAPAMP vs. RT (p = 0.041) but not the y-intercept (p = 0.964). Post hoc analysis (collapsed across condition) indicated that the slopes of the MUAPAMP vs. RT during the first repetition was less than the last repetition (first: 0.022 ± 0.003 mv/%MVC; last: 0.028 ± 0.004 mv/%MVC; p = 0.041). Blood flow restriction resulted in the same amount of higher threshold MU recruitment in approximately 75% of the repetitions. Furthermore, there was no change in MFR for either condition, even when taken to task failure. Thus, BFR training may create similar MU responses with less total work completed than training without BFR.


Subject(s)
Electromyography , Forearm , Isometric Contraction , Muscle Fatigue , Muscle, Skeletal , Regional Blood Flow , Humans , Male , Muscle Fatigue/physiology , Adult , Isometric Contraction/physiology , Forearm/blood supply , Forearm/physiology , Young Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/blood supply , Regional Blood Flow/physiology , Blood Flow Restriction Therapy
8.
J Strength Cond Res ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39178106

ABSTRACT

ABSTRACT: Lubiak, SM, Lawson, JE, Gonzalez Rojas, DH, Proppe, CE, Rivera, PM, Hammer, SM, Trevino, MA, Dinyer-McNeely, TK, Montgomery, TR, Olmos, AA, Sears, KN, Bergstrom, HC, Succi, PJ, Keller, JL, and Hill, EC. A moderate blood flow restriction pressure does not affect maximal strength or neuromuscular responses. J Strength Cond Res XX(X): 000-000, 2024-The purpose of this study was to examine the acute effects of blood flow restriction (BFR) applied at 60% of total arterial occlusion pressure (AOP) on maximal strength. Eleven college-aged female subjects completed two testing sessions of maximal unilateral concentric, isometric, and eccentric leg extension muscle actions performed with and without BFR. Separate 3 (mode [isometric, concentric, eccentric]) × 2 (condition [BFR, no BFR]) × 2 (visit [2, 3]) repeated-measures analysis of variances were used to examine mean differences in maximal strength, neuromuscular function, rating of perceived exertion (RPE), and pain. For maximal strength (collapsed across condition and visit), isometric (128.5 ± 22.7 Nm) and eccentric (114.5 ± 35.4 Nm) strength were greater than concentric maximal strength (89.3 ± 22.3 Nm) (p < 0.001-0.041). Muscle excitation relative (%) to isometric non-BFR was greater during the concentric (108.6 ± 31.5%) than during the eccentric (86.7 ± 29.2%) (p = 0.045) assessments but not different than isometric (93.4 ± 17.9%) (p = 0.109) assessments, collapsed across condition and visit. For RPE, there was an interaction such that RPE was greater during non-BFR (4.3 ± 1.7) than during BFR (3.7 ± 1.7) (p = 0.031) during the maximal concentric strength assessments. Furthermore, during maximal strength assessments performed with BFR, isometric RPE (5.8 ± 1.9) was greater than concentric (3.7 ± 1.7) (p = 0.005) and eccentric (4.6 ± 1.9) (p = 0.009) RPE. Finally, pain was greater during the isometric (2.8 ± 2.1 au) than during the concentric (1.8 ± 1.5 au) (p = 0.016), but not eccentric, maximal strength assessments (2.1 ± 1.6 au) (p = 0.126), collapsed across condition and visit. The application of BFR at 60% AOP did not affect concentric, isometric, or eccentric maximal strength or neuromuscular function. Trainers, clinicians, and researchers can prescribe exercise interventions relative to a restricted (when using a moderate AOP) or nonrestricted assessment of maximal strength.

9.
Osteoporos Int ; 34(7): 1231-1239, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37083968

ABSTRACT

This study finds that fatty liver disease is associated with low bone density in a pediatric mortality sample. Since non-alcoholic fatty liver disease has increased in prevalence over the past few decades among children, a better understanding of the disease's impacts on bone health is of significance to clinicians. PURPOSE: Chronic illness leads to decreased bone modeling and remodeling. This can be especially problematic during childhood and adolescence, since the majority of an individual's peak bone mass is achieved by the age of 20. In this study, we examine relationships between chronic illness and low bone mineral density (BMD) in a pediatric mortality sample (aged 0.5 to 20.9 years) from New Mexico. We also test whether low BMD is related to decelerated linear growth by examining its relationship to growth stunting and arrest (Harris lines). METHODS: Hounsfield units (HU), a proxy for trabecular BMD, were obtained at the fourth lumbar vertebra and the femoral neck from postmortem CT scans. Linear regression was used to examine associations between z-standardized HU and age, sex, medical conditions, Harris lines, and growth stunting. RESULTS: We find that lumbar HU is significantly lower for individuals with fatty liver disease and respiratory illness; femoral HU is significantly lower in individuals with Harris lines. CONCLUSION: The mechanisms of low BMD in individuals with fatty liver disease and respiratory illness are likely multifactorial and involve vitamin D deficiency (malnutrition, malabsorption), systemic inflammation, and sedentary lifestyles. However, better awareness of this relationship can provide clinicians with the ability to introduce nutritional and behavioral interventions early to mitigate deleterious effects on bone. Harris lines, on the other hand, mark temporary growth cessation due to physiological stress followed by a rapid resumption of growth. Low BMD in these individuals may be due to bone mineralization lagging behind relatively rapid linear growth.


Subject(s)
Bone Diseases, Metabolic , Non-alcoholic Fatty Liver Disease , Adolescent , Humans , Child , Absorptiometry, Photon , Bone Density/physiology , Femur Neck , Lumbar Vertebrae
10.
J Musculoskelet Neuronal Interact ; 23(2): 165-174, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37259656

ABSTRACT

OBJECTIVES: The purpose of this investigation was to examine the acute effects of low-load blood flow restriction (LLBFR) and low-load (LL) resistance exercise on muscle excitation, neuromuscular efficiency, and average torque. METHODS: Eleven men (age±SD=22±3yrs) randomly performed LLBFR and LL that consisted of 30 unilateral leg extensions at 30% of one-repetition maximum while surface electromyography (sEMG) and torque were simultaneously assessed. Polynomial regression analyses and slope comparisons were performed to examine patterns of responses and rates of change. RESULTS: sEMG amplitude increased for LLBFR (9 of 11) and LL (8 of 11) and between composite responses (R2=0.939-0.981). For LLBFR, sEMG amplitude increased to a greater extent for 5 of the 11 individual and for the composite responses. Similarly, neuromuscular efficiency decreased for LLBFR (8 of 11) and LL (5 of 11) as well as the composite responses r2=0.902-0.929, but the decrease was larger for LLBFR than LL for the individual (4 of 11) responses. For average submaximal concentric torque, there were individual increases, decreases, and no changes for the composite responses (R2=0.198-0.325). CONCLUSION: LLBFR elicited greater fatigue-induced increases in muscle excitation and decreases in neuromuscular efficiency than LL, but neither LLBFR nor LL affected average submaximal concentric torque.


Subject(s)
Muscle, Skeletal , Resistance Training , Humans , Male , Electromyography , Exercise/physiology , Muscle, Skeletal/physiology , Torque , Young Adult , Adult
11.
Am J Hum Biol ; 35(8): e23896, 2023 08.
Article in English | MEDLINE | ID: mdl-36974669

ABSTRACT

OBJECTIVES: Porous lesions of the orbit (cribra orbitalia [CO]) and cranial vault (porotic hyperostosis [PH]) are used as skeletal indicators of childhood stress. Because they are understudied in contemporary populations, their relationship to disease experience is poorly understood. This paper examines the relationship between length of childhood illness and CO/PH formation in a clinically documented sample. "Turning points," which identify the window for lesion formation for CO/PH, are defined, implications for hidden heterogeneity in frailty are considered. METHODS: Data are from 333 (199 males; 134 females) pediatric postmortem computed tomography scans. Individuals died in New Mexico (2011-2019) and are 0.5 to 15.99 years (mean = 7.1). Length of illness was estimated using information from autopsy and field reports. Logistic regression was used to estimate predicted probabilities, odds ratios, and the temporal window for lesion formation. RESULTS: Illness, single bouts, or cumulative episodes lasting over 1 month is associated with higher odds of CO; individuals who were never sick have lower odds of having PH. This relationship was consistent for fatal and incidental illnesses that did not cause death. The developmental window for CO formation appears to close at 8 years. CONCLUSIONS: Those ill for over 1 month are more likely to have CO/PH than those with acute illnesses. Some individuals lived sufficiently long to form CO/PH but died of illness. Others with lesions died of circumstances unrelated to disease. This indicates hidden variation in robusticity even among ill individuals with CO/PH, which is vital in interpreting lesion frequencies in the archeological record.


Subject(s)
Hyperostosis , Skull , Male , Female , Humans , Child , Porosity , Skull/pathology , Orbit/pathology , Hyperostosis/complications , Hyperostosis/pathology , New Mexico
12.
J Strength Cond Res ; 37(12): 2467-2476, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38015736

ABSTRACT

ABSTRACT: Boffey, D, DiPrima, JA, Kendall, KL, Hill, EC, Stout, JR, and Fukuda, DH. Influence of body composition, load-velocity profiles, and sex-related differences on army combat fitness test performance. J Strength Cond Res 37(12): 2467-2476, 2023-The Army Combat Fitness Test (ACFT) became the U.S. Army's mandatory physical fitness test in April of 2022. The purpose of this study was to determine the relationship between ACFT performance and both body composition and velocity profiles and to determine sex differences for these variables. Data were collected at 2 timepoints 4 months apart, from male (n = 55) and female (n = 17) Army Reserve Officers' Training Corps (ROTC) cadets. Body composition was assessed with a bioelectrical impedance spectroscopy device, and cadets completed a hex bar deadlift load-velocity profile (LVP) and ACFT on separate days. Stepwise multiple regressions were used to explain the amount of variance in ACFT total score and individual event performance. Significance for statistical tests was defined as an alpha level of p ≤ 0.05. Muscle mass and body fat percentage accounted for 49% of shared variance of total ACFT score, and deadlift maximal power and maximal velocity accounted for 67% of shared variance of total ACFT score. The 3 repetition maximum deadlift, standing power throw, hand-release push-up, and sprint-drag-carry events favored cadets with more muscle mass, whereas the leg tuck was influenced by the body fat percentage and the 2-mile run was affected by fat mass. Sex had greater predictive capability for the 2-mile run than body composition. Men outperformed women on all individual events, with the greatest differences on standing power throw and sprint-drag-carry. It is recommended that Army ROTC cadets taking the ACFT maximize lower-body power production and increase muscle mass.


Subject(s)
Exercise Test , Military Personnel , Humans , Male , Female , Exercise Test/methods , Sex Characteristics , Physical Fitness/physiology , Exercise , Body Composition
13.
J Strength Cond Res ; 37(10): 2002-2007, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37729513

ABSTRACT

ABSTRACT: Renziehausen, JM, Bergquist, AM, Park, J-H, Hill, EC, Wells, AJ, Stout, JR, and Fukuda, DH. Time of day effects on anaerobic performance using a nonmotorized treadmill. J Strength Cond Res 37(10): 2002-2007, 2023-The purpose of this study was to determine the effects of time of day on performance during a maximal effort sprinting assessment (30nmt) and determine potential differences based on chronotype and sex. Twenty-six recreationally active men (n = 12) and women (n = 14) between the ages of 18 and 35 years old (21.5 ± 2.4 years) completed the 30nmt at 9:00 am, 2:00 pm, and 7:00 pm in a randomized order over a 24-hour period. Resting heart rate and temperature assessments were taken at each visit. A dietary recall and the Morningness-Eveningness Questionnaire were used to assess kilocalories (kcals) and chronotype, respectively. Two-way (time x sex) repeated measures analyses of variance were conducted to determine differences in peak/mean power, peak/mean velocity, distance, resting heart rate, temperature, and kcals at each time point. Paired sample t tests were used to assess peak and nadir of each performance variable. A significance level was set at p < 0.05. There was a significant main effect for temperature (p < 0.001), resting heart rate (p = 0.007), and pre-exercise caloric intake (p = 0.021) throughout the day. No significant main effects for time were found for peak power (p = 0.766), mean power (p = 0.094), peak velocity (p = 0.497), mean velocity (p = 0.193), or distance (p = 0.262). There were no significant time × sex interactions for any dependent performance variables (p > 0.05). Significant differences were shown between the peak and nadir of each performance variable (p < 0.001). There were no significant differences in performance during maximal effort anaerobic assessments shown throughout the day; however, peak/nadir of performance times may be individualized and differ between morning types and intermediate types.


Subject(s)
Chronotype , Energy Intake , Male , Humans , Female , Adolescent , Young Adult , Adult , Anaerobiosis , Mental Recall , Temperature
14.
J Strength Cond Res ; 37(10): e546-e554, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37639655

ABSTRACT

ABSTRACT: Wizenberg, AM, Gonzalez-Rojas, D, Rivera, PM, Proppe, CE, Laurel, KP, Stout, JR, Fukuda, DH, Billaut, F, Keller, JL, and Hill, EC. Acute effects of continuous and intermittent blood flow restriction on sprint interval performance and muscle oxygen responses. J Strength Cond Res 37(10): e546-e554, 2023-This investigation aimed to examine the acute effects of continuous and intermittent blood flow restriction (CBFR and IBFR, respectively) during sprint interval training (SIT) on muscle oxygenation, sprint performance, and ratings of perceived exertion (RPE). Fifteen men (22.6 ± 2.4 years; 176 ± 6.3 cm; 80.0 ± 12.6 kg) completed in random order a SIT session with CBFR, IBFR (applied during rest), and no blood flow restriction (NoBFR). Each SIT session consisted of two 30-second all-out sprint tests separated by 2 minutes. Peak power (PP), total work (TW), sprint decrement score (S dec ), RPE, and muscle oxygenation were measured during each sprint. A p value ≤0.05 was considered statistically significant. PP decreased to a greater extent from sprint 1 to sprint 2 during CBFR (25.5 ± 11.9%) and IBFR (23.4 ± 9.3%) compared with NoBFR (13.4 ± 8.6%). TW was reduced similarly (17,835.6 ± 966.2 to 12,687.2 ± 675.2 J) from sprint 1 to sprint 2 for all 3 conditions, but TW was lower (collapsed across time) for CBFR (14,320.7 ± 769.1 J) than IBFR (15,548.0 ± 840.5 J) and NoBFR (15,915.4 ± 771.5 J). There were no differences in S dec (84.3 ± 1.7%, 86.1 ± 1.5%, and 87.2 ± 1.1% for CBFR, IBFR, and NoBFR, respectively) or RPE, which increased from sprint 1 (8.5 ± 0.3) to sprint 2 (9.7 ± 0.1). Collective muscle oxygenation responses increased across time and were similar among conditions, whereas increases in deoxy[heme] and total[heme] were greatest for CBFR. Applying BFR during SIT induced greater decrements in PP, and CBFR resulted in greater decrements in work across repeated sprints. The larger increases in deoxy[heme] and total[heme] for CBFR suggested it may induce greater metabolite accumulation than IBFR and NoBFR when combined with SIT.


Subject(s)
High-Intensity Interval Training , Muscles , Humans , Male , Heme , Oxygen , Rest , Young Adult
15.
J Strength Cond Res ; 37(7): e405-e412, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36525527

ABSTRACT

ABSTRACT: Salmon, OF, Housh, TJ, Hill, EC, Keller, JL, Anders, JPV, Johnson, GO, Schmidt, RJ, and Smith, CM. Changes in neuromuscular response patterns after 4 weeks of leg press training during isokinetic leg extensions. J Strength Cond Res 37(7): e405-e412, 2023-The purpose of this study was to identify velocity-specific changes in electromyographic root mean square (EMG RMS), EMG frequency (EMG MPF), mechanomyographic RMS (MMG RMS), and MMG MPF during maximal unilateral isokinetic muscle actions performed at 60° and 240°·s -1 velocities within the right and left vastus lateralis (VL) after 4 weeks of dynamic constant external resistance (DCER) bilateral leg press training. Twelve resistance-trained men (age: mean ± SD = 21.4 ± 3.6 years) visited the laboratory 3d·wk -1 to perform resistance training consisting of 3 sets of 10 DCER leg presses. Four, three-way analysis of variance were performed to evaluate changes in neuromuscular responses (EMG RMS, EMG MPF, MMG RMS, and MMG MPF) from the right and left VL during 1 single-leg maximal isokinetic leg extension performed at 60° and 240°·s -1 before and after 4 weeks of DCER leg press training ( p < 0.05). The results indicated a 36% increase in EMG RMS for the right leg, as well as a 23% increase in MMG RMS and 10% decrease in MMG MPF after training, collapsed across velocity and leg. In addition, EMG RMS was 65% greater in the right leg than the left leg following training, whereas EMG MPF was 11% greater for the left leg than the right leg throughout training. Thus, 4 weeks of DCER leg press training provides sufficient stimuli to alter the neuromuscular activation process of the VL but not velocity-specific neuromuscular adaptations in trained males.


Subject(s)
Leg , Muscle, Skeletal , Male , Humans , Muscle, Skeletal/physiology , Electromyography/methods , Leg/physiology , Muscle Contraction/physiology , Torque
16.
J Neurophysiol ; 128(1): 73-85, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35704398

ABSTRACT

The purpose of this study was to examine the acute effects of low-load blood flow restriction (LLBFR) and low-load non-BFR (LL) on neuromuscular function after a bout of standardized fatiguing leg extension muscle actions. Fourteen men (mean age ± SD = 23 ± 4 yr) volunteered to participate in this investigation and randomly performed LLBFR and LL on separate days. Resistance exercise consisted of 75 isotonic unilateral leg extension muscle actions performed at 30% of one-repetition maximum. Before (pretest) and after (posttest) performance of each bout of exercise, strength and neural assessments were determined. There were no pretest to posttest differences between LLBFR and LL for maximal voluntary isometric contraction (MVIC) torque or V wave/M wave responses (muscle compound action potentials assessed during a superimposed MVIC muscle action), which exhibited decreases (collapsed across condition) of 41.2% and 26.2%, respectively. There were pretest to posttest decreases in peak twitch torque (36.0%) and surface electromyography amplitude (sEMG) (29.5%) for LLBFR but not LL and larger decreases in voluntary activation for LLBFR (11.3%) than for LL (4.5%). These findings suggested that LLBFR elicited greater fatigue-induced decreases in several indexes of neuromuscular function relative to LL. Despite this, both LLBFR and LL resulted in similar decrements in performance as assessed by maximal strength.NEW & NOTEWORTHY The application of blood flow restriction induces greater acute neuromuscular fatigue relative to nonrestricted conditions. Resistance exercise with blood flow restriction elicited a greater reduction in twitch responses. These neuromuscular differences might explain the more favorable adaptations achieved with blood flow restriction that are likely a function of metabolic stress and subsequent changes in efferent neural drive.


Subject(s)
Muscle Fatigue , Resistance Training , Humans , Isometric Contraction/physiology , Male , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Regional Blood Flow/physiology , Resistance Training/methods , Torque
17.
Mol Phylogenet Evol ; 177: 107618, 2022 12.
Article in English | MEDLINE | ID: mdl-36031107

ABSTRACT

The microhylid frogs of the New Guinea region are the largest and most ecologically diverse subfamily (Asterophryinae) of one of the largest anuran families in the world and can live in communities of up to 20 species. While there has been recent progress in resolving the phylogenetic relationships of Asterophryinae, significant uncertainties remain, impeding further progress in understanding the evolution of microhabitat use, parental care, and life history variation in this group. In particular, the early divergences at the base of the tree remain unclear; as does the monophyly of some genera; and recent studies have discovered that species with wide geographic distribution are instead cryptic species complexes. In this study, we fortified geographic sampling of the largest previous phylogenetic effort by sequencing an additional 62 taxa and increased data quality and quantity by adding new layers of data vetting and by filling in previously incomplete loci to the five gene dataset (2 mitochondrial, 3 nuclear protein-coding genes) to obtain a dataset that is now 99% complete in over 2400 characters for 233 samples (205 taxa) of Asterophryinae and 3 outgroup taxa, and analyzed microhabitat use data for these taxa from field data and data collected from the literature. Importantly, our sampling includes complete community complements at 19 sites as well as representatives at over 80 sites across New Guinea and its offshore islands. We present a highly resolved molecular phylogeny which, for the first time, has over 95% of nodes supported (84% highly supported) whether using Maximum Likelihood or Bayesian Inference, allowing clarification of all genera (whether monophyletic or clearly not), their sister genera relationships, as well as an age estimate for the Asterophryinae at approximately 20MYA. Early generic diversification occurring between 17 and 12 MYA gave rise to a surprising diversity of about 18 genera as well as the 5 putative microhabitat types. Our tree reveals extensive cryptic diversity calling any widespread taxa into doubt, and clearly demonstrates that complex multispecies communities of Asterophryinae are ecologically diverse, are numerous, and of ancient origin across New Guinea. We discuss the implications of our phylogeny for explaining the explosive diversification of Asterophryinae as the result of adaptive radiation, niche conservatism, and non-adaptive radiation.


Subject(s)
Anura , Cell Nucleus , Animals , Anura/genetics , Bayes Theorem , Cell Nucleus/genetics , Humans , Nuclear Proteins/genetics , Phylogeny
18.
J Strength Cond Res ; 36(1): 156-161, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-31860532

ABSTRACT

ABSTRACT: Keller, JL, Housh, TJ, Hill, EC, Smith, CM, Schmidt, RJ, and Johnson, GO. Are there sex-specific neuromuscular or force responses to fatiguing isometric muscle actions anchored to a high perceptual intensity? J Strength Cond Res 36(1): 156-161, 2022-The purpose of this study was to use the ratings of perceived exertion (RPE) clamp model to examine sex-specific changes in neuromuscular responses and force after a sustained isometric leg extension muscle action anchored to RPE = 8. Twenty adults (10 men and 10 women) performed sustained, isometric leg extension muscle actions at RPE = 8. Electromyographic (EMG) and mechanomyographic signals were recorded from the dominant leg. Neuromuscular and force values resulting from the sustained muscle action were normalized to pretest maximal voluntary isometric contractions (MVICs). The level of significance set for the study was p ≤ 0.05. The pretest MVIC was significantly (p < 0.001) greater (averaged across sex) than posttest MVIC force (55.5 ± 10.0 vs. 47.6 ± 11.1 kg). There was a significant (p < 0.01) decrease from pretest (95.4 ± 7.7 Hz) to posttest (76.2 ± 5.9 Hz) in EMG mean power frequency (MPF) for the men. The normalized force (averaged across sex) decreased significantly (p < 0.001) from the initial timepoint (57.1 ± 16.4%) to the final timepoint (44.3 ± 15.7%) of the sustained muscle action. Normalized EMG MPF (averaged across sex) decreased significantly (p = 0.001) from the initial timepoint (96.4 ± 17.5%) to final timepoint (87.8 ± 18.1%). The men and women exhibited similar fatigue-induced changes in force and neuromuscular parameters; therefore, these findings did not indicate different sex-specific responses after the fatiguing task anchored to a high perception of exertion. The force corresponding to RPE = 8 did not match the anticipated value; so, RPE and percentages of MVIC cannot be used interchangeably, and sustained isometric muscle actions anchored to RPE may elicit unique neuromuscular adaptations.


Subject(s)
Isometric Contraction , Muscle Fatigue , Acclimatization , Adult , Electromyography , Female , Humans , Leg , Male , Muscle, Skeletal
19.
Eur J Appl Physiol ; 121(12): 3313-3321, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34432149

ABSTRACT

PURPOSE: Literature is conflicted on whether electromechanical delay durations decrease following resistance training programs. Therefore, the aim of this study is to examine the contributions and durations of the electrochemical (EMDE-M) and mechanical (EMDM-F) components to the overall electromechanical delay (EMDE-F) during step isometric muscle actions following 4-weeks of structured, multi-joint, lower-body variable resistance training (VRT) program. METHODS: Twelve men performed 4-weeks of VRT leg press training utilizing combination of steel plates (80% total load) and elastic bands (20% total load). Training consisted of 3 sets of 10 repetitions at a 10 repetition maximum load, 3 day week-1 for 4-weeks. EMDE-M, EMDM-F, and EMDE-F was measured at Baseline, Week-2, and Week-4 during voluntary step isometric muscle actions (20, 40, 60, 80, and 100% of maximal voluntary isometric contraction) from the vastus lateralis using electromyographic, mechanomyographic, and force signals. RESULTS: The EMDE-M, EMDM-F, and EMDE-F exhibited decreases in duration following 4-weeks of VRT. In addition, EMDE-M contributed significantly less (42-47%) than EMDM-F (53-58%) to the total duration of EMDE-F across the 4-weeks of VRT. CONCLUSIONS: These findings indicated that a structured, VRT program utilizing multi-joint exercise was sufficient to induce decreases in the electrochemical and mechanical processes associated with step isometric muscle contractions. In addition, the utilization of the electromyographic, mechanomyographic, and force signals were capable of quantifying electrochemical and mechanical component changes associated with voluntary muscle contraction. Thus, EMDE-M, EMDM-F, and EMDE-F can be useful in quantifying physiological changes in athletic, clinical, and applied research interventions.


Subject(s)
Electromyography , Isometric Contraction/physiology , Lower Extremity/physiology , Muscle, Skeletal/physiology , Resistance Training/methods , Humans , Male , Muscle Fatigue/physiology , Muscle Strength/physiology , Young Adult
20.
Eur J Appl Physiol ; 121(5): 1473-1485, 2021 May.
Article in English | MEDLINE | ID: mdl-33638690

ABSTRACT

PURPOSE: The purpose of this investigation was to examine the individual and composite patterns of responses and time-course of changes in muscle size, strength, and edema throughout a 4 week low-load blood flow restriction (LLBFR) resistance training intervention. METHODS: Twenty recreationally active women (mean ± SD; 23 ± 3 years) participated in this investigation and were randomly assigned to 4 weeks (3/week) of LLBFR (n = 10) or control (n = 10) group. Resistance training consisted of 75 reciprocal isokinetic forearm flexion-extension muscle actions performed at 30% of peak torque. Strength and ultrasound-based assessments were determined at each training session. RESULTS: There were quadratic increases for composite muscle thickness (R2 = 0.998), concentric peak torque (R2 = 0.962), and maximal voluntary isometric contraction (MVIC) torque (R2 = 0.980) data for the LLBFR group. For muscle thickness, seven of ten subjects exceeded the minimal difference (MD) of 0.16 cm during the very early phase (laboratory visits 1-7) of the intervention compared to three of ten subjects that exceeded MD for either concentric peak torque (3.7 Nm) or MVIC (2.2 Nm) during this same time period. There was a linear increase for composite echo intensity (r2 = 0.563) as a result of LLBFR resistance training, but eight of ten subjects never exceeded the MD of 14.2 Au. CONCLUSIONS: These findings suggested that the increases in muscle thickness for the LLBFR group were not associated with edema and changes in echo intensity should be examined on a subject-by-subject basis. Furthermore, LLBFR forearm flexion-extension resistance training elicited real increases in muscle size during the very early phase of training that occurred prior to real increases in muscle strength.


Subject(s)
Arm/blood supply , Arm/physiology , Muscle Strength/physiology , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Resistance Training/methods , Arm/anatomy & histology , Edema/physiopathology , Female , Humans , Isometric Contraction/physiology , Muscle, Skeletal/anatomy & histology , Torque , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL